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QUASI PERFECTLY CONTINUOUS FUNCTIONS AND
THEIR FUNCTION SPACES
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Abstract. A new class of functions called ‘quasi perfectly continu-
ous functions’ is introduced. Basic properties of quasi perfectly contin-
uous functions are studied and their place in the hierarchy of variants
of continuity, that already exist in the literature, is elaborated. The
notion of quasi perfect continuity, in general is independent of con-
tinuity but coincides with perfect continuity (Indian J. Pure Appl.
Math. 15(3) (1984), 241-250), a significantly strong form of continu-
ity, if the range space is regular. The class of quasi perfectly contin-
uous functions properly contains the class of δ-perfectly continuous
functions (Demonstratio Math. 43(1) (2009), 221-231) and is strictly
contained in the class of quasi cl-supercontinuous functions. More-
over, it is shown that if X is sum connected (e.g. connected or locally
connected) and Y is Hausdorff, then the function space Pq(X,Y ) of all
quasi perfectly continuous functions is closed in Y X in the topology
of pointwise convergence. Furthermore, certain known function spaces
in the literature are shown to be identical with Pq(X,Y ) in case X is
sum connected and Y is Hausdorff.
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1. Introduction

Variants of continuity arise naturally in almost all branches of math-
ematics and applications of mathematics. Certain of these variants of
continuity are weaker than continuity while others are stronger than
continuity and yet others, although in some cases their theories run
parallel to continuity, are independent of continuity. The purpose of
this paper is to introduce a new class of functions called ‘quasi perfectly
continuous functions’ and to discuss their properties and to elaborate
upon their place in the hierarchy of variants of continuity that already
exist in the lore of mathematical literature. It turns out that the notion
of quasi perfect continuity is independent of continuity but coincides
with perfect continuity of Noiri [34], a significantly strong form of con-
tinuity, if the range is a regular space. The class of quasi perfectly con-
tinuous functions properly contains the class of δ-perfectly continuous
functions [20] which in its turn contains all perfectly continuous func-
tions and so includes all strongly continuous functions of Levine [25].
Moreover, the class of quasi perfectly continuous functions is strictly
contained in the class of quasi cl-supercontinuous functions [11] which
in turn is properly contained in the class of quasi z-supercontinuous
functions [24].
The paper is organised as follows: Section 2 is devoted to prelimi-
naries and basic definitions. In Section 3, we introduce the notion of
a ‘quasi perfectly continuous function’ and discuss its interplay and
interrelations with other variants of continuity that already exist in
the mathematical literature. Therein examples are included to reflect
upon distinctiveness of the notions so introduced with the ones which
already exist in the literature. Basic properties of quasi perfectly con-
tinuous functions are elaborated in Section 4, wherein sufficient con-
ditions are given for the preservation of quasi perfect continuity under
(1) restriction and (2) passage to graph function. Moreover, sufficient
conditions are formulated for the composition of two functions to be
quasi perfectly continuous as well as perfectly continuous. Further-
more, it is shown that if a function f : X →

∏
Xα into a product

space is quasi perfectly continuous, then its composition with each pro-
jection map is quasi perfectly continuous and converse holds in case X
is an Alexandroff space [1]. The function space Pq(X, Y ) of quasi per-
fectly continuous functions from a space X into a space Y is considered
in Section 5, wherein it is shown that if X is sum connected [8] (e.g.
connected or locally connected) and Y is Hausdorff then Pq(X,Y ) is
closed in Y X in the topology of pointwise convergence. Furthermore,
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it is shown that under the same hypothesis on X and Y, the function
space Pq(X, Y ) coincides with certain other known function spaces in
the literature.

2. Preliminaries and basic definitions

Throughout the paper X is a topological space. A collection β of
subsets of a space X is called an open complementary system
[7] if β consists of open sets such that for every B ∈ β, there exist
B1, B2, .,∈ β, with B = ∪{X/Bi : i ∈ N}. A subset A of a space X
is called a strongly open Fσ-set [7] if there exists a countable open
complementary system β(A) with A ∈ β(A). The complement of a
strongly open Fσ-set is called strongly closed Gδ-set . A subset A
of a space X is called a regular Gδ-set [30] if A is an intersection of a

sequence of closed sets whose interiors contain A, i.e., if A =
∞∩
n=1

Fn =

∞∩
n=1

F o
n , where each Fn is a closed subset of X (here F o

n denote the

interior of Fn). The complement of a regular Gδ-set is called a regular
Fσ-set. A point x ∈ X is called a θ-adherent point [45] of A ⊂ X if
every closed neigbourhood of x intersects A. Let clθ A denote the set
of all θ-adherent points of A. The set A is called θ-closed if A = clθA.
The complement of a θ-closed set is referred to as a θ-open set . A
subset A of a space X is said to be regular open if it is the interior
of its closure, i.e., A = A

◦
. The complement of a regular open set is

referred to as a regular closed set . A union of regular open sets is
called δ-open [45]. The complement of a δ-open set is referred to as a
δ-closed set . A subset A of X is called zero set of X if there exists a
continuous real valued function f on X such that A={x ∈ X:f(x)=0}.
The complement of zero set is called cozero set .
2.1 Lemma([12] [14]): A subset U of a space X is θ-open if and only
if for each x ∈ U there exists an open set V containing x such that
V ⊂ U.
An open subset U of X is said to be r-open [22] if for each x ∈ U
there exists a closed set B such that x ∈ B ⊂ U or equivalently, if U is
expressible as a union of closed sets. An open subset W of X is said to
be F-open [22] if for each x ∈ W there exists a zero set Z such that
x ∈ Z ⊂ W, or equivalently if W is expressible as a union of zero sets.
Now we give the definitions of strong variants of continuity related to
the theme of the present paper.
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2.1. Definitions. A function f : X → Y from a topological space X
into a topological space Y is said to be
(a) strongly continuous [25] if f(A) ⊂ f(A) for each subset A of
X.
(b) perfectly continuous ([34] [23]) if f−1(V ) is clopen in X for
every open set V⊂Y .
(c) cl-supercontinuous [42] (≡ clopen continuous [37]) if for each
x ∈ X and for each open set V containing f(x) there is a clopen set
U containing x such that f(U)⊂V .
(d) z-supercontinuous [15] if for each x ∈ X and for each open set
open set V containing f(x) there is a cozero set U containing x such
that f(U)⊂V .
(e) Dδ-supercontinuous [16] if for each x∈X and for each open set
V containing f(x), there exists a regular Fσ -set U containing x such
that f(U)⊂V .
(f) (almost) strongly θ-continuous ([35] [27]) if for each x ∈ X
and for each (regular open) open set V containing f(x), there exists an
open set U containing x such that f(U) ⊂ V .
(g) supercontinuous [31] if for each x ∈ X and for each open set
V containing f(x), there exists a regular open set U containing x such
that f(U) ⊂ V .
(h) completely continuous [2] if f−1(V ) is a regular open set in X
for every open set V ⊂ Y .
Next we give definitions of weak variants of continuity that will crop
up in our discussion.

2.2. Definitions. A function f : X → Y from a topological space X
into a topological space Y is said to be
(a) Dδ -continuous [17] if for each point x ∈ X and each regular Fσ

- set V containing f(x) there is an open set U containing x such that
f(U) ⊂ V .
(b) D*-continuous [41] if for each point x ∈ X and each strongly
open Fσ- set V containing f(x) there is an open set U containing x
such that f(U) ⊂ V .
(c) D-continuous [9] if for each x ∈ X and each open Fσ- set V con-
taining f(x) there is an open set U containing x such that f(U) ⊂ V .
(d) z-continuous [39] if for each x ∈ X and each cozero set V con-
taining f(x) there is an open set U containing x such that f(U) ⊂ V .
(e) almost continuous [40] if for each x ∈ X and for each regular
open set V containing f(x), there exists an open set U containing x
such that f(U) ⊂ V .
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(f) faintly continuous [28] if for each x ∈ X and for each θ -open
set V containing f(x), there exists an open set U containing x such that
f(U) ⊂ V .
(g) θ -continuous [6] if for each x ∈ X and each open set V contain-
ing f(x), there exists an open set U containing x such that f(U) ⊂ V .
(h)F-continuous (R-continuous) [22] If for each x ∈ X and for
each F-open (r-open) set V in Y containing f(x) there exists an open
set U containing x such that f(U) ⊂ V .
(i) weakly continuous [26] if for each x ∈ X and each open set
V containing f(x) there exists an open set U containing x such that
f(U) ⊂ V .
(j) quasi θ-continuous function [36] if for each x ∈ X and each θ
-open set V containing f(x) there exists an θ-open set U containing x
such that f(U) ⊂ V .
In the following we give definitions of variants of continuity which are
independent of continuity and are related to the paper.

2.3. Definitions. A function f : X → Y from a topological space X
into a topological space Y is said to be
(a) δ-perfectly continuous [20] if for each δ -open set V in Y,
f−1(V ) is a clopen set in X.
(b) almost perfectly continuous [43](≡ regular set connected)
[4] if f−1(V ) is clopen for every regular open set V in Y.
(c) almost cl-supercontinuous [19] ( ≡ almost clopen contin-
uous [5]) if for each x ∈ X and each regular open set V containing
f(x) there is a clopen set U containing x such that f(U) ⊂ V .
(d) almost completely continuous [21] (≡ R-maps [3]) if f−1(V )
is a regular open set in X for every regular open set V ⊂ Y .
(e) quasi z-supercontinuous function [24] if for each x ∈ X and
each θ-open set V containing f(x) there exists an cozero set U contain-
ing x such that f(U) ⊂ V .
(f) quasi cl-supercontinuos function [11] if for each x ∈ X and
each θ-open set V containing f(x) there exists a clopen set U contain-
ing x such that f(U) ⊂ V .
(g) δ-continuous [33] if for each x ∈ X and for each regular open set
V containing f(x), there exists a regular open set U containing x such
that f(U) ⊂ V .

2.4. Definitions. A space X is said to be
(a) quasi zero dimensional [10] if for each x ∈ X and each θ-open
set U containing x there exists a clopen set V containing x such that
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V ⊂ U .
(b) endowed with a quasi partition topology if every θ-open set in
X is closed; or equivalently every θ-closed set in X is open.
(c) almost regular [38] if for each x ∈ X and each regular closed set
F not containing x there exist disjoint open sets U and V containing x
and F, respectively.

3. Quasi perfectly continuous functions

We call a function f : X → Y from a topological space X into a
topological space Y quasi perfectly continuous if f−1(V ) is clopen
in X for every θ-open set V in Y.
The following two diagrams well exhibit the interrelations that exist
among quasi perfect continuity and other variants of continuity that
already exist in the literature and are closely related to the theme
of the present paper and so well exhibit the place of quasi perfect
continuity in the hierarchy of known variants of continuity.

                                            
              strongly continuous 

             

              perfectly continuous                                                               cl-supercontinuous 

                                                                                                      

          δ-perfectly continuous        almost perfectly continuous        almost cl-supercontinuous  

                                            (º regular set connected)    

          quasi cl-supercontinuous                                                          quasi perfectly continuous                                     

                                                                                                      

                                                                                                         quasi z-supercontinuous 

 
Figure 1
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   cl-supercontinuous         z-supercontinuous         Dδ-supercontinuous        strongly θ-continuous 

 

        perfectly continuous                       completely continuous                      supercontinuous 

                                                                                                                                               

      δ-perfectly continuous          almost perfectly continuous                                

                                                                            

      quasi perfectly continuous      almost completely continuous                     δ-continuous 

        

 

Figure 2

Observation and Examples
3.1 A space X is endowed with a quasi partition topology if and

only if every quasi θ-continuous functions f: X → Y is quasi perfectly
continuous. Necessity is obvious in view of definitions. To prove suf-
ficiency assume contrapositive and let V be a θ-open set in X which
is not clopen. Then the identity mapping defined on X is quasi θ-
continuous but not quasi perfectly continuous.
3.2 Let X be endowed with a quasi zero dimensional topology which
is not a quasi partition topology. Then every quasi θ-continuous func-
tion f: X → Y is quasi cl-supercontinuous but not necessarily quasi
perfectly continuous.
3.3 Let X be the real line endowed with usual topology. Then the
identity map defined on X is continuous but not quasi perfectly con-
tinuous.
3.4 Let X denote the real line with usual topology and let Y be the
real line with cofinite (or co-countable) topology. Then the identity
function f: X → Y is quasi perfectly continuous but not continuos.
3.5 If X is a zero dimensional space, then every faintly continuous
function f:X → Y is quasi cl-supercontinuous but not necessarily quasi
perfectly continuous.
3.6 If Y is a regular space, then every quasi perfectly continuous func-
tion f: X → Y is perfectly continuous.
Since in view of Lemma 2.1 in a regular space every open set is θ-open.
3.7 If Y is an almost regular space, then every quasi perfectly contin-
uous function f:X → Y is δ-perfectly continuous. This is true since in
an almost regular space, every δ-open set is θ-open.
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3.8 If X is endowed with a quasi partition topology, then every strongly
θ-continuous function is perfectly continuous.
3.9 If X is equipped with a quasi partition topology, then every almost
strongly θ-continuous function is almost perfectly continuous.

4. Basics properties of quasi perfectly continuous
functions

4.1 Theorem: If f:X → Y is a quasi perfectly continuous function
and g: Y → Z is a quasi θ-continuous function, then gof is a quasi
perfectly continuous function. In particular composition of two quasi
perfectly continuous functions is quasi perfectly continuous.
Proof: Let W be a θ-open set in Z. Since g is quasi θ-continuous,
g−1(W ) is a θ-open set in Y. In view of quasi perfect continuity of f,
f−1(g−1(W )) = (gof)−1(W ) is a clopen set in X and so gof is quasi
perfectly continuous.
4.2 Remark: The hypothesis ‘g is quasi θ-continuous’ in Theorem
4.1 can be replaced by any one of the weak variants of continuity
depicted in the following diagram, since each one of them implies
quasi θ-continuity.

continuous

↓
almost continuous

↓
θ - continuous

↓
quasi θ - continuous

Figure 3

4.3 Theorem: Let f: X → Y be a quasi perfectly continuous
function and let g:Y → Z be a strongly θ-continuous function. Then
gof is perfectly continuous.
Proof : Let W be an open set in Z. In view of strong θ-continuity of
the function g, g−1(W ) is a θ-open set in Y. Since f is quasi perfectly
continuous, f−1(g−1(W )) = (gof)−1(W ) is a clopen set in X and so
gof is perfectly continuous.
4.4 Remark: The hypothesis of ‘strong θ-continuity’ of the function
g in Theorem 4.3 can be traded of with any one of the strong variants
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of continuity in the following diagram, since each one of them implies
strong θ-continuity.

strongly continuous

↓

perfectly continuous

↓

cl - supercontinuous

↓

z- supercontinuous

↓

Dδ - supercontinuous

↓

strongly θ - continuous

Figure 4

4.5 Theorem: Let f: X → Y be a z-continuous function and let g:
Y → Z be a quasi perfectly continuous function, then gof is a quasi
perfectly continuous function.
Proof : Let W be a θ-open set in Z. Since g is quasi perfectly
continuous, g−1(W ) is a clopen set in Y. Since f is z-continuous
and since a clopen set is both a zero set and a cozeroset, in view of
[39,Theorem 2.3 and Corollary 2.4] f−1(g−1(W )) = (gof)−1(W ) is
both a zero set and a cozero set and so a clopen set in X. Thus gof is
quasi perfectly continuous.
4.6 Remark: The hypothesis of ‘z-continuity of f’ in Theorem 4.5
can be replaced by any one of the weak variants of continuity in the
following diagram, since each one of them is stronger than z-continuity.
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                                       continuous               R-continuous                 D-continuous 

                                                                                           

                                almost continuous                                    D*-continuous 

                              

                θ-continuous              F-continuous          

                                                                    

            quasi θ-continuous     weakly continuous        z-continuous                                  

                                                                                      

                                  faintly continuous                                         Dδ-continuous                                  

                        Figure 5

4.7 Theorem: Let f: X → Y be a function and g: X → X × Y ,
defined by g(x) = (x, f(x)) for each x ∈ X, be the graph function. If g
is quasi perfectly continuous, then so is f and the space X is endowed
with a quasi partition topology.
Proof : Suppose that the graph function g: X → X × Y is quasi
perfectly continuous. Consider the projection map py : X × Y → Y .
Since it is continuous, so it is θ-continuous. Hence in view of Theorem
4.1 the function f = pyog is quasi perfectly continuous. To prove that
the space X possesses a quasi partition topology, let U be a θ-open set
in X. Then U × Y is a θ-open set in X × Y . Since g is quasi perfectly
continuous, g−1(U × Y ) = U is clopen in X and so the topology of X
is a quasi partition topology.
The following result embodies sufficient conditions for the domain
and / or range of a quasi perfectly continuous function to be equipped
with a quasi partition topology.
4.8 Theorem: Let f: X → Y be a quasi perfectly continuous
surjection which maps clopen sets to closed (open) sets. Then Y is
endowed with a quasi partition topology. Moreover, if f is a bijection
which maps θ-open (θ-closed) sets to θ-open (θ-closed) sets, then X is
also equipped with a quasi partition topology.
Proof : Suppose f maps clopen sets to closed (open) sets. Let V be
a θ-open (θ-closed) set in Y. In view of quasi perfect continuity of
f, f−1(V ) is a clopen set in X. Again, since f is a surjection which
maps clopen sets to closed (open) sets, the set f(f−1(V )) = V is
closed (open) in Y and hence clopen. Thus Y is endowed with a quasi
partition topology.
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To prove the last part of the theorem assume that f is a bijection
which maps θ-open (θ-closed) sets to θ-open (θ-closed) sets and let U
be a θ-open (θ-closed) set in X. Then f(U) is a θ-open (θ-closed) set
in Y. Since f is a quasi perfectly continuous bijection, f(f−1(U))= U
is a clopen set in X and so Thus X is endowed with a quasi partition
topology.
4.9 Theorem: If f: X → Y is a surjection which maps clopen sets to
open sets and g: Y → Z is a function such that gof is quasi perfectly
continuous, then g is a faintly continuous function. Moreover, if f
maps clopen sets to clopen sets, then g is a quasi perfectly continuous
function.
Proof : Let V be a θ-open set in Z. Since gof is quasi per-
fectly continuous, (gof)−1(V ) = f−1(g−1(V )) is clopen set in X.
Again, since f is a surjection which maps clopen sets to open
sets,f(f−1(g−1(V ))) = g−1(V ) is open in Y and so g is a faintly
continuous function. The last assertion is immediate, since in this
case g−1(V ) is a clopen set in Y.
4.10Theorem: Let f: X → Y be a function and let Q = {Xα : α ∈ Λ}
be a locally finite clopen cover of X. For each α ∈ Λ, let fα = f |Xα

: Xα → Y denote the restriction map. Then f is quasi perfectly
continuous if and only if each fα is quasi perfectly continuous.
Proof : Necessity is immediate in view of the fact that quasi
perfect continuity is preserved under the restriction of do-
main. To prove sufficiency, let V be a θ open set in Y . Then
f−1(V ) =

∪
α∈Λ

(f |Xα)
−1(V ) =

∪
α∈Λ

(f−1(V ) ∩ Xα). Since each

f−1(V ) ∩ Xα is clopen in Xα and hence in X. Thus f−1(V ) is open
being the union of clopen sets. Moreover,since the collection Q is
locally finite, the collection {f−1(V ) ∩Xα : α ∈ Λ} is a locally finite
collection of clopen sets. Since the union of a locally finite collection
of closed sets is closed, f−1(V ) is also closed and hence clopen.
In the following result we formulate a sufficient condition for the
invariance of quasi perfect continuity under the shrinking of range.
First we quote the following definition from [13].
4.11 Definition [13]: A subset S of a space X is said to be θ-
embedded in X if every θ-open set in S is the intersection of a
θ-open set in X with S; or equivalently every θ-closed set in S is the
intersection of a θ-closed set in X with S.
4.12 Theorem: Let f: X → Y be a quasi perfectly continuous
function. If f(X) is θ-embedded in Y, then f: X → f(X) is quasi
perfectly continuous.
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Proof : Let V1 be a θ-open set in f(X). Since f(X) is θ-embedded in
Y, there exists a θ-open set V in Y such that V1 = V ∩ f(X). In
view of quasi perfect continuity of f, f−1(V ) is clopen in X. Now
f−1(V1) = f−1(V ∩f(X)) = f−1(V )∩f−1(f(X)) = f−1(V ) and hence
the result.
In contrast to Theorem 4.12 it is easily verified that quasi perfect
continuity is preserved under the expansion of range.
4.13 Definition [1]: A topological space X is called an Alexandroff
space if any intersection of open sets in X is itself an open in X, or
equivalently any union of closed sets in X is closed in X.
Alexandroff spaces have been referred to as saturated spaces by
Lorrain in [29].
4.14 Theorem: For each α ∈ Λ, let fα : X → Xα be a function and
let f : X →

∏
α∈Λ Xα be defined by f(x) = (fα(x)) for each x ∈ X.

If f is quasi perfectly continuous,then each fα is quasi perfectly
continuous. Further, if X is a Alexandroff space and each fα is quasi
perfectly continuous,then f is quasi perfectly continuous.
Proof : Let f be quasi perfectly continuous. Now for each α,
fα = Πα ◦ f where Πα denotes the projection map Πα :

∏
Xα → Xα.

Since each projection map Πα is continuous and hence quasi θ
continuous, in view of Theorem 4.1 it follows that each fα is quasi
perfectly continuous.
Conversely, suppose that X is an Alexandroff space and each fα
is quasi perfectly continuous.To show that the function f is quasi
perfectly continuous, it is sufficient to show that f−1(U) is clopen
for each θ open set U in the product space

∏
α∈ΛXα. Since X is

a Alexandroff space, it suffices to prove that f−1(S) is clopen for
every subbasic θ open set S in the product space

∏
α∈Λ Xα. Let

Uβ ×
∏

α∈ΛXα be a subbasic θ open set in
∏

α∈ΛXα, where Uβ is a θ

open set in Xβ. Then f−1(Uβ×
∏

α̸=β Xα) = f−1(Π−1
β (Uβ)) = f−1

β (Uβ)
is clopen in X. Hence f is quasi perfectly continuous.
We may recall that a space X is said to be ultranormal [44] if each
pair of disjoint closed sets are contained in disjoint clopen sets.
4.15 Theorem: Let f: X → Y be a closed, quasi perfectly continuous
injection into a normal space Y. Then X is an ultranormal space.
Proof : Let A and B be any two disjoint closed sets in X. Since f
is closed and injective, f(A) and f(B) are disjoint closed subsets of
Y. Again, since Y is normal, by Urysohn’s Lemma there exists a
continuous function φ: Y → [0, 1] such that φ(f(A)) = 0 and φ(f(B))
= 1. Then V = φ−1([0, 1/2)) and W = φ−1((1/2, 1]) are disjoint
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cozero sets in Y containing f(A) and f(B), respectively. Since every
cozero set is a θ-open, f−1(V ) and f−1(W ) are disjoint clopen sets
containing A and B, respectively and so X is an ultranormal space.
We may recall that a space X is said is said to be ultraregular [44]
if disjoint points and closed sets are contained in disjoint clopen sets.
Equivalently, if X has a basis consisting of clopen sets. Ultraregular
spaces are usually referred to as a zero dimensional spaces in litera-
ture.
4.16 Theorem: Let f: X → Y be a closed quasi perfectly continuous
injection into a regular space Y. Then X is a zero dimensional (≡
ultraregular) space.
Proof : Let F be a closed set in X and let x /∈ X. Since f is closed
and injective, f(x) /∈ f(F ) and f(F) is a closed set in Y. Now since Y
is a regular space, there exist disjoint open sets U and V containing
f(x) and f(F), respectively. Since in view of Lemma 2.1 every open
set in a regular space is θ-open, U and V are θ-open sets in Y. So
f−1(U) and f−1(V ) are disjoint clopen sets in X containing x and F,
respectively.

5. Function spaces and quasi perfectly continuous
functions

A topological space X is said to be sum connected [8] if each
x ∈ X has a connected neighbourhood, or equivalently each com-
ponent of X is open in X. The category of sum connected spaces
properly includes the class of connected spaces as well as the class of
locally connected spaces and is precisely the coreflective hull of the
category of connected spaces (see [8]). The product of topologist’s
sine curve with a nondegenrate discrete space is a sum connected
space which is neither connected nor locally connected. It is well
known that in general the set of all continuous functions from a space
X into a space Y is not closed in Y X in the topology of pointwise
convergence. In contrast, Naimpally [32] showed that if X is a locally
connected space and Y is Hausdorff, then the set S(X,Y) of all
strongly continuous functions from X into Y is closed in Y X in the
topology of pointwise convergence. In [18] we extended Naimpally’s
result to a larger framework of sum connected spaces and further
proved that P(X,Y) the set of all perfectly continuous functions as
well as L(X,Y) the set of all cl-supercontinuous functions is closed
in Y X in the topology of pointwise convergence. In ([20] [43]) these
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results are further extended to P∆(X,Y ) the set of all δ-perfectly
continuous functions and Pδ(X, Y ) the set of all almost perfectly
continuous functions from X into Y. Herein we further strengthen
these results to show that if X is a sum connected space and Y is a
Hausdorff space, then all the six classes of functions are identical, i.e.
S(X,Y) = P(X,Y) = L(X,Y) = P∆(X, Y ) = Pδ(X,Y ) = Pq(X, Y ) and
are closed in Y X in the topology of pointwise convergence.
5.1 Theorem: Let f: X → Y be a quasi perfectly continuous function
into a Hausdorff space Y. Then f is constant on each connected subset
of X. In particular, if X is connected, then f is constant on X and
hence strongly continuous.
Proof : Assume contrapositive and let C be the connected subset of X
such that f(C) is not a singleton. Let f(x), f(y) ∈ f(C), f(x) ̸= f(y).
Since every compact space in a Hausdorff space is θ-closed, V=
X \ f(y) is a θ-open set in Y containing f(x) but not f(y). Since f is a
quasi perfectly continuous, f−1(V ) ∩ C is a non empty proper clopen
subset of C, contradicting the fact that C is connected. The last part
of the theorem is immediate, since every constant function is strongly
continuous.
5.2 Remark: The hypothesis of ’Hausdorffness’ cannot be omitted in
Theorem 5.1. For let X be the real line with usual topology and let
Y denote the real line endowed with indiscrete topology. Let f denote
the identity mapping from X into Y. Then clearly f is a nonconstant
quasi perfectly continuous function.
5.3 Corollary: Let f: X → Y be a quasi perfectly continuous function
from a sum connected space X into a Hausdorff space Y. Then f is
constant on each component of X and hence strongly continuous.
Proof : Clearly, in view of Theorem 5.1 f is constant on each
component of X. Since X is a sum connected space, each component
of X is clopen in X. Hence it follows that any union of components of
X and the complement of this union are complementary clopen sets in
X. Thus f is constant on each component on X. Therefore, for every
subset A of Y, f−1(A) and X \ f−1(A) are complementary clopen sets
in X being the union of component of X. So f is strongly continuous.
We may recall that a space X a δT0-space [19] if for each pair of
distinct points x and y in X there exists a regular open set containing
one of the points x and y but not the other. In particular, every
Hausdorff space is a δT0-space.
Next, we quote the following results from ([20] [43]).
5.4 Theorem [20, Theorem 5.3]: Let f: X → Y be a function from
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a sum connected space X into a δT0-space Y. Then the following
statements are equivalent.
a) f is strongly continuous.
b) f is perfectly continuous.
c) f is cl-supercontinuous.
d) f is δ -perfectly continuous.
5.5 Theorem [43, Theorem 4.5]: Let f: X → Y be a function from
a sum connected space X into a δT0 -space Y. Then the following
statements are equivalent.
a) f is strongly continuous.
b) f is perfectly continuous.
c) f is cl-supercontinuous.
d) f is δ -perfectly continuous.
e) f is almost perfectly continuous.
5.6 Theorem: Let f: X → Y be a function from a sum connected
space X into a Hausdorff space Y. Then the following statements are
equivalent.
a) f is strongly continuous.
b) f is perfectly continuous.
c) f is cl-supercontinuous.
d) f is δ -perfectly continuous.
e) f is almost perfectly continuous.
f) f is quasi perfectly continuous.
Proof : The equivalence of the assertions (a) - (e) is a consequence of
Theorem 5.5. The implications (a) ⇒ (b) ⇒ (d) ⇒ (f) are trivial and
the implication (f) ⇒ (a) is embodied in Corollary 5.3.
5.7 Theorem: Let X be a sum connected space and let Y be a
Hausdorff space. Then S(X,Y) = P(X,Y) = L(X,Y) = P∆(X, Y )
= Pδ(X, Y ) =Pq(X, Y ) is closed in Y X in the topology of pointwise
convergence.
Proof : It is immediate from Theorem 5.6 that the above six classes
of functions are identical and its closedness in Y X in the topology of
pointwise convergence follows either from [20, Theorem 5.4] or [43,
Theorem 4.6].
The above results are important from applications view point since
in particular it follows that if X is sum connected (e.g. connected
or locally connected) and Y is Hausdorff, then the pointwise limit
of a sequence {fn : X → Y , n ∈ N} of quasi perfectly continuous
functions is quasi perfectly continuous. Moreover, if X is a sum
connected space and Y is a compact Hausdorff space, then the
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function space Pq(X,Y ) is compact Hausdorff in the topology of
pointwise convergence.
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