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COMMON FIXED POINT THEOREMS FOR TWO
PAIRS OF WEAKLY COMPATIBLE MAPPINGS IN
MENGER SPACES AND FUZZY METRIC SPACES

B. D. PANT AND SUNNY CHAUHAN

Abstract. In this paper, we prove a common fixed point theorem
for two pairs of weakly compatible mappings satisfying a contraction
type condition in Menger spaces. As application to our result, we
obtain the corresponding common fixed point theorem in fuzzy metric
spaces.

1. INTRODUCTION

There have been a number of generalizations of metric spaces. One
such generalization is Menger space initiated by Menger [14]. The idea
thus appears that, instead of a single positive number, we should asso-
ciate a distribution function with the point pairs. Thus the concept of
a probabilistic metric space corresponds to the situations when we do
not know the distance between the points, i.e. the distance between
the points is inexact. Rather than a single real number, we know only
probabilities of possible values of this distance. The study of this space
was expanded rapidly with the pioneering works of Schweizer and Sklar
[25] and some of their coworkers. Such a probabilistic generalization
of a metric space appears to be well adapted for the investigation of
physical quantities and physiological threshold. It is also of fundamen-
tal importance in probabilistic functional analysis, nonlinear analysis
and applications [2, 11, 24].
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In 1972, Sehgal and Bharucha-Reid [26] initiated the study of con-
traction mappings on probabilistic metric spaces. Several interesting
and elegant results have been obtained by various authors in this direc-
tion. For example, Jungck [8] obtained a common fixed point theorem
for a pair of commuting mappings. Sessa [27] formulated the notion of
weak commutativity and obtained common fixed point theorems con-
cerning them. Jungck [9] introduced the concept of compatible maps.
This condition has further been weakened by introducing the notion of
weakly compatible mappings by Jungck and Rhoades [10]. The notion
of R-weakly commuting mappings was introduced by Pant [19]. For
detailed description of these concepts, we refer to Singh and Tomar
[30]. The concept of weakly compatible mappings is most general as
every commuting pair is R-weakly commuting, each pair of R-weakly
commuting mappings is compatible and each pair of compatible map-
pings is weakly compatible but the reverse is not true. In 2005, Singh
and Jain [29] extended the notion of weakly compatible mappings to
Menger spaces and proved common fixed point theorems (see [20, 21]).

In the present paper, we prove a common fixed point theorem for
two pairs of weakly compatible mappings in Menger space. We also
present the corresponding common fixed point theorems in fuzzy met-
ric spaces.

2. PRELIMINARIES

Definition 2.1 [25] A triangular norm * (shortly t-norm) is a binary
operation on the unit interval [0, 1] such that for all a,b,¢,d € [0,1]
the following conditions are satisfied:

(1) ax1=a,

(2) axb="bxa,

(3) axb < cx*d whenever a < ¢ and b < d,
(4) ax(bxc) = (axb)*c.

Examples of t-norm are a * b = min{a,b},a xb = ab and a x b =
max{a +b—1,0}.

Definition 2.2 [25] A mapping F': R — R is called a distribution
function if it is non-decreasing and left continuous with inf{F'(¢) : t €
R} = 0 and sup{F'(t) : t € R} = 1. We shall denote the set of all
distribution functions on [—o00, 00| by & while H will always denote
the specific distribution function defined by

0, ift <0;
H(t)—{ 1, it >0,
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If X is a non-empty set, F : X x X — < is called a probabilistic
distance on X and F(z,y) is usually denoted by F ,,.

Definition 2.3 [25] The ordered pair (X, F) is called a probabilis-
tic metric space (shortly PM-space) if X is a nonempty set and F
is a probabilistic distance satisfying the following conditions: for all
r,y,z€ X and t,s >0
(1) F,,(t) = H(t) if and only if z =y,

(3) Froo(t)=1,F, (s)=1=F,,(t+s)=1.

The ordered triple (X, F, ) is called a Menger space if (X, F) is a

PM-space, * is a t-norm and the following inequality holds:

Foy(t+8) > Fpo(t) * F.y(s),

for all z,y,z € X and t,s > 0. Every metric space (X,d) can
be realized as a PM-space by taking F : X x X — & defined by
F,,(t)=H (t —d(x,y)) for all z,y € X.

Definition 2.4 [25] Let (X, F,*) be a Menger space and * be a
continuous t-norm.

(1) A sequence {z,} in X is said to be converge to a point z in
X if and only if for every ¢ > 0 and A € (0, 1), there exists an
integer N such that F,, ,(¢) >1— X for all n > N.

(2) A sequence {z,}in X is said to be Cauchy if for every € > 0 and
A € (0,1), there exists an integer N such that F,, , (¢) >1—A\
for all n,m > N.

(3) A Menger space in which every Cauchy sequence is convergent
is said to be complete.

Definition 2.5 [17] Two self mappings A and B of a Menger space
(X, F,*) are said to be compatible if Fap,, pas, (t) — 1 for all ¢t > 0,
whenever {z,} is a sequence in X such that Ax,, Bz, — x for some
z in X as n — oo.

Definition 2.6 [29] Two self mappings A and B of a Menger space
(X, F, ) are said to be weakly compatible (or coincidentally commut-
ing) if they commute at their coincidence points, i.e. if Az = Bz for
some r € X, then ABx = BAx.

Remark 2.1 [29] If self mappings A and B of a Menger space
(X, F,*) are compatible then they are weakly compatible.

The following is an example of pair of self mappings in a Menger
space which are weakly compatible but not compatible.
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Example 2.1 Let (X,d) be a metric space where X = [0,1] and
(X, F,*) be the induced Menger space with F, ,(t) = for all

t > 0. Define self mappings A and B by

Cfl-z f0<z<; fz f0<a<
A(f‘)_{L ifl<x<1 B@:)_{L if L <o <l

we get Ax, = %+%, Bz, =

t
t+d(z,y)’

Taking sequence {xn} ={i-1 e

+ — L Thus Az, — 3, Bz, — % Hence z = %. Further, ABz, =
% + % BAZL'n = 1. Now hmn—>00 FABJ:n BAxn( ) = hmn—>00 F1 1(t) =
é = 2t+1 < 1, for all £ > 0. Hence the pair (A, B) is not compatlble

Coincidence points of A and B are in [$, 1]. Now for any z € [3,1],
Ax = Bx = 1 and AB(z) = A(1) = 1 = B(1) = BA(x). Thus the
pair (A, B) is weakly compatible.

Lemma 2.1 [18, 28] Let (X, F, %) be a Menger probabilistic metric
space and define E) r : X* — RT U {0} by

Eyp(z,y) =inf{t >0: F, ,(t) >1— A}
for each A € (0,1) and z,y € X. Then we have
(1) For any p € (0, 1), there exists A € (0, 1) such that

Eu,F(l‘l, xn) < EA,F(SUh&?z) +...+ E)\,F(xnfla l’n);

for any x1,...,x, € X.

(2) The sequence {x,},en is convergent with respect to Menger
probabilistic metric F if and only if E) p(z,,2) — 0. Also the
sequence {z,} is a Cauchy sequence with respect to Menger
probabilistic metric F if and only if it is a Cauchy sequence
with E)\7F.

Lemma 2.2 [16] Let (X, F,*) be a Menger space. If there exists a
constant k € (0,1) such that

Foy(kt) = Fyy(t)
for all ¢ > 0 with fixed x,y € X then z = y.

3. MAIN RESULT

Theorem 3.1 Let A, L, M and S be self mappings of a complete
Menger space (X, F,*) with continuous t-norm % = min and satisfy
the following conditions:

(1) L(X) € S(X), M(X) € A(X),
(2) one of S(X) and A(X) is a closed subset of X,
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(3) [1 + CLFAI,Sy(]{?t)] * FLx,My<kt)
>a FL$7Ax(k?t) * FMy,Sy(kt)*
- FLx,Sy(2kt) * FMy,Ax(th)

FA:E,Sy(t) * FL:):,A:): (t) * FMy,Sy (t)*
+ FL:L",Sy(Qt) * FMy,Az<2t>

forallt >0, z,y € X, a>0and k € (0,1),
(4) the pairs (L, A) and (M, S) are weakly compatible.

Then A, L, M and S have a unique common fixed point in X.

Proof. Let zy be an arbitrary point in X. Since L(X) C S(X)
one can find a point z; in X with Lxg = Sz; = yo. Again, as
M(X) C A(X) one can also choose a point zo € X with Mx; =
Azy = yo. Inductively, we construct sequences {z,} and {y,} in X
such that Lz, = SToni1 = Yon and Maony1 = ATy = Yonyy for
n=0,1,2,...

Putting x = x9, and y = 9,.1 in (3), we get

[1 + aFAmn,SJ»‘an (kt)] * FLx2n7M$2n+l (k:t)
>q FLﬂczn,Amn(kt) * FMI2n+1,S$2n+1 (kt)*
o FLx2n75z2n+l (th) * FM$2n+1,AZ2n<2kt)

FArzn,SmnH (t) * FLI2n,A$2n (t)*
+ FM$2n+1,S$2n+1 (t) * FLIQmSmnH (Qt)*
FM$2n+17A$2n (Qt)

[1 + aFan—LyZn (kt)] * Fy2n7y2n+l (k:t)
> a { Fy2nay2n71 (kt> * Fy2n+17y2n (kt)* }
B Fy2n7y2n (2kt) * Fy2n717y2n+1 (2kt)

Fy2n717y2n (t) * Fy2nay2n71 (t)*

_|_ Fy2n+17y2n (t) * Fy2n7y2n (2t)*

Fan—l,y2n+1 (2t)

From Definition 2.3, we have

Fy2n71ay2n<kt) * Fanay2n71 (kt> S Fy2n717y2n+1 <2kt)

and
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Fy2n717y2n (t) * Fy2n7y2n71 (t) S Fy2nflyy2n+1 (2t>7

hence
[]‘ + aFanflaan (kt):l * Fy2nyy2n+l (kt)
> a { Fy2n Yan—1 (kt) * Fy2n+1 Y2n (kt)* }
1 x Fyzn 1,Y2n (kt) * Fyzn Yon+1 (kt)

Fan 1 an( ) * Fy2n+l Yan (t)*
+ ]' * F (t) * Fan Y2an+1 (t) 9

Y2n—1,Y2n

Fyoyonin (kt) + alFy,, _, y, (kt) x Fy, | y2n+1< t)]
> { Yansyan—1 (KE) * Fypin, yan ( } + Flpp () *
Fy2n+17y2n (t)7

F,

Y2n,Y2n+1

(kt) > F

Yan—1,Y2n

(t) * Fyapyanir ()
Hence

Fyzn,y2n+1 (kt) > mln{ Yoan—1,Y2n (t)7 Fy2n»y2'n+l (t)}
Similarly,

Fy2n+l sY2n+-2 (kt) 2 Hlin{Fy2n7y2n+l (t)7 Fy2n+1 sY2n+42 (t) } *

Therefore, for all n we have

Fynvyn+1 (kt) > mln{ Yn—1 yn(t) Fyn yn+1( )}
Consequently,

F

Yn,Yn+1

(t) > mln{ Yn—1 yn(k_lt)v Fyn,ynﬂ(k_lt)}'

By repeated application of above inequality, we get for each
me{1,2,3,...}.

F,

YnsYn+1 (t)

v

min {Fyn 1,yn<k_1t)7 Fy i (/{;_215), Fyn,yn+1 (k_Qt)}

= mln { Yn—1,Yn (k_lt)7 Fynyyn+l (k_2t)}
> o> min{F,, ., (k') Fy, .. (k"))

and so for each A € (0,1) we have
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Ex r(Yn, Ynt1) = inf {t >0:Fy g (t)>1— )\}
<inf {t > 0:min{F,,_, ., (k7'1), Fy, yoor (k7)) > 1= A}

inf{t >0:F, ,, (k%) >1-=2\},
= max{ inf{t >0:F (k™) > 1 — A}

Yn, Yn+1

<max{kE\ r(Yn—1,Yn), K" ExF(Yn, Yn+1) }-

Since, k™ Ex p(Yn, Ynt1) — 0 as m — oo, it follows that

Exr(Un, Unt1) < KEXF(Un-1,Yn) < E"Exr(yo, 1), for every A €
(0,1).

Now, we show that {y,} is a Cauchy sequence. For every u € (0, 1),
there exists v € (0,1) such that, for m > n,

EM,F(yna ym) S E’y,F(mela ym) + E’y,F(ymfZa ymfl) + ...
oot Ey,F(yna yn-‘rl)

m—1

< E, r(yo,y1) Z k' — 0,

=n

as m,n — oo. Hence by Lemma 2.1, {y,,} is a Cauchy sequence in X,
which is complete. Therefore {y,} converges to z € X. That is

lim,, oo Y = lim,, o Lo, = lim, oo Mxo,1 = lim, o STop1 =
lim,, oo Ao, = 2.

Suppose that S(X) is a closed subset of X then for some v € X we
have z = Sv € S(X). Putting © = x4, and y = v in (3), we have

v

[1 + aFAzzn,Sv(kt)] * Fszn,MU(kt)
a Fszgn,Amgn (kt) * FMv,Sv<kt)*
FmeSv(Ql{Zt) * FMU’Am% (th)

+ FAa:gn,Sv (t) * FLCEQn,AxQn (t> * FMU,SU (t)*
FLxgn,Sv(zt) * FMU,AIQn (Qt) ’

passing to limit as n — oo, we get

F..(kt) * Fap, . (kt)x
[1+ aF. .(kt)] * F. po(kt) > a { F..(2kt) % Fy, . (2kt)
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n F..(t) % F, ,(t) * Fap (1)
xF, (2t) x Fipy . (2t) ’
since Fipy . (kt) < Fary . (2kt) and Fyy . (t) < Fapy(2t), hence

(1 + a) * Fzva(k‘t) Z aFsz(k?t) + FMU,z(t)

Since a > 0, it follows that (1 + a) * F,an(kt) < F,an(kt) +
aF, pro(kt). The above inequality implies

FZ,MU(kt) + an,MU<kt) Z aFMv,z(kt) + FMv,z(t)a

Fz,Mv(kt) Z Fz,Mv(t)

Thus, by Lemma 2.2, z = Mv. Therefore, M(v) = S(v) = z. From
weak compatibility of the pair (M, .S), we have Mz = MSv = SMv =
Sz. Now we put = x9, and y = z in (3) and letting n — oo, we
obtain

[1+aF, s, (kt)] x F, s, (kt) > aFs, .(2kt) + Fs, ,(t) * Fs, .(2t),

hence

[1+aF, g, (kt)] % F, g, (kt) > aFs, .(kt) + Fs..(t).

Since a > 0, we get [1 + aF, s.(kt)] * F,s.(kt) < F,s.(kt) +
aF, s,(kt). This implies

F.s.(kt) + aF. s.(kt) > aFs. ,(kt) + Fs, .(t),

Fz,Sz(kt> Z Fz,Sz(t)

Thus, by Lemma 2.2, z = Sz. Therefore, 2 = Mz = Sz. Since
M(X) C A(X), there exists w € X such that Aw = Mz = Sz = 2.
Putting + = w and y = z in (3), we have

(1+aF, . (kt)|*Fry . (kt) > a{Fpry . (kt)*Fry . (2kt) b+ Fry . (8)* Fry - (2t),

1.e.

(14 a) * Fry.(kt) > aFpy.(kt) + Fry..(t).

Since a > 0, we have (1 4 a) * Fry .(kt) < Fpry.(kt) + aFpL, . (kt).
This implies
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Fruy.(kt) + aFpy . (kt) > aFpry . (kt) + Fr, (1),

FLw,z(kt> 2 FLw,z(t)-

Thus, by Lemma 2.2, z = Lw. Therefore, Lw = Aw =z = Mz =
Sz. Since Lw = Aw and the pair (L, A) is weakly compatible, we
obtain Lz = LAw = ALw = Az. Putting x = z and y = 29,41 in (3)
and taking limit as n — oo, we get

[1 + CLFAZ’Z(/{}t)] * FAz,z(kt) > aFAZ’Z(%t) + FAz,z(t) * FAz,z(2t);
ie.

[1 + aFAz’z(kt)] % FAz,z(k’t) Z aFAz’Z(k‘t) + FAz,z(t)'

Since a > 0, it follows that [1 4+ aFa, . (kt)]* Fa, .(kt) < Fa,.(kt) +
aFy, .(kt). This implies

FAz,z(kt) —+ aFAZ,Z(kt) > CLFAZ’Z(kt) + FAz,z(t),

FAz,z(kt) > FAz,z(t)-

Thus, by Lemma 2.2, z = Az. Therefore, z = Lz = Az. Now we
combine all the results, we have z = Lz = Az = Mz = Sz, i.e. zis
the common fixed point of self mappings A, L, M and S.

Uniqueness: Let u be a common fixed point of self mappings A, L, M
and S. We show that u = z. Putting z = z and y = u in (3), we
obtain

1+ al, ,(kt)] x F,,(kt) > aF, ,(2kt) + F. . (t) x F, ,(2t),
1.e.

1+ aF, ,(kt)] x F,(kt) > aF, ,(kt) + F,.(t).

Since a > 0, we get [1 + aF, ,(kt)] * F, . (kt) < F, ,(kt) + aF, . (kt).
This implies

F. . (kt) + aF.  (kt) > aF. ,(kt) + F, (1),
hence

FLu(kt) > F. ().
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Thus, by Lemma 2.2, 2 = v and so the uniqueness of the common
fixed point.

The proof is similar when A(X) is assumed to be a closed subset of
X.

From Theorem 3.1 with a = 0, we obtain the following interesting
result:

Corollary 3.1 Let A, L, M and S be self mappings of a complete
Menger space (X, F, *) with continuous t-norm x = min satisfying the
conditions (1), (2) and (4) of Theorems 3.1 such that

Faz,sy(t) * Fro az(t) * Farysy(t)*
Froan(kt) > Y ’ yov
ety (KE) = { Fra sy (20) * Faryao(20)
holds for all t > 0, z,y € X and k € (0,1). Then A, L, M and S
have a unique common fixed point in X.

The following example illustrates Theorem 3.1 and Corollary 3.1.

Example 3.2 Let X = [0, 15] with the metric d defined by d(z,y) =
|z — y| and for each ¢ € [0, 1] define

—t— it >0
—{ oyl ! ’
Fau(?) {0 if £ =0.

forall x,y € X. Clearly (X, F, *) is a complete Menger space, where
* is defined as a*b = min{a, b} for all a,b € [0, 1]. Define A, L, M and
S:X — X by

0, if © =0;
Alx)=<¢ 10—z, if 0 <z <10;
x—7, if10<x <15.
0, if v =0;
Sx)={ 10—z, if0<a<10;
r—3, if10 <z <15
0, ifz=0;
L<x)—{ 3, if0<x <15
0, if x=0;
M($)_{ 7, if 0 <z < 15.

Then A, L, M and S satisfy all the conditions of Theorem 3.1 and
Corollary 3.1 for some fixed k£ € (0, 1) and have a unique common fixed
point 0 € X. The mappings L and A commute at coincidence point
0 € X. So L and A are weakly compatible mappings. Similarly, M
and S are weakly compatible mappings. To see the pairs (L, A) and
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(M, S) are not compatible, let us consider a sequence {z,} defined as
z, = 10 + %,n > 1, then x, — 10 as n — oo. Then lim,, oo Lz, =
3, im0 Az, = 3 but lim, o0 Frag, ALs, (t) = t+|3 a0 # 1. Thus the
pair (L, A) is not compatible.

Also lim,, oo Mz, = 7,lim,,_,o Sz, = 7 but lim,, oo Frrsz, sma, (1)
= m # 1, it implies the pair (M, S) is not compatible. It may be
noted that all the mappings involved in this example are discontinuous
even at the common fixed point z = 0.

On taking A = S and L = M in Theorem 3.1 and Corollary 3.1, we
get the following results:
Corollary 3.2 Let A and L be self mappings of a complete Menger

space (X, F,*) with continuous t-norm * = min and satisfy the fol-
lowing conditions:

(1) LX) € A(X),
(2) A(X) is a closed subset of X,
(3) [1 + CLFAI’Ay(/{t)] * FLx,Ly(kt)
>a FLm’Am(kt) * FLy,Ay(kt)* }
- FLm’Ay(2kt) * FLy’A$(2kt)
FAx,Ay(t) * FLQ?7A$ (t) * ITLg/,Ag/(l(:)>l<
+ FLx,Ay(Qt) * FLy,Ax<2t)

forall t >0, z,y € X, a>0and k € (0,1),
(4) the pair (L, A) is weakly compatible.

Then A and L have a unique common fixed point in X.

Corollary 3.3 Let A and L be self mappings of a complete Menger
space (X, F,x) with continuous t-norm * = min satisfying the condi-
tions (1), (2) and (4) of Corollary 3.2 such that

FAm,Ay<t) * FLx,Ax(t) * FLy,Ay(t)*
FLx7Ly(kt) 2 FL:E,Ay(Qt) * FLy,Ax(zt)

holds for all ¢ > 0, z,y € X and k € (0,1). Then A and L have a
unique common fixed point in X.

4. APPLICATION TO FUZZY METRIC SPACES

Fixed point theory in fuzzy metric spaces for different contractive-
type mappings is closely related to that in probabilistic metric spaces
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(refer [1, Chapters VIII, IX], [6, Chapters 3-5], [15], [26]). Vari-
ous mathematicians; for example, Hadzi¢ and Pap [7], Razani and
Shirdaryazdi [23], Razani and Kouladgar [22] and Liu and Li [13] have
studied the applications of fixed point theorems in PM-spaces to fuzzy
metric spaces.

First we recall some definitions, lemma and remark in fuzzy metric
spaces from [3, 4, 5, 12, 17].

Definition 4.1 The 3-tuple (X, M, %) is said to be a fuzzy metric
space if X is an arbitrary set, x is a continuous t-norm and M is a
fuzzy set on X x X x [0, 00) satisfying the following conditions: for all
x,y,z€ X and t,5s >0

(1) M(z,y,0) =0,

(2) M(z,y,t) =1 for all £ > 0 if and only if x = v,
(3) M(z,y,t) = M(y, z,1),

(4) M(z, 2,1+ 5) = M(z, y, 1) * M(y, 2, 5),

(5) M(z,y,-):[0,00) — [0, 1] is left continuous.

In the following example (see [5]), we know that every metric induces
a fuzzy metric:

Example 4.1 Let (X, d) be a metric space. Define a x b = ab (or
a*b=min{a,b}) for all z,y € X and ¢t > 0,

M(z,y,t) = ————.
(2.9,1) t+d(z,y)

Then (X, M, *) is a fuzzy metric space and the fuzzy metric M in-
duced by the metric d is often referred to as the standard fuzzy metric.

Lemma 4.1 Let (X, M, %) be a fuzzy metric space. Then M(z, y, t)
is non-decreasing with respect to t for all z,y € X.

Definition 4.2 Let (X, M, %) be a fuzzy metric space. Then

(1) a sequence {z,} in X is said to be converge to a point z in X
if and only if lim,, o, M(z,,z,t) = 1 for all ¢t > 0.

(2) a sequence {x,} in X is said to be Cauchy if and only if for
each € € (0,1) and t > 0, there exists an integer N such that
M(xy, Zm,t) > 1 — ¢ for all n,m > N.

(3) a fuzzy metric space in which every Cauchy sequence is con-
vergent is said to be complete.

Definition 4.3 Let A and B be mappings from fuzzy metric space
(X, M, %) into itself. The mappings A and B are said to be compatible
if lim,, o, M(ABx,,, BAx,,t) = 1 for all ¢ > 0, whenever {z,} is a
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sequence in X such that lim,,_,., Az, = lim,_,, Bx, = x for some z
in X.

Definition 4.4 Two self mappings A and B of a fuzzy metric space
(X, M, x) are said to be weakly compatible (or coincidentally commut-

ing) if they commute at their coincidence points, i.e. if Az = Bz for
some z € X then ABx = BAx.

Remark 4.1 If self mappings A and B of a fuzzy metric space
(X, M, %) are compatible then they are weakly compatible.

As as application, we present the fuzzy version of Theorem 3.1.

Theorem 4.1 Let A, L, M and S be self mappings of a complete
fuzzy metric space (X, M, *) with continuous t-norm % = min and
satisfy the following conditions:

(1) L(X) C S(X), M(X) C A(X),
(2) one of S(X) and A(X) is a closed subset of X,
(3) [1+ aM(Az, Sy, kt)] « M(Lx, My, kt)
S a{ M(Lx, Az, kt) * M(My, Sy, kt) }
= *M(Lz, Sy, 2kt) * M(My, Ax, 2kt)

(
M(Az, Sy, t) * M(Lz, Az, t) « M(My, Sy, t)
+ *«M(Lx, Sy, 2t) * M(My, Az, 2t)

forallt >0, z,y € X,a>0and k € (0,1),
(4) the pairs (L, A) and (M, S) are weakly compatible.
Then A, L, M and S have a unique common fixed point in X.
Proof. For every fuzzy metric M we define F, ,(t) = M(z,vy,1),
where (z,y,t) € X x X x [0, 00).
By the axioms of the fuzzy metric space in the sense of George and
Veeramani, (X, F,*) is a Menger space.

From Theorem 4.1 with a = 0, we have the following interesting
result:

Corollary 4.1 Let A, L, M and S be self mappings of a complete
fuzzy metric space (X, M, %) with continuous t-norm * = min satisfy-
ing the conditions (1), (2) and (4) of Theorem 4.1 such that

M(Az, Sy, t) * M(Lz, Az, t) « M(My, Sy, t)
M(Lx, My, kt) > *«M(Lx, Sy, 2t) * M(My, Az, 2t)

holds for all t > 0, z,y € X and k € (0,1). Then A, L, M and S

have a unique common fixed point in X.
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On taking A = S and L = M in Theorem 4.1 and Corollary 4.1, we
obtain the following results:

Corollary 4.2 Let A and L be self mappings of a complete fuzzy
metric space (X, M, *) with continuous t-norm % = min and satisfy
the following conditions:

(1) L(X) € A(X),
(2) A(X) is a closed subset of X,
(3) [1 +aM(Az, Ay, kt)] * M(Lz, Ly, kt)
S a{ M(Lzx, Az, kt) « M(Ly, Ay, kt)* }
M(Lzx, Ay, 2kt) « M(Ly, Ax, 2kt)

M(Az, Ay, t) « M(Lz, Az, t) * M(Ly, Ay, t)
+ «M(Lx, Ay, 2t) * M(Ly, Ax, 2t) ,

holds for all t > 0, z,y € X, a >0 and k € (0,1),
(4) the pair (L, A) is weakly compatible.

Then A and L have a unique common fixed point in X.

Corollary 4.3 Let A and L be self mappings of a complete fuzzy
metric space (X, M, %) with continuous t-norm * = min satisfying the
conditions (1), (2) and (4) of Corollary 4.2 such that

M(Azx, Ay, t) * M(Lx, Az, t) « M(Ly, Ay, t)
M(Lzx, Ly, kt) > «M(Lx, Ay, 2t) « M(Ly, Az, 2t)

holds for all ¢ > 0, z,y € X and k € (0,1). Then A and L have a
unique common fixed point in X.
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