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A CARLEMAN’S INEQUALITY REFINEMENT NOTE

CRISTINEL MORTICI, HU YUE

Abstract. The aim of this note is to give an improvement of Car-
leman’s inequality. The proof is elementary and our new inequality
refines results stated by Bicheng and Debnath [Some inequlities in-
volving the constant e and an application to Carleman’s inequlity. J.
Math. Anal. Appl. 223 (1998) 347-353], Xie and Zhong [A best ap-
proximation for constant e and an improvement to Hardy’s inequality
J. Math. Anal. Appl. 252 (2000) 994-998.], Ping and Guozheng [A
Strengthened Carleman’s inequality. J. Math. Anal. Appl. 240 (1999)
290-293] and Yang [On Carleman’s inequality J. Math. Anal. Appl.
253 (2001) 691-694].

1. INTRODUCTION

The following Carleman inequality [2] is well-known
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1 n
e = lim (1 + —> )
n—oo n

Keywords and phrases: Inequalities; Carleman inequality’ approx-
imations.
(2010)Mathematics Subject Classification: 26A06; 26A24

41



42 CRISTINEL MORTICI, HU YUE

The constant e is sharp in the sence that it cannot be replaced by
a smaller one.
One possible approach is the following inequality
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see e.g. [1]. As (1+1/n)" < e, Carleman’s inequality follows.
In the recent past, many authors established better upper bounds
for (14 1/n)" to obtain new improved forms of Carleman’s inequality.
We refer here to the following increasingly better results
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stated by Bicheng and Debnath [1], Xie and Zhong [4], Ping and
Guozheng [3] and Yang [5], respectively.
Moreover, Yang [5] proposed
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and conjectured that if
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( x [ ; (n+ 1)’“
then b, > 0, k = 1,2,.... This open problem was solved to some
extend by Hu [6].

an, x>0,
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We improve in this paper (1.2)-(1.5) by stating the following
Theorem 1. For every a, >0, n =1,2,3,..., with0 < > a, <

00, it holds
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Inequality (1.6) is stronger than (1.2)-(1.5), since
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2. THE PROOF

Theorem 1 easily follows using (1.1) and from

Lemma 1. For every integer n > 1, we have
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Proof. By letting the logarithm, the requested inequality can be equiv-
alently written as
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so it suffices to show that the function
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is negative on [1,00). In this sense, note that

Fa) = (1 1 16 117 + 66 1922 + 105 40822 + 76 03223 + 20 736x*
= 1n — —_—
(z + 1) (127 + 11) (2772z + 388822 + 172823 + 575)

and
p P (z)
f <I> = 2 2 2 3 27
z(x+1)" (122 4+ 11)7 (27722 4 3888x2 + 172823 + 575)
where

P(x) = 2270919362 + 510277 24822 + 568 517 184>
+3145029122* + 69 175 2962° + 40 005 625.
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Now f is concave, with f (c0) = 0 and

8963 »

thus f (x) < 0, for every = € [1,00). The proof is complete. §
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