
"Vasile Alecsandri" University of Bacău

Faculty of Sciences

Scientific Studies and Research

Series Mathematics and Informatics

Vol. 21 (2011), No. 1, 97-116

ADAPTABLE SOFTWARE: HOW TO BUILD A MODULAR MONADIC

EXTENSIBLE COMPILER USING

 THE STATE MONAD AND PSEUDOCONSTRUCTORS OVER

MONADIC VALUES

DAN V. POPA

Abstract. The lazy evaluation mechanism included by the Haskell Language

and the State Monad are used to build a modular plugin based compiler for a

DSL called Simple. This is helping programmers to avoid the backpatching

procedure, so producing a clear, modular simplified, monadic code generator.

1. INTRODUCTION

Three particular difficult tasks from the compiler building procedure are

approached in this paper. The code generator we are writing here is intended to

produce didactic code for the virtual machine described in [2].

The three problems which are subjects of our investigation and implementation

in Haskell are:

1. The modular building of a compiler for a domain small language (DSL)

which should be simple enough to be presented to the students from the

faculties of Informatics or Computer Science. The task of language

building is usually considered difficult by students, so the need of

modular, clear, simplified implementations.

2. To prove that pseudoconstructors over monadic values defined and used

by us in [4] are usable for adaptable modular compiler construction.

3. The usage of the famous State Monad – which is described in [3] by

Paul Hudak and colleagues as being an important piece of software for

Haskell programmers.

Key words and phrases: the state monad, code layouts, modular trees and

pseudoconstructors over monadic values, AST's

(2010) Mathematics Subject Classification: 68N18, 68N20

98 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

Due to the lazy evaluation system of the Haskell language and it's interaction

with the mutually recursive procedure of the code generator and the back-

patching procedure which is frequently involved in usual (C based) compilers,

the problem of building code generators for compilers in Haskell captured our

interest. We intend to show that back-patching procedure becomes obsolete and

should not be implemented in Haskell, at all. The proof will be constructive,

by effectively building a compiler.

Also, due to the process of development by successive release of versions,

which is implied by the languages construction, the modular compilers are

attracting researchers. It is a nice goal to build a compiler by simply putting

together some Lego-like pieces or modules and just compiling it in a single

executable binary.

The code generator will be shown in the next paragraphs, being incrementally

build, and, we have to say, in a manner inspired by the book [2]. The code

generator is suitable to be used in the backend of The Simple Language, or

other imperative languages.

2. PREREQUISITE

The reader should be familiar with the Simple's Code Generator from

[2] (Chap.7) and the idea of back-patching one of the challenges being to avoid

the writing of the back-patch procedure by using the graph-reduction

mechanism in Haskell. It will demonstrate the possibilities of the lazy-

evaluation mechanism of the Haskell implementation. As a result, the addresses

which are usually back-patched will be computed by need and at the right

moment, by the Haskell program.

Also, the reader should be familiar with the assembly languages as those one

produced by this pretty-printing function (quoted below).

The pretty printing procedure we are using here is accepting a term having the

form of to embraced pairs: ((a,l), b) , where a is the length of the code, l is the

list of instructions and b is the base address in the code segment.

The pretty-printing function used by us is:

---- PRETTY PRINTER ----

prettyprint ((a,l),b)

 = "\n" ++ "Length of the code:" ++

 show a ++ myprintl 0 l

 -- 0, as base address can be replaced by b

The myprint function is used to print the list of instructions, and is having the

99

DAN V. POPA

 v.010

following definition:

myprintl nr []

 = "\n" ++ show nr

myprintl nr ((Instr a b) : l)

 = "\n" ++ show nr ++ "\t" ++

 a ++ show b ++ myprintl (nr+1) l

It is using a basic (tail) recursion pattern to increment and transmit the current

address, noted as nr. As a result, such printing procedure will produce listings

like the following (example).

{-- *MCOMP> mainA0

Length of the code:9

0 LD_INT 10

1 LD_INT 20

2 GT 0

3 JZ 7

4 LD_INT 45

5 STORE 120

6 JP 9

7 LD_INT 50

8 STORE 120

9*MCOMP>

--}

The instructions (mnemonics and operands) of the assembly language used here

are described, are implemented using a Haskell data declaration:

----- INSTRUCTIONS ----

data Instr a = Instr String a

 deriving (Show,Read,Eq)

Each one of the elements of this type is having a name (for example

“LD_INT”) and an argument, a. The type of a is left free. The instructions can

be shown, read and compared for equality.

3. THE FIRST MONAD WE HAD USED

The pseudoconstructors over monadic values introduced by us in [4] and used

in [5]. They was defined to work with any monad, but due to the need of

storing the current address as a state, we begun by using the state monad as

presented in [3], (section 9.3.) having Int as the type of the states. The addresses

100 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

in the machine code segment are, as usually, short integers, Int is, consequently,

a good choice. So we had defined:
type S = Int

and had included the state monad by defining the state-capsules of state

transformations as in:

---- THE STATE MONAD ----

data SM a = SM (S -> (a,S))

The SM data type defined above is declared as instance of the state monad

being supplied the common operators as in section 9.3 of [3] .

instance Monad SM where

 SM c1 >>= fc2 = SM (\st0 -> let (r,st1) = c1 st0

 SM c2 = fc2 r

 in c2 st1)

 return k = SM (\st -> (k,st))

Also, some basic monadic actions was defined:

readSM :: SM S

readSM = SM (\s -> (s,s))

 The above readSM action reads the current address from the state monad.

updateSM :: (S -> S) -> SM S

updateSM f = SM (\s -> (s, f s))

Despite the recommendation of updating the state we had widely used a

WriteSM action which – inside the monadic capsule - is acting as identity on

it's first operand.

writeSM :: S -> SM S

writeSM a = SM (\s -> (s,a))

allocSM :: S -> SM S

allocSM l = SM (\s -> (s, s+l))

runSM :: S -> SM a -> (a,S)

runSM s0 (SM c) = c s0

The runSM function is used, as usually, to trigger the computation in the state

monad.

101

DAN V. POPA

 v.010

4. THE COMPILER

As a consequence of the separation of the three components (or sets of

components):

 the (state) monad

 the pretty printer

 and, last but not least, the modular monadic entry-pointless compilation

rules we had defined,

the whole compiler can now be written in a single,short, line:

compile :: (Show t, Show t1) => SM (t, [Instr t1]) -> IO ()

compile arb = putStr . prettyprint $ runSM 0000 arb

-- arb being the modular monadic syntax tree, built using pseudoconstructors

over monadic values, instead of regular data constructors

Some practical remarks: The 0000 used above is the start address of the

compilation process, so being the first address where the code will be

generated. Of course, it can be changed or added as parameter of the compiler

itself. Let's see how the compilation works and how the modular monadic

entry-pointless compilation rules of compilation was defined.

5. CONSTANTS’ COMPILATION

Compiling the constants has the simple effect of emitting a “LD_INT” code

followed by the value of the constant. So the module of the compiler is:

constant nr

 = do { a0 <- readSM;

 let a1 = a0 +1

 in do{

 writeSM a1;

 return (1, [Instr "LD_INT " nr])

 }

 }

The current (free) address is recovered from the state and incremented as a

result of code generation, then, stored back in the state of the monad. As a result

we can define a main IO action as:

102 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

mainA1 = compile (constant 10)

Running the program is producing he following output:

*MCOMP> mainA1

Length of the code:1

0 LD_INT 10

1

*MCOMP>

6. VARIABLES’ COMPILATION

The compilation of the variables needs to use a symbol table, a mechanism able

of identifying the location of each variable in the heap or the data segment. For

our example, the following (dummy) function will be enough,

symtable x = 0000 + ord x

because we intend to use 1 letter identifiers for variables and generate a short

code, for tests only. For a long code, the 000 should be replaced by the base

address in the used data-segment. The reader should feel free to change the

code, here.

Receiving the address of a variable from the symtable function, the compilation

of a variable – as it is used in expressions – is modularly described as:

variable s

 = do { a0 <- readSM;

 let a1 = a0 +1

 adr = symtable (s)

 in do{

 writeSM a1;

 return (1, [Instr "LD_VAR " adr])

 }

 }

So, running this simple action:

 mainB1 = compile (variable 'a')

we have got this output:

MCOMP> mainB1

Length of the code:1

103

DAN V. POPA

 v.010

0 LD_VAR 97

1

The code of the character will modify the offset of the variable in the data

segment:

mainB2 = compile (variable 'A')

Running this action in the IO monad we have got:

MCOMP> mainB2

Length of the code:1

0 LD_VAR 65

1

7. DATA DECLARATIONS

If the declarations are compiled in the manner used in [2] and the code

produced by a high level declaration is just a “DATA” instruction followed by

the number of variables to be allocated on the stack. Then, in this case, the

following module is usable:

-- Compiling declarations

-- nr – the number of successive mono-typed variables

-- being n variables n locations are allocated,

-- counting from 0 to n-1

datas n

 = do { a0 <- readSM;

 let a1 = a0 + 1

 arg = n -1

 in do {

 writeSM a1;

 return (1, [Instr "DATA" arg])

 }

 }

For example, the action of compiling the declarations of ten identical variables

will be compiled as seen below:

mainC1= compile (datas 10)

Length of the code:1

0 DATA 9

1

Remark: our dummy symtable function is correlated with the use of an amount

104 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

of space, which is reserved for all possible variables, not only for few. Of

course, this module can be replaced with an other one, if needed.

8. COMPILING SKIP

Inspiring by the previous rule, we can compile skip by producing no code at all.

In this case the first attempt is:

-- Compiling skip according with the previous model

skip :: SM (Int,[Instr Int])

skip

 = do { a0 <- readSM;

 let a1 = a0

 in do {

 writeSM a1;

 return (0, [])

 }

 }

This code, which is matching the previous template, can be simplified till we

get:

skip :: SM (Int,[Instr Int])

skip = return (0, [])

Defining the action of compiling skip, a 0 length code is produced by running:

mainD1 = compile skip

Length of the code:0

0

Remark: The type signature SM (Int,[Instr Int]) is required by the empty list,

because it's type can not be computed by the type system.

9. COMPILING I/O STATEMENTS: THE READ COMMAND

In [2], the read commands are treated in a simplified manner based on the idea

that the virtual machine is including a special instruction, a special mnemonic,

usable for the read of a single variable. So is simple to generate the code when

reading a variable is needed:

-- Compiling I/O operations: the read statement

105

DAN V. POPA

 v.010

-- note that read is just used, so we will note our module as “readv”

readv s -- because the word “read” is in use in the

standard library

 = do { a0 <- readSM;

 let a1 = a0 +1

 adr = symtable (s)

 in do {

 writeSM a1;

 return (1, [Instr "IN_INT " adr])

 }

 }

Now it's time to define the I/O action which prints the result of a read's

compilation:
mainD2 = compile (readv 'x')

Compiling it, the output is:
Length of the code:1

0 IN_INT 120

1

*MCOMP>

10. COMPILING I/O STATEMENTS: THE WRITE <EXP>

COMMAND

According to [2] compiling a write means to compile the expression which is

following the write and adding a special instruction of the virtual machine. This

is because of the presence of such an instruction, “OUT_INT” in the description

of the virtual machine used there. In practice, different sort of codes or calls to

the API of the operating system should be generated instead of this single

instruction. (Note the unused operand, 0.) The module of the compiler will be:

-- Compiling writings looks close to the compilation of

assignments

write exp

 = do { a0 <-readSM;

 (l1,cod1) <- exp;

 let a1 = a0 + l1

 a2 = a1 + 1

 in do {writeSM a2;

 return (l1 + 1, concat[cod1,

 [Instr "OUT_INT " 0]])

 }

 }

106 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

After defining an action which compile a write and prints the result,
mainE1 =compile (write (variable 'x'))

we have got this output:

Length of the code:2

0 LD_VAR 120

1 OUT_INT 0

2

 Anticipating a bit, after the definition of the compilers modules which are

responsible of arithmetic operations we can define:
mainE2 = compile (write (plus (constant 10) (constant 20)))

And get this output:
*MCOMP> mainE2

Length of the code:4

0 LD_INT 10

1 LD_INT 20

2 ADD 0

3 OUT_INT 0

4

11. ASSIGNMENT'S COMPILATION

In [2] the layout of the code being generated when an assignment is compiled

is composed by the code of the expression from the left side of the assignment

followed by an instruction which is executed in order to store the result from

the main (Accumulator) register. This last instruction is having the storage

address (which is the location of the variable) as operand. The address of the

variable is provided – in this case – by the symtable function. The module of the

compiler is:

-- Compiling assignments

attr s exp

 = do { a0 <-readSM;

 (l1,cod1) <- exp;

 let a1 = a0 + l1

 a2 = a1 + 1

 adr = symtable s

 in do {writeSM a2;

 return (l1 + 1, concat [cod1,

 [Instr "STORE " adr]])

 }

 }

107

DAN V. POPA

 v.010

In order to use more elaborate expressions, binary (see the Anexa) and unary

operators have to be used. For example, compiling the addition of two

expressions means to compile the first one, then, compile the second one. After

both codes, a supplementary instruction is added: ADD, which is the addition

made by the virtual machine. Here is the addition's module of the compiler:

-- compilarea sumelor

plus exp1 exp2

 = do { a0 <-readSM;

 (l1,cod1) <- exp1;

 writeSM (a0+l1);

 (l2,cod2) <- exp2;

 let a3 = a0 + l1 + l2 + 1

 in do {writeSM a3;

 return (l1+l2+1, concat[cod1,

 cod2,

 [Instr "ADD " 0]])

 }

 }

Now we can define an action like:
mainAS = compile (attr 'x' (plus (variable 'x') (constant 1)))

And we get the following code as result of the compilation; (comments are

added).

Length of the code:4

0 LD_VAR 120 – – get the value of the variable

1 LD_INT 1 – – the constant; 1

2 ADD 0 – – compute x + 1

3 STORE 120 – – store it at the location of 'x'

4

By adding all binary operators, module by module, the compiler becomes able

to compile complex expressions. (Of course, in the hypothesis that the parser

will provide the correct tree for the expression, as a result of syntax analysis.)

12. COMPILING ALTERNATIVES / CONDITIONALS

Compiling the if command is probably made by the largest module of the

compiler. (Maybe the try - catch – throw module could be bigger.) The

compilation of a regular if … then … else … command will produce a piece of

code composed by three little sequences (one for the expression, two for the

branches) and two jumps.

In order to assure the correct base address for the code generation process

108 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

made by the three imbricated uses of other three modules of the compiler, the

new base address for each code should be computed and stored in the state

monad every time before the start of each generator. (See before each writeSM

action.) The symbol if being a reserved in the namespace, iif was used.

iif cond s1 s2

 = do{a0 <-readSM;

 (l1,cod1) <- cond;

 writeSM (a0+l1+1);

 (l2,cod2) <- s1;

 writeSM (a0 + l1 + 1 + l2 + 1) ;

 (l3,cod3) <- s2;

 writeSM (a0 + l1 + 1 + l2 + 1 +l3);

 return (l1+1+l2+1+l3 ,concat

[cod1,

 [Instr "JZ "(a0+l1+1+l2+1)],

 cod2,

 [Instr "JP " (a0+l1+1+l2+1+l3)],

 cod3])

 }

Notations: l1,l2,l3 are the lengths of the three sequences of code. The following

expressions are computing the base address for each sequence of code:
 (a0+l1+1) ;

 (a0 + l1 + 1 + l2 + 1) ;

 (a0 + l1 + 1 + l2 + 1 +l3);

This is particularly important if the sequences are containing conditionals or

loops, because the destination addresses appearing in that code should be

correctly computed.

Just as a little demonstration,in the beginning, let's compile a simple if, without

interior loops or conditionals:
mainI1 = compile (iif (gt (constant 10) (constant 20))

 (attr 'x' (constant 45))

 (attr 'x' (constant 50)))

which is the syntax tree of a funny statement like: if (10 > 20) then x:=45 else

x:=50.

Length of the code:9

0 LD_INT 10

1 LD_INT 20

2 GT 0

3 JZ 7

4 LD_INT 45

5 STORE 120

6 JP 9

109

DAN V. POPA

 v.010

7 LD_INT 50

8 STORE 120

9

Remark: This is un-optimized code, being produced by an un-optimized

abstract syntax three, as the above. But it is not the task of the code generator to

optimize such trees. A closed to the reality example may be:

 mainI3 = compile (iif (gt (variable 'x')(constant 0))

 (attr 'x' (constant 1))

 (attr 'x' (constant 2)))

This AST is reprezenting a statement like: if (x>0) then x:=1 else x:=2
*MCOMP> mainI3

Length of the code:9

0 LD_VAR 120

1 LD_INT 0

2 GT 0

3 JZ 7

4 LD_INT 1

5 STORE 120

6 JP 9

7 LD_INT 2

8 STORE 120

9

Also, the 120 appearing in the code is the location of the 'x' variable as it was

provided by the symbol table's function, symtable.

13. SEQUENCES' COMPILATION

In this demonstrative module of the modular monadic compiler only two

intermediate addreses should be saved and stored in the state of the state

monad. As a consequence, a simple let...in... Haskell expression can do the

trick, and the module of the compiler is:

-- Compiling sequences of two statements. Longest sequences can also be

represented using a stair of such levels.

-- The intermediate address, the first one after the first sequence of code should

be saved in the state monad, in case that the second sequence is containing

loops or conditionals.

sequ s1 s2 -- “seq” is used otherwise in Haskell

 =do {a0 <-readSM;

 (l1,cod1) <- s1;

 let a2 = a0 +l1

 in do

110 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

 { writeSM a2;

 -- the begining of the second code

 -- should be stored in state

 a2 <-readSM; -- a bit redundant

 (l2,cod2) <- s2;

 let a4 = a2 + l2

 in do { writeSM a4;

 return (l1+l2 , concat [cod1, cod2])

 }

 }

 }

As it is visible above, the use of let...in … expressions is an alternative to the

use of those long expressions in the writeSM actions, but it did not shorten the

code – in fact new levels of do-notation are introduced (with all accompanying

symbols). That is why the previous module dedicated to the compilation of

conditionals had NOT used the let … in … expressions.

Now, let's compile a sequence of two statements by defining and firing an

action:
mainW = compile (sequ (attr 'x' (constant 45))

 (attr 'x' (constant 50)))

Starting the above action we have got this code:
MCOMP> mainW

Length of the code:4

0 LD_INT 45

1 STORE 120

2 LD_INT 50

3 STORE 120

4

So, this module is also functional.

14. COMPILING THE WHILE LOOP

The layout of the code producing when a while loop is compiled is containing

only one (imbricated) major sequence of code, the corp of the loop. So, only

one let...in..expression is used in this module of the compiler:

while cond s1

 =do {a0 <-readSM;

 (l1,cod1) <- cond;

 writeSM (a0+l1+1);

 (l2,cod2) <- s1;

 let a2 = a0 + l1 + 1 + l2+1

 in do {writeSM a2;

 return (l1+l2+2, concat

111

DAN V. POPA

 v.010

 [cod1,

 [Instr "JZ " a2],

 cod2,

 [Instr "JP " a0]])

 }

 }

In this moment we can define this action in order to produce the code starting

for this dummy while loop.

mainW0 = compile (while (gt (constant 10) (constant 20))

 (attr 'x' (constant 45)))

And the generated code is:
Length of the code:7

0 LD_INT 10

1 LD_INT 20

2 GT 0

3 JZ 7

4 LD_INT 45

5 STORE 120

6 JP 0

7

A more realistic example can be this one, a while loop decrementing it's

counter:
mainW1 =

 compile

 (while (gt (variable 'x') (constant 0))

 (attr 'x' (minus (variable 'x') (constant 1))))

Producing:
Length of the code:9

0 LD_VAR 120

1 LD_INT 0

2 GT 0

3 JZ 9

4 LD_VAR 120

5 LD_INT 1

6 SUB 0

7 STORE 120

8 JP 0

9

15. COMPILING THE DO-WHILE LOOP

Another kind of loop is the do-while loop, also looping “around” a block

112 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

of code – only one. So an other module of the compiler can be written, defining

an other pseudoconstructor over monadic values:

dowhile s1 cond

 = do { a0 <-readSM;

 (l1,cod1) <- s1;

 writeSM (a0+l1);

 (l2,cod2) <- cond;

 let a2 = a0 + l1 + l2 + 1

 in do {writeSM a2;

 return (l1+l2+1, concat

 [cod1,

 cod2,

[Instr "JNZ " a0]])

 }

 }

The layout of the produced code is recognizable as argument of the monadic

return operator, as usual in this paper. An action can be written, as ana example,

too see how do-whiles are compiled by this module:
mainDW1 = compile

 (dowhile (attr 'x' (constant 45))

 (gt (constant 10) (constant 20))

)

And here is the machine code produced by running this action:
*MCOMP> mainDW1

Length of the code:6

0 LD_INT 45

1 STORE 120

2 LD_INT 10

3 LD_INT 20

4 GT 0

5 JNZ 0

6

And here is a bigger, more realistic example:
mainDW2 = compile

(dowhile (attr 'x' (minus (variable 'x') (constant 1)))

 (gt (variable 'x') (constant 0)))

This tree build with pseudoconstructors is in fact the tree of a statement which

looks similarly with: do { x = x -1 ; } while x > 0 . And here is the code:

Length of the code:8

0 LD_VAR 120

1 LD_INT 1

113

DAN V. POPA

 v.010

2 SUB 0

3 STORE 120

4 LD_VAR 120

5 LD_INT 0

6 GT 0

7 JNZ 0

8

16. CONCLUSIONS

At this point, a set of conclusions can be drawn, the important, in our opinion

are:

1. The backpatching procedure can be successfully removed from the

compiler, it's place being taken by the automatic graph-reduction

procedure which is included in the lazy-evaluation mechanism of the

Haskell language. The programmer should not worry about it,

nowadays. As the reader had noticed by absence, the backpatching

procedure is not necessary anymore when using a language like Haskell

for compiler construction.

2. The idea of using data types a la carte as presented by Wouter

Swierstra, was not used by us, leading to a simple, clear, solution.

3. In fact, pseudoconstructors over monadic values are assuring us a

simple and flexible environment. This is why his paper is not cited as

reference, here. Modular monadic compilers, horizontally sliced in

portions containing a modular monadic parser, a modular monadic

typechecker , and this above described, modular code generators can be

built (around pseudoconstructors over monadic values,) having modular

trees built on pseudoconstructors over monadic values as internal

representations of ASTs.

4. No explicit functors are used – even if implicit functors and categories -

are involved in the compilation process. This makes a compiler design

which is suitable for both students and programmers,too.

5. The compiler is modularly extensible, being a collections of descriptions

which can be all placed in different modules, imported and compiled

together with a small main program. Modules are reusable. The

replacement of usual tree declarations with pseudoconstructors over

monadic values eliminates the need of back-reediting the tree's

declarations, and also eliminates the dependence between modules and

that AST's declarations.

6. This design can be developed, still remaining based on this notions the

state monad, code layouts, modular trees and pseudoconstructors over

monadic values. More layouts of code can be found in classic books on

114 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

compiler constructions, like [1]. Speed can be improved, using

functional composition. This should be investigated. The code of the

compiler and also some different but related approaches are available

from [6].

APPENDIX A

The module of the compiler which is responible of the compilation of the “>”

comparation operator is presented below, in case the reader needs it.

gt exp1 exp2

 = do{ a0 <-readSM;

 (l1,cod1) <- exp1;

 writeSM (a0+l1);

 (l2,cod2) <- exp2;

 let a3 = a0 + l1 + l2 + 1

 in do { writeSM a3;

 return (l1+l2+1, concat

 [cod1,

 cod2,

 [Instr "GT " 0]])

 }

Of course, other modules of the modular compiler, responsible for other binary

operators are similarly written.

 APPENDIX B

Also some programs from the end of section 7 of [1] was compiled as part of

our experiments. Here is such a piece of code, represented using

pseudoconstructors over monadic values:

main4 = putStr . prettyprint $ runSM 0

 (program (datas 2)

 (sequ (readv 'n')

 (sequ (iif (lt (variable 'n') (constant 10))

 (attr 'x' (constant 1))

 (skip)

)

 (while (lt (variable 'n') (constant 10))

 (sequ (attr 'x' (mult (constant 5)(variable 'x'))

)

 (attr 'n' (plus (variable 'n') (constant 1))

115

DAN V. POPA

 v.010

)

)

)

)

)

)

Despite some different mnemonics (jumps are writtenby us in Z80's notations)

and the different symtable() function used – which allocates different addresses

for variables - the produced code have the same layout.

*MCOMP> main4

Length of the code:22

0 DATA 1

1 IN_INT 110

2 LD_VAR 110

3 LD_INT 10

4 LT 0

5 JZ 9

6 LD_INT 1

7 STORE 120

8 JP 9

9 LD_VAR 110

10 LD_INT 10

11 LT 0

12 JZ 22

13 LD_INT 5

14 LD_VAR 120

15 MULT 0

16 STORE 120

17 LD_VAR 110

18 LD_INT 1

19 ADD 0

20 STORE 110

21 JP 9

22*MCOMP>

The original example from [2] can be found in Figure 7.2, page 35 in the 2004

edition, and compared with the above code.

116 Adaptable Software: How to build a modular monadic extensible compiler using

 The State Monad and pseudoconstructors over monadic values

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Rav Sethi, Jeffrey D. Ulman- Compilers

Principles Techniques And Tools Second Edition , Addison Wesley, Pearson

Education, 2007

[2] Anthony A Aaby - Compiler Construction Using Flex and Bison, Walla

Walla College , Version of February 25, 2004

[3] Paul Hudak, Joseph H Fasel (et.co.) -A gentle introduction to Haskell.

ACM SIGPLAN Notices, 27(5), May 1992. Also available as Research Report

YALEU/DCS/RR-901, Yale University, Department of Computer Science, April

1992.

[4] Dan Popa – Direct modular evaluation of expressions using the monads

and type classes in Haskell, STUDII ŞI CERCETĂRI ŞTIINŢIFICE Seria:

MATEMATICĂ , UNIVERSITATEA DIN BACĂU, Nr. 18 (2008), pag. 233 –

248

[5] Dan Popa - Adaptable Software – Modular extensible monadic evaluator

and typechecker based on pseudoconstructors, ARA Congress: ARA35 –

SCIENCE & ART IN THE INFORMATICS’ ERA, 6-10 Jully 2011,

”POLITEHNICA” University of Timisoara

[6] Dan Popa – Modular Monadic Compilers for Programming Languages

http://www.haskell.org/haskellwiki/Modular_Monadic_Compilers_for_Program

ming

 “Vasile Alecsandri” University of Bacău

Faculty of Sciences

Department of Mathematics and Informatics,

popavdan@yahoo.com

