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COMMON FIXED POINT THEOREMS FOR TWO
PAIRS OF WEAKLY COMPATIBLE MAPPINGS IN
MENGER SPACES AND FUZZY METRIC SPACES

B. D. PANT AND SUNNY CHAUHAN

Abstract. In this paper, we prove a common fixed point theorem
for two pairs of weakly compatible mappings satisfying a contraction
type condition in Menger spaces. As application to our result, we
obtain the corresponding common fixed point theorem in fuzzy metric
spaces.

1. Introduction

There have been a number of generalizations of metric spaces. One
such generalization is Menger space initiated by Menger [14]. The idea
thus appears that, instead of a single positive number, we should asso-
ciate a distribution function with the point pairs. Thus the concept of
a probabilistic metric space corresponds to the situations when we do
not know the distance between the points, i.e. the distance between
the points is inexact. Rather than a single real number, we know only
probabilities of possible values of this distance. The study of this space
was expanded rapidly with the pioneering works of Schweizer and Sklar
[25] and some of their coworkers. Such a probabilistic generalization
of a metric space appears to be well adapted for the investigation of
physical quantities and physiological threshold. It is also of fundamen-
tal importance in probabilistic functional analysis, nonlinear analysis
and applications [2, 11, 24].
————————————–
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In 1972, Sehgal and Bharucha-Reid [26] initiated the study of con-
traction mappings on probabilistic metric spaces. Several interesting
and elegant results have been obtained by various authors in this direc-
tion. For example, Jungck [8] obtained a common fixed point theorem
for a pair of commuting mappings. Sessa [27] formulated the notion of
weak commutativity and obtained common fixed point theorems con-
cerning them. Jungck [9] introduced the concept of compatible maps.
This condition has further been weakened by introducing the notion of
weakly compatible mappings by Jungck and Rhoades [10]. The notion
of R-weakly commuting mappings was introduced by Pant [19]. For
detailed description of these concepts, we refer to Singh and Tomar
[30]. The concept of weakly compatible mappings is most general as
every commuting pair is R-weakly commuting, each pair of R-weakly
commuting mappings is compatible and each pair of compatible map-
pings is weakly compatible but the reverse is not true. In 2005, Singh
and Jain [29] extended the notion of weakly compatible mappings to
Menger spaces and proved common fixed point theorems (see [20, 21]).

In the present paper, we prove a common fixed point theorem for
two pairs of weakly compatible mappings in Menger space. We also
present the corresponding common fixed point theorems in fuzzy met-
ric spaces.

2. Preliminaries

Definition 2.1 [25] A triangular norm ∗ (shortly t-norm) is a binary
operation on the unit interval [0, 1] such that for all a, b, c, d ∈ [0, 1]
the following conditions are satisfied:

(1) a ∗ 1 = a,
(2) a ∗ b = b ∗ a,
(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d,
(4) a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Examples of t-norm are a ∗ b = min{a, b},a ∗ b = ab and a ∗ b =

max{a+ b− 1, 0}.
Definition 2.2 [25] A mapping F : R → R+ is called a distribution

function if it is non-decreasing and left continuous with inf{F (t) : t ∈
R} = 0 and sup{F (t) : t ∈ R} = 1. We shall denote the set of all
distribution functions on [−∞,∞] by ℑ while H will always denote
the specific distribution function defined by

H(t) =

{
0, if t ≤ 0;
1, if t > 0.



COMMON FIXED POINT THEOREMS 83

If X is a non-empty set, F : X × X → ℑ is called a probabilistic
distance on X and F (x, y) is usually denoted by Fx,y.

Definition 2.3 [25] The ordered pair (X,F) is called a probabilis-
tic metric space (shortly PM-space) if X is a nonempty set and F
is a probabilistic distance satisfying the following conditions: for all
x, y, z ∈ X and t, s > 0

(1) Fx,y(t) = H(t) if and only if x = y,
(2) Fx,y(t) = Fy,x(t),
(3) Fx,z(t) = 1, Fz,y(s) = 1 ⇒ Fx,y(t+ s) = 1.

The ordered triple (X,F , ∗) is called a Menger space if (X,F) is a
PM-space, ∗ is a t-norm and the following inequality holds:

Fx,y(t+ s) ≥ Fx,z(t) ∗ Fz,y(s),

for all x, y, z ∈ X and t, s > 0. Every metric space (X, d) can
be realized as a PM-space by taking F : X × X → ℑ defined by
Fx,y(t) = H (t− d(x, y)) for all x, y ∈ X.

Definition 2.4 [25] Let (X,F , ∗) be a Menger space and ∗ be a
continuous t-norm.

(1) A sequence {xn} in X is said to be converge to a point x in
X if and only if for every ε > 0 and λ ∈ (0, 1), there exists an
integer N such that Fxn,x(ε) > 1− λ for all n ≥ N.

(2) A sequence {xn} inX is said to be Cauchy if for every ε > 0 and
λ ∈ (0, 1), there exists an integer N such that Fxn,xm(ε) > 1−λ
for all n,m ≥ N.

(3) A Menger space in which every Cauchy sequence is convergent
is said to be complete.

Definition 2.5 [17] Two self mappings A and B of a Menger space
(X,F , ∗) are said to be compatible if FABxn,BAxn(t) → 1 for all t > 0,
whenever {xn} is a sequence in X such that Axn, Bxn → x for some
x in X as n → ∞.

Definition 2.6 [29] Two self mappings A and B of a Menger space
(X,F , ∗) are said to be weakly compatible (or coincidentally commut-
ing) if they commute at their coincidence points, i.e. if Ax = Bx for
some x ∈ X, then ABx = BAx.

Remark 2.1 [29] If self mappings A and B of a Menger space
(X,F , ∗) are compatible then they are weakly compatible.

The following is an example of pair of self mappings in a Menger
space which are weakly compatible but not compatible.
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Example 2.1 Let (X, d) be a metric space where X = [0, 1] and
(X,F , ∗) be the induced Menger space with Fx,y(t) =

t
t+d(x,y)

, for all

t > 0. Define self mappings A and B by

A(x) =

{
1− x, if 0 ≤ x < 1

2
;

1, if 1
2
≤ x ≤ 1.

B(x) =

{
x, if 0 ≤ x < 1

2
;

1, if 1
2
≤ x ≤ 1.

Taking sequence {xn} =
{

1
2
− 1

n

}
n∈N, we get Axn = 1

2
+ 1

n
, Bxn =

1
2
− 1

n
. Thus Axn → 1

2
, Bxn → 1

2
. Hence x = 1

2
. Further, ABxn =

1
2
+ 1

n
, BAxn = 1. Now limn→∞ FABxn,BAxn(t) = limn→∞ F 1

2
+ 1

n
,1(t) =

t
t+ 1

2

= 2t
2t+1

< 1, for all t > 0. Hence the pair (A,B) is not compatible.

Coincidence points of A and B are in [1
2
, 1]. Now for any x ∈ [1

2
, 1],

Ax = Bx = 1 and AB(x) = A(1) = 1 = B(1) = BA(x). Thus the
pair (A,B) is weakly compatible.

Lemma 2.1 [18, 28] Let (X,F , ∗) be a Menger probabilistic metric
space and define Eλ,F : X2 → R+ ∪ {0} by

Eλ,F (x, y) = inf{t > 0 : Fx,y(t) > 1− λ}
for each λ ∈ (0, 1) and x, y ∈ X. Then we have

(1) For any µ ∈ (0, 1), there exists λ ∈ (0, 1) such that

Eµ,F (x1, xn) ≤ Eλ,F (x1, x2) + . . .+ Eλ,F (xn−1, xn),

for any x1, . . . , xn ∈ X.
(2) The sequence {xn}n∈N is convergent with respect to Menger

probabilistic metric F if and only if Eλ,F (xn, x) → 0. Also the
sequence {xn} is a Cauchy sequence with respect to Menger
probabilistic metric F if and only if it is a Cauchy sequence
with Eλ,F .

Lemma 2.2 [16] Let (X,F , ∗) be a Menger space. If there exists a
constant k ∈ (0, 1) such that

Fx,y(kt) ≥ Fx,y(t)

for all t > 0 with fixed x, y ∈ X then x = y.

3. Main result

Theorem 3.1 Let A,L,M and S be self mappings of a complete
Menger space (X,F , ∗) with continuous t-norm ∗ = min and satisfy
the following conditions:

(1) L(X) ⊆ S(X), M(X) ⊆ A(X),
(2) one of S(X) and A(X) is a closed subset of X,
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(3) [1 + aFAx,Sy(kt)] ∗ FLx,My(kt)

≥ a

{
FLx,Ax(kt) ∗ FMy,Sy(kt)∗
FLx,Sy(2kt) ∗ FMy,Ax(2kt)

}

+

 FAx,Sy(t) ∗ FLx,Ax(t) ∗ FMy,Sy(t)∗
FLx,Sy(2t) ∗ FMy,Ax(2t)


for all t > 0, x, y ∈ X, a ≥ 0 and k ∈ (0, 1),

(4) the pairs (L,A) and (M,S) are weakly compatible.

Then A,L,M and S have a unique common fixed point in X.
Proof. Let x0 be an arbitrary point in X. Since L(X) ⊆ S(X)

one can find a point x1 in X with Lx0 = Sx1 = y0. Again, as
M(X) ⊆ A(X) one can also choose a point x2 ∈ X with Mx1 =
Ax2 = y2. Inductively, we construct sequences {xn} and {yn} in X
such that Lx2n = Sx2n+1 = y2n and Mx2n+1 = Ax2n+2 = y2n+1 for
n = 0, 1, 2, . . ..

Putting x = x2n and y = x2n+1 in (3), we get

[1 + aFAx2n,Sx2n+1(kt)] ∗ FLx2n,Mx2n+1(kt)

≥ a

{
FLx2n,Ax2n(kt) ∗ FMx2n+1,Sx2n+1(kt)∗
FLx2n,Sx2n+1(2kt) ∗ FMx2n+1,Ax2n(2kt)

}

+


FAx2n,Sx2n+1(t) ∗ FLx2n,Ax2n(t)∗

FMx2n+1,Sx2n+1(t) ∗ FLx2n,Sx2n+1(2t)∗
FMx2n+1,Ax2n(2t)

,

[1 + aFy2n−1,y2n(kt)] ∗ Fy2n,y2n+1(kt)

≥ a

{
Fy2n,y2n−1(kt) ∗ Fy2n+1,y2n(kt)∗
Fy2n,y2n(2kt) ∗ Fy2n−1,y2n+1(2kt)

}

+


Fy2n−1,y2n(t) ∗ Fy2n,y2n−1(t)∗
Fy2n+1,y2n(t) ∗ Fy2n,y2n(2t)∗

Fy2n−1,y2n+1(2t)

.

From Definition 2.3, we have

Fy2n−1,y2n(kt) ∗ Fy2n,y2n−1(kt) ≤ Fy2n−1,y2n+1(2kt)

and
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Fy2n−1,y2n(t) ∗ Fy2n,y2n−1(t) ≤ Fy2n−1,y2n+1(2t),

hence

[1 + aFy2n−1,y2n(kt)] ∗ Fy2n,y2n+1(kt)

≥ a

{
Fy2n,y2n−1(kt) ∗ Fy2n+1,y2n(kt)∗
1 ∗ Fy2n−1,y2n(kt) ∗ Fy2n,y2n+1(kt)

}

+

 Fy2n−1,y2n(t) ∗ Fy2n+1,y2n(t)∗
1 ∗ Fy2n−1,y2n(t) ∗ Fy2n,y2n+1(t)

,

Fy2n,y2n+1(kt) + a[Fy2n−1,y2n(kt) ∗ Fy2n,y2n+1(kt)]
≥ a

{
Fy2n,y2n−1(kt) ∗ Fy2n+1,y2n(kt)

}
+ Fy2n−1,y2n(t) ∗

Fy2n+1,y2n(t),

Fy2n,y2n+1(kt) ≥ Fy2n−1,y2n(t) ∗ Fy2n,y2n+1(t).

Hence

Fy2n,y2n+1(kt) ≥ min{Fy2n−1,y2n(t), Fy2n,y2n+1(t)}.
Similarly,

Fy2n+1,y2n+2(kt) ≥ min{Fy2n,y2n+1(t), Fy2n+1,y2n+2(t)}.
Therefore, for all n we have

Fyn,yn+1(kt) ≥ min{Fyn−1,yn(t),Fyn,yn+1(t)}.
Consequently,

Fyn,yn+1(t) ≥ min{Fyn−1,yn(k
−1t), Fyn,yn+1(k

−1t)}.
By repeated application of above inequality, we get for each

m ∈ {1, 2, 3, . . .}.

Fyn,yn+1(t) ≥ min
{
Fyn−1,yn(k

−1t), Fyn−1,yn(k
−2t), Fyn,yn+1(k

−2t)
}

= min
{
Fyn−1,yn(k

−1t), Fyn,yn+1(k
−2t)

}
≥ . . . ≥ min

{
Fyn−1,yn(k

−1t), Fyn,yn+1(k
−mt)

}
,

and so for each λ ∈ (0, 1) we have
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Eλ,F (yn, yn+1) = inf
{
t > 0 : Fyn,yn+1(t) > 1− λ

}
≤ inf

{
t > 0 : min{Fyn−1,yn(k

−1t), Fyn,yn+1(k
−mt)} > 1− λ

}
≤ max

{
inf{t > 0 : Fyn−1,yn(k

−1t) > 1− λ},
inf{t > 0 : Fyn,yn+1(k

−mt) > 1− λ}

}
≤ max {kEλ,F (yn−1, yn), k

mEλ,F (yn, yn+1)}.

Since, kmEλ,F (yn, yn+1) → 0 as m → ∞, it follows that

Eλ,F (yn, yn+1) ≤ kEλ,F (yn−1, yn) ≤ knEλ,F (y0, y1), for every λ ∈
(0, 1).

Now, we show that {yn} is a Cauchy sequence. For every µ ∈ (0, 1),
there exists γ ∈ (0, 1) such that, for m ≥ n,

Eµ,F (yn, ym) ≤ Eγ,F (ym−1, ym) + Eγ,F (ym−2, ym−1) + . . .

. . .+ Eγ,F (yn, yn+1)

≤ Eγ,F (y0, y1)
m−1∑
i=n

ki → 0,

as m,n → ∞. Hence by Lemma 2.1, {yn} is a Cauchy sequence in X,
which is complete. Therefore {yn} converges to z ∈ X. That is

limn→∞ yn = limn→∞ Lx2n = limn→∞ Mx2n+1 = limn→∞ Sx2n+1 =
limn→∞Ax2n = z.

Suppose that S(X) is a closed subset of X then for some v ∈ X we
have z = Sv ∈ S(X). Putting x = x2n and y = v in (3), we have

[1 + aFAx2n,Sv(kt)] ∗ FLx2n,Mv(kt) ≥

a

{
FLx2n,Ax2n(kt) ∗ FMv,Sv(kt)∗
FLx2n,Sv(2kt) ∗ FMv,Ax2n(2kt)

}
+

{
FAx2n,Sv(t) ∗ FLx2n,Ax2n(t) ∗ FMv,Sv(t)∗

FLx2n,Sv(2t) ∗ FMv,Ax2n(2t)

}
,

passing to limit as n → ∞, we get

[1 + aFz,z(kt)] ∗ Fz,Mv(kt) ≥ a

{
Fz,z(kt) ∗ FMv,z(kt)∗
Fz,z(2kt) ∗ FMv,z(2kt)

}
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+

{
Fz,z(t) ∗ Fz,z(t) ∗ FMv,z(t)

∗Fz,z(2t) ∗ FMv,z(2t)

}
,

since FMv,z(kt) ≤ FMv,z(2kt) and FMv,z(t) ≤ FMv,z(2t), hence

(1 + a) ∗ Fz,Mv(kt) ≥ aFMv,z(kt) + FMv,z(t).

Since a ≥ 0, it follows that (1 + a) ∗ Fz,Mv(kt) ≤ Fz,Mv(kt) +
aFz,Mv(kt). The above inequality implies

Fz,Mv(kt) + aFz,Mv(kt) ≥ aFMv,z(kt) + FMv,z(t),

Fz,Mv(kt) ≥ Fz,Mv(t).

Thus, by Lemma 2.2, z = Mv. Therefore, M(v) = S(v) = z. From
weak compatibility of the pair (M,S), we have Mz = MSv = SMv =
Sz. Now we put x = x2n and y = z in (3) and letting n → ∞, we
obtain

[1 + aFz,Sz(kt)] ∗ Fz,Sz(kt) ≥ aFSz,z(2kt) + FSz,z(t) ∗ FSz,z(2t),

hence

[1 + aFz,Sz(kt)] ∗ Fz,Sz(kt) ≥ aFSz,z(kt) + FSz,z(t).

Since a ≥ 0, we get [1 + aFz,Sz(kt)] ∗ Fz,Sz(kt) ≤ Fz,Sz(kt) +
aFz,Sz(kt). This implies

Fz,Sz(kt) + aFz,Sz(kt) ≥ aFSz,z(kt) + FSz,z(t),

Fz,Sz(kt) ≥ Fz,Sz(t).

Thus, by Lemma 2.2, z = Sz. Therefore, z = Mz = Sz. Since
M(X) ⊆ A(X), there exists w ∈ X such that Aw = Mz = Sz = z.
Putting x = w and y = z in (3), we have

[1+aFz,z(kt)]∗FLw,z(kt) ≥ a{FLw,z(kt)∗FLw,z(2kt)}+FLw,z(t)∗FLw,z(2t),

i.e.

(1 + a) ∗ FLw,z(kt) ≥ aFLw,z(kt) + FLw,z(t).

Since a ≥ 0, we have (1 + a) ∗ FLw,z(kt) ≤ FLw,z(kt) + aFLw,z(kt).
This implies
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FLw,z(kt) + aFLw,z(kt) ≥ aFLw,z(kt) + FLw,z(t),

FLw,z(kt) ≥ FLw,z(t).

Thus, by Lemma 2.2, z = Lw. Therefore, Lw = Aw = z = Mz =
Sz. Since Lw = Aw and the pair (L,A) is weakly compatible, we
obtain Lz = LAw = ALw = Az. Putting x = z and y = x2n+1 in (3)
and taking limit as n → ∞, we get

[1 + aFAz,z(kt)] ∗ FAz,z(kt) ≥ aFAz,z(2kt) + FAz,z(t) ∗ FAz,z(2t),

i.e.

[1 + aFAz,z(kt)] ∗ FAz,z(kt) ≥ aFAz,z(kt) + FAz,z(t).

Since a ≥ 0, it follows that [1+ aFAz,z(kt)] ∗FAz,z(kt) ≤ FAz,z(kt)+
aFAz,z(kt). This implies

FAz,z(kt) + aFAz,z(kt) ≥ aFAz,z(kt) + FAz,z(t),

FAz,z(kt) ≥ FAz,z(t).

Thus, by Lemma 2.2, z = Az. Therefore, z = Lz = Az. Now we
combine all the results, we have z = Lz = Az = Mz = Sz, i.e. z is
the common fixed point of self mappings A,L,M and S.

Uniqueness: Let u be a common fixed point of self mappings A,L,M
and S. We show that u = z. Putting x = z and y = u in (3), we
obtain

[1 + aFz,u(kt)] ∗ Fz,u(kt) ≥ aFz,u(2kt) + Fz,u(t) ∗ Fz,u(2t),

i.e.

[1 + aFz,u(kt)] ∗ Fz,u(kt) ≥ aFz,u(kt) + Fz,u(t).

Since a ≥ 0, we get [1 + aFz,u(kt)] ∗ Fz,u(kt) ≤ Fz,u(kt) + aFz,u(kt).
This implies

Fz,u(kt) + aFz,u(kt) ≥ aFz,u(kt) + Fz,u(t),

hence

Fz,u(kt) ≥ Fz,u(t).
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Thus, by Lemma 2.2, z = u and so the uniqueness of the common
fixed point.

The proof is similar when A(X) is assumed to be a closed subset of
X.

From Theorem 3.1 with a = 0, we obtain the following interesting
result:

Corollary 3.1 Let A,L,M and S be self mappings of a complete
Menger space (X,F , ∗) with continuous t-norm ∗ = min satisfying the
conditions (1), (2) and (4) of Theorems 3.1 such that

FLx,My(kt) ≥
{

FAx,Sy(t) ∗ FLx,Ax(t) ∗ FMy,Sy(t)∗
FLx,Sy(2t) ∗ FMy,Ax(2t)

}
holds for all t > 0, x, y ∈ X and k ∈ (0, 1). Then A,L,M and S

have a unique common fixed point in X.

The following example illustrates Theorem 3.1 and Corollary 3.1.

Example 3.2 Let X = [0, 15] with the metric d defined by d(x, y) =
|x− y| and for each t ∈ [0, 1] define

Fx,y(t) =

{
t

t+|x−y| , if t > 0;

0, if t = 0.

for all x, y ∈ X. Clearly (X,F , ∗) is a complete Menger space, where
∗ is defined as a∗ b = min{a, b} for all a, b ∈ [0, 1]. Define A,L,M and
S : X → X by

A(x) =

 0, if x = 0;
10− x, if 0 < x ≤ 10;
x− 7, if 10 < x ≤ 15.

S(x) =

 0, if x = 0;
10− x, if 0 < x ≤ 10;
x− 3, if 10 < x ≤ 15.

L(x) =

{
0, if x = 0;
3, if 0 < x ≤ 15.

M(x) =

{
0, if x = 0;
7, if 0 < x ≤ 15.

Then A,L,M and S satisfy all the conditions of Theorem 3.1 and
Corollary 3.1 for some fixed k ∈ (0, 1) and have a unique common fixed
point 0 ∈ X. The mappings L and A commute at coincidence point
0 ∈ X. So L and A are weakly compatible mappings. Similarly, M
and S are weakly compatible mappings. To see the pairs (L,A) and
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(M,S) are not compatible, let us consider a sequence {xn} defined as
xn = 10 + 1

n
, n ≥ 1, then xn → 10 as n → ∞. Then limn→∞ Lxn =

3, limn→∞ Axn = 3 but limn→∞ FLAxn,ALxn(t) =
t

t+|3−7| ̸= 1. Thus the

pair (L,A) is not compatible.
Also limn→∞ Mxn = 7, limn→∞ Sxn = 7 but limn→∞ FMSxn,SMxn(t)

= t
t+|7−3| ̸= 1, it implies the pair (M,S) is not compatible. It may be

noted that all the mappings involved in this example are discontinuous
even at the common fixed point x = 0.

On taking A = S and L = M in Theorem 3.1 and Corollary 3.1, we
get the following results:

Corollary 3.2 Let A and L be self mappings of a complete Menger
space (X,F , ∗) with continuous t-norm ∗ = min and satisfy the fol-
lowing conditions:

(1) L(X) ⊆ A(X),
(2) A(X) is a closed subset of X,
(3) [1 + aFAx,Ay(kt)] ∗ FLx,Ly(kt)

≥ a

{
FLx,Ax(kt) ∗ FLy,Ay(kt)∗
FLx,Ay(2kt) ∗ FLy,Ax(2kt)

}

+

 FAx,Ay(t) ∗ FLx,Ax(t) ∗ FLy,Ay(t)∗
FLx,Ay(2t) ∗ FLy,Ax(2t)


for all t > 0, x, y ∈ X, a ≥ 0 and k ∈ (0, 1),

(4) the pair (L,A) is weakly compatible.

Then A and L have a unique common fixed point in X.

Corollary 3.3 Let A and L be self mappings of a complete Menger
space (X,F , ∗) with continuous t-norm ∗ = min satisfying the condi-
tions (1), (2) and (4) of Corollary 3.2 such that

FLx,Ly(kt) ≥

 FAx,Ay(t) ∗ FLx,Ax(t) ∗ FLy,Ay(t)∗
FLx,Ay(2t) ∗ FLy,Ax(2t)


holds for all t > 0, x, y ∈ X and k ∈ (0, 1). Then A and L have a

unique common fixed point in X.

4. Application to fuzzy metric spaces

Fixed point theory in fuzzy metric spaces for different contractive-
type mappings is closely related to that in probabilistic metric spaces
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(refer [1, Chapters VIII, IX], [6, Chapters 3-5], [15], [26]). Vari-
ous mathematicians; for example, Hadžić and Pap [7], Razani and
Shirdaryazdi [23], Razani and Kouladgar [22] and Liu and Li [13] have
studied the applications of fixed point theorems in PM-spaces to fuzzy
metric spaces.

First we recall some definitions, lemma and remark in fuzzy metric
spaces from [3, 4, 5, 12, 17].

Definition 4.1 The 3-tuple (X,M, ∗) is said to be a fuzzy metric
space if X is an arbitrary set, ∗ is a continuous t-norm and M is a
fuzzy set on X×X× [0,∞) satisfying the following conditions: for all
x, y, z ∈ X and t, s > 0

(1) M(x, y, 0) = 0,
(2) M(x, y, t) = 1 for all t > 0 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s),
(5) M(x, y, ·) : [0,∞) → [0, 1] is left continuous.

In the following example (see [5]), we know that every metric induces
a fuzzy metric:

Example 4.1 Let (X, d) be a metric space. Define a ∗ b = ab (or
a ∗ b = min{a, b}) for all x, y ∈ X and t > 0,

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,M, ∗) is a fuzzy metric space and the fuzzy metric M in-
duced by the metric d is often referred to as the standard fuzzy metric.

Lemma 4.1 Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t)
is non-decreasing with respect to t for all x, y ∈ X.

Definition 4.2 Let (X,M, ∗) be a fuzzy metric space. Then

(1) a sequence {xn} in X is said to be converge to a point x in X
if and only if limn→∞ M(xn, x, t) = 1 for all t > 0.

(2) a sequence {xn} in X is said to be Cauchy if and only if for
each ε ∈ (0, 1) and t > 0, there exists an integer N such that
M(xn, xm, t) > 1− ε for all n,m ≥ N.

(3) a fuzzy metric space in which every Cauchy sequence is con-
vergent is said to be complete.

Definition 4.3 Let A and B be mappings from fuzzy metric space
(X,M, ∗) into itself. The mappings A and B are said to be compatible
if limn→∞M(ABxn, BAxn, t) = 1 for all t > 0, whenever {xn} is a
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sequence in X such that limn→∞Axn = limn→∞Bxn = x for some x
in X.

Definition 4.4 Two self mappings A and B of a fuzzy metric space
(X,M, ∗) are said to be weakly compatible (or coincidentally commut-
ing) if they commute at their coincidence points, i.e. if Ax = Bx for
some x ∈ X then ABx = BAx.

Remark 4.1 If self mappings A and B of a fuzzy metric space
(X,M, ∗) are compatible then they are weakly compatible.

As as application, we present the fuzzy version of Theorem 3.1.

Theorem 4.1 Let A,L,M and S be self mappings of a complete
fuzzy metric space (X,M, ∗) with continuous t-norm ∗ = min and
satisfy the following conditions:

(1) L(X) ⊆ S(X),M(X) ⊆ A(X),
(2) one of S(X) and A(X) is a closed subset of X,
(3) [1 + aM(Ax, Sy, kt)] ∗M(Lx,My, kt)

≥ a

{
M(Lx,Ax, kt) ∗M(My, Sy, kt)

∗M(Lx, Sy, 2kt) ∗M(My,Ax, 2kt)

}

+

 M(Ax, Sy, t) ∗M(Lx,Ax, t) ∗M(My, Sy, t)
∗M(Lx, Sy, 2t) ∗M(My,Ax, 2t)


for all t > 0, x, y ∈ X, a ≥ 0 and k ∈ (0, 1),

(4) the pairs (L,A) and (M,S) are weakly compatible.

Then A,L,M and S have a unique common fixed point in X.
Proof. For every fuzzy metric M we define Fx,y(t) = M(x, y, t),

where (x, y, t) ∈ X ×X × [0,∞).
By the axioms of the fuzzy metric space in the sense of George and

Veeramani, (X,F , ∗) is a Menger space.

From Theorem 4.1 with a = 0, we have the following interesting
result:

Corollary 4.1 Let A,L,M and S be self mappings of a complete
fuzzy metric space (X,M, ∗) with continuous t-norm ∗ = min satisfy-
ing the conditions (1), (2) and (4) of Theorem 4.1 such that

M(Lx,My, kt) ≥

 M(Ax, Sy, t) ∗M(Lx,Ax, t) ∗M(My, Sy, t)
∗M(Lx, Sy, 2t) ∗M(My,Ax, 2t)


holds for all t > 0, x, y ∈ X and k ∈ (0, 1). Then A,L,M and S

have a unique common fixed point in X.
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On taking A = S and L = M in Theorem 4.1 and Corollary 4.1, we
obtain the following results:

Corollary 4.2 Let A and L be self mappings of a complete fuzzy
metric space (X,M, ∗) with continuous t-norm ∗ = min and satisfy
the following conditions:

(1) L(X) ⊆ A(X),
(2) A(X) is a closed subset of X,
(3) [1 + aM(Ax,Ay, kt)] ∗M(Lx,Ly, kt)

≥ a

{
M(Lx,Ax, kt) ∗M(Ly,Ay, kt)∗
M(Lx,Ay, 2kt) ∗M(Ly,Ax, 2kt)

}

+

 M(Ax,Ay, t) ∗M(Lx,Ax, t) ∗M(Ly,Ay, t)
∗M(Lx,Ay, 2t) ∗M(Ly,Ax, 2t)

,

holds for all t > 0, x, y ∈ X, a ≥ 0 and k ∈ (0, 1),
(4) the pair (L,A) is weakly compatible.

Then A and L have a unique common fixed point in X.

Corollary 4.3 Let A and L be self mappings of a complete fuzzy
metric space (X,M, ∗) with continuous t-norm ∗ = min satisfying the
conditions (1), (2) and (4) of Corollary 4.2 such that

M(Lx,Ly, kt) ≥

 M(Ax,Ay, t) ∗M(Lx,Ax, t) ∗M(Ly,Ay, t)
∗M(Lx,Ay, 2t) ∗M(Ly,Ax, 2t)


holds for all t > 0, x, y ∈ X and k ∈ (0, 1). Then A and L have a

unique common fixed point in X.
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[12] I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces,
Kybernetika (Prague) 11(5) (1975), 336-344. MR0410633 (53 #14381)

[13] Y. Liu and Z. Li, Coincidence point theorems in probabilistic and
fuzzy metric spaces, Fuzzy Sets and Systems 158(1) (2007) 58-70.
MR2287427 (2007i:47079)

[14] K. Menger, Statistical metric, Proc. Nat. Acad. Sci. U.S.A. 28(1942), 535-
537. MR0007576 (4,163e)
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