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MONADIC VALUES 
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Abstract. The lazy evaluation mechanism included by the Haskell Language 

and the State Monad are used to build a modular plugin based compiler for a  

DSL called Simple. This is helping programmers to avoid the backpatching 

procedure, so producing a clear, modular simplified, monadic code generator.  

 

 

1. INTRODUCTION 

 

Three particular difficult tasks from the compiler building procedure are 

approached in this paper. The code generator we are writing here is intended to 

produce didactic code for the virtual machine described in [2]. 

The three problems which are subjects of our investigation and implementation 

in Haskell are: 

1. The modular building of a compiler for a domain small language (DSL) 

which should be simple enough to be presented to the students from the 

faculties of Informatics or Computer Science. The task of language 

building is usually considered difficult by students, so the need of 

modular, clear, simplified implementations. 

2. To prove that pseudoconstructors over monadic values defined and used 

by us  in [4]  are usable for adaptable modular compiler construction. 

3. The usage of the famous State Monad – which is described in [3] by 

Paul Hudak and colleagues  as being an important piece of software for 

Haskell programmers. 

 

Key words and phrases: the state monad, code layouts, modular trees and 

pseudoconstructors over monadic values, AST's  

(2010) Mathematics Subject Classification: 68N18, 68N20 

 



98 Adaptable Software: How to build a modular monadic extensible compiler  using  

 The State Monad and pseudoconstructors over monadic values 

 

Due to the lazy evaluation system of the Haskell language and it's interaction 

with the mutually recursive procedure of the code generator and the back-

patching procedure which is frequently involved in usual (C based) compilers, 

the problem of building code generators for compilers in Haskell captured our 

interest. We intend to show that back-patching procedure becomes obsolete and 

should not  be  implemented in Haskell, at all. The proof will be constructive, 

by effectively building a compiler. 

Also, due to the process of development by successive release of versions, 

which is implied by the languages construction, the modular compilers are 

attracting researchers. It is a nice goal to build a compiler by simply putting 

together some Lego-like pieces or modules and just compiling it in a single 

executable binary.  

The code generator will be shown in the next paragraphs, being incrementally 

build, and, we have to say, in a manner inspired by the book [2]. The code 

generator is suitable to be used in the backend of The Simple Language, or 

other imperative languages. 

 

2. PREREQUISITE 

 

The reader should be familiar with the Simple's Code Generator from 

[2] (Chap.7) and the idea of back-patching one of the challenges being to avoid 

the writing of the back-patch procedure by using the graph-reduction 

mechanism in Haskell. It will demonstrate  the possibilities of the lazy-

evaluation mechanism of the Haskell implementation. As a result, the addresses 

which are usually back-patched will be computed by need and  at the right 

moment, by the Haskell program. 

Also, the reader should be familiar with the assembly languages as those one 

produced by this pretty-printing function (quoted below). 

The pretty printing procedure we are using here is accepting a term having the 

form of to embraced pairs: ( (a,l), b) , where  a is the length of the code, l is the 

list of instructions and b is the base address  in the code segment. 

The pretty-printing function used by us is: 

 
---- PRETTY PRINTER ---- 

prettyprint ((a,l),b)  

  = "\n" ++ "Length of the code:" ++  

     show a ++ myprintl 0 l   

     -- 0, as base address can be replaced by b 

 

 

The myprint function is used to print the list of instructions, and is having the 
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following definition: 
 
myprintl nr []  

  = "\n" ++ show nr  

myprintl nr ((Instr a b) : l)  

  =  "\n" ++ show nr ++ "\t" ++  

     a ++ show b ++ myprintl (nr+1) l 

 

It is using a basic (tail) recursion pattern to increment and transmit the current 

address, noted as nr. As a result, such printing procedure will produce listings 

like the following (example). 

 
{-- *MCOMP> mainA0  

 

Length of the code:9  

0 LD_INT 10  

1 LD_INT 20  

2 GT 0  

3 JZ 7  

4 LD_INT 45  

5 STORE 120  

6 JP 9  

7 LD_INT 50  

8 STORE 120  

9*MCOMP>  

--} 

  

The instructions (mnemonics and operands) of the assembly language used here 

are  described, are implemented using a Haskell data declaration: 

 
----- INSTRUCTIONS ----  

data  Instr a = Instr String a  

                deriving (Show,Read,Eq) 

 

Each one of the elements of this type is having a name (for example 

“LD_INT”) and an argument, a. The type of a is left free. The instructions can 

be shown, read and compared for equality. 

 

3. THE FIRST MONAD WE HAD USED 

 

The pseudoconstructors over monadic values introduced by us in [4]  and used 

in [5].  They was defined to work with any monad, but due to the need of 

storing the current address as a state, we begun by using the state monad as 

presented in [3], (section 9.3.) having Int as the type of the states. The addresses 
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in the machine code segment are, as usually, short integers, Int is, consequently, 

a good choice. So we had defined: 
type S = Int 

and had included the state monad by defining the state-capsules of state 

transformations as in: 

 
---- THE STATE MONAD ---- 

data  SM a = SM (S -> (a,S)) 

 

The SM data type defined above is declared as instance of the state monad 

being supplied the common operators as in section 9.3 of  [3] . 

 
instance Monad SM where  

  SM c1 >>= fc2 = SM (\st0 -> let  (r,st1) = c1  st0  

                                  SM c2   = fc2 r  

                               in c2 st1 )  

  return k  = SM (\st -> (k,st))  

 

Also, some basic monadic actions was defined: 

 
readSM :: SM S  

readSM = SM (\s -> (s,s))  

 

 The above readSM action reads the current address from the state monad. 

 
updateSM :: (S -> S) -> SM S  

updateSM f = SM (\s -> (s, f s))  

 

Despite the recommendation of updating the state we had widely used a 

WriteSM action which – inside the monadic capsule -  is acting as identity on 

it's first operand. 
 
writeSM :: S -> SM S  

writeSM a  = SM (\s -> (s,a))  

 

allocSM :: S -> SM S  

allocSM l = SM (\s -> (s, s+l))  

 

runSM :: S -> SM a -> (a,S)  

runSM s0 (SM c) = c s0  

 

The runSM function is used, as usually, to trigger the computation in the state 

monad.  
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4. THE COMPILER 

 

As a consequence of the separation of the three components (or sets of 

components): 

 the (state) monad 

 the pretty printer 

 and, last but not least, the modular monadic entry-pointless compilation 

rules we had defined,   

the whole compiler can now be written  in a single,short, line: 

 
compile :: (Show t, Show t1) => SM (t, [Instr t1]) -> IO ()  

compile arb = putStr . prettyprint $ runSM 0000 arb      

 

-- arb being the modular monadic syntax tree, built using pseudoconstructors 

over monadic values, instead of regular data constructors 

 

Some practical remarks: The 0000 used above is the start address of the 

compilation process, so being the first address where the code will be 

generated. Of course, it can be changed or added as parameter of the compiler 

itself. Let's see how the compilation works and how the    modular monadic 

entry-pointless compilation rules of compilation was defined. 

 

 

5. CONSTANTS’ COMPILATION 

 

Compiling the constants has the simple effect of emitting a “LD_INT” code 

followed by the value of the constant. So the module of the compiler is: 
 

constant nr  

  = do {  a0 <- readSM;  

           let a1 = a0 +1  

           in do{  

                   writeSM a1;  

            return (1, [Instr "LD_INT " nr] )  

                  }  

        }   

 

The current (free) address is recovered from the state and incremented as a 

result of code generation, then, stored back in the state of the monad. As a result 

we can define a main IO  action as: 
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mainA1 = compile  (constant 10)  

 

Running the program is producing he following output: 

 
*MCOMP> mainA1  

Length of the code:1  

0 LD_INT 10  

1 

*MCOMP>  

 

6. VARIABLES’ COMPILATION 

 

The compilation of the variables needs to use a symbol table, a mechanism able 

of identifying the location of each variable in the heap or the data segment. For 

our example, the following (dummy) function will be enough, 

  
symtable x  = 0000 + ord x 

 

because we intend to use 1 letter identifiers for variables and generate a short 

code, for tests only. For a long code, the 000 should be replaced by the base 

address in the used data-segment. The reader should feel free to change the 

code, here.  

Receiving the address of a variable from the symtable function, the compilation 

of a variable – as it is used in expressions – is modularly described as: 

 
variable s  

  = do { a0 <- readSM;  

           let  a1 = a0 +1  

                   adr = symtable (s)    

           in do{  

                   writeSM a1;  

            return (1, [Instr "LD_VAR " adr] )  

                  }    

       }  

 

So, running this simple action: 

 
 mainB1 = compile  (variable 'a')  
 

we have got this output: 

 
MCOMP> mainB1  

Length of the code:1  
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0 LD_VAR 97  

1 

 

The code of the character will modify the offset of the variable in the data 

segment: 

 
mainB2 = compile  (variable 'A')  

 

Running this action in the IO monad we have got: 

 
MCOMP> mainB2  

Length of the code:1  

0 LD_VAR 65  

1 

 

7. DATA DECLARATIONS 

 

If the declarations are compiled in the manner used in [2] and the code 

produced by a high level declaration is just a “DATA” instruction followed by 

the number of variables to be allocated on the stack. Then, in this case, the 

following module is usable: 

 
-- Compiling declarations  

-- nr  – the number of successive mono-typed variables 

-- being n variables n locations are allocated, 

-- counting from 0 to n-1 

 

datas n  

  = do {  a0 <- readSM;  

           let a1 = a0 + 1  

                  arg = n -1  

           in do {  

                   writeSM a1;  

            return (1, [Instr "DATA" arg] )    

                  }  

         }  

For example, the action of compiling the declarations of ten identical variables 

will be compiled as seen below: 

 
mainC1= compile  (datas 10)  

Length of the code:1  

0 DATA 9  

1 

 

Remark: our dummy symtable function is correlated with the use of an amount 
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of space, which is reserved for all possible variables, not only for few. Of 

course, this module can be replaced with an other one, if needed. 

 

8. COMPILING SKIP 

 

Inspiring by the previous rule, we can compile skip by producing no code at all. 

In this case the first attempt is: 
 

-- Compiling skip according with the previous model 

skip ::  SM (Int,[Instr Int])  

skip  

  = do {  a0 <- readSM;  

           let a1 = a0  

           in do {  

                   writeSM a1;  

            return (0, [] )  

                  }  

        }  

This code, which is matching the previous template, can be simplified till we 

get: 

 
skip ::  SM (Int,[Instr Int])  

skip  = return (0, [] )  

 

Defining the action of compiling skip, a 0 length code is produced by running:                 
 

mainD1 = compile skip  

 

Length of the code:0 

0 

 

Remark: The type signature SM (Int,[Instr Int]) is required by the empty list, 

because it's type can not be computed by the type system.  

 

9. COMPILING I/O STATEMENTS: THE READ COMMAND 

 

In [2], the read commands  are treated in a simplified manner based on the idea 

that the virtual machine is including a special instruction, a special mnemonic, 

usable for the read of a single variable. So is simple to generate the code when 

reading a variable is needed: 

 

-- Compiling I/O  operations: the  read statement  
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-- note that read is just used, so we will note our module as “readv” 

 

 
readv s        -- because the word “read” is in use in the 

standard library 

  = do {  a0 <- readSM;  

           let  a1 = a0 +1  

               adr = symtable (s)    

           in do {  

                   writeSM a1;  

            return (1, [Instr "IN_INT " adr] )  

                  }  

        }  

Now it's time to define the I/O action which prints the result of a read's 

compilation: 
mainD2 = compile (readv 'x')  

 

Compiling it, the output is: 
Length of the code:1  

0 IN_INT 120  

1  

*MCOMP> 

 

10. COMPILING I/O STATEMENTS: THE WRITE <EXP> 

COMMAND 

 

According to [2] compiling a write means to compile the expression which is 

following the write and adding a special instruction of the virtual machine. This 

is because of the presence of such an instruction, “OUT_INT” in the description 

of the virtual machine used there. In practice, different sort of codes or calls to 

the API of the operating system should be generated instead of this single 

instruction.  (Note the unused operand, 0.) The module of the compiler will be: 

 
-- Compiling writings looks close to the compilation of 

assignments  

write exp  

  = do {  a0 <-readSM;  

          (l1,cod1) <- exp;  

          let    a1 = a0 + l1  

                 a2 = a1 + 1  

          in do {writeSM a2;  

                   return (l1 + 1, concat[cod1,  

                                          [Instr "OUT_INT " 0]])  

                }  

        }  
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After defining an action which compile a write and prints the result, 
mainE1 =compile (write (variable 'x'))  

we have got this output: 

 
Length of the code:2  

0 LD_VAR 120  

1 OUT_INT 0  

2  

 

 Anticipating a bit, after the definition of the compilers modules which are 

responsible of arithmetic operations we can define: 
mainE2 = compile (write (plus (constant  10) (constant 20)) )  

And get this output: 
*MCOMP> mainE2  

 

Length of the code:4  

0 LD_INT 10  

1 LD_INT 20  

2 ADD 0  

3 OUT_INT 0  

4  

 

11. ASSIGNMENT'S COMPILATION 

 

In  [2] the layout of the code being generated when an assignment is compiled 

is composed by the code of the expression from the left side of the assignment 

followed by an instruction which is executed in order to store the result from 

the main (Accumulator) register. This last instruction is having the storage 

address (which is the location of the variable) as operand. The address of the  

variable is provided – in this case – by the symtable function. The module of the 

compiler is: 

 
-- Compiling assignments 

attr s exp  

  = do {  a0 <-readSM;  

         (l1,cod1) <- exp;  

          let    a1 = a0 + l1  

                 a2 = a1 + 1  

                 adr = symtable s  

          in do {writeSM a2;  

                   return (l1 + 1, concat [cod1,  

                                          [Instr "STORE " adr]])     

                }   

        } 
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In order to use more elaborate expressions, binary (see the Anexa) and unary 

operators have to be used. For example, compiling the addition of two 

expressions means to compile the first one, then, compile the second one. After 

both codes, a supplementary instruction is added: ADD, which is the addition 

made by the virtual machine. Here is the addition's module of the compiler: 

 
-- compilarea sumelor  

plus exp1 exp2  

  = do {  a0 <-readSM;  

          (l1,cod1) <- exp1;  

          writeSM (a0+l1);  

          (l2,cod2) <- exp2;  

          let   a3 = a0 + l1 + l2 + 1  

          in do {writeSM a3;  

              return (l1+l2+1, concat[cod1,  

                                           cod2, 

 [Instr "ADD " 0 ] ] )  

                }  

        }  

Now we can define an action like: 
mainAS = compile (attr 'x' (plus (variable 'x') (constant 1))) 

And we get the following code as result of the compilation; (comments are 

added). 

 
Length of the code:4  

0 LD_VAR 120   – – get the value of the variable 

1 LD_INT 1   – – the constant;  1 

2 ADD 0   – – compute x + 1 

3 STORE 120   – – store it at the location of 'x' 

4 

 

By adding all binary operators, module by module, the compiler becomes able 

to compile complex expressions. (Of course, in the hypothesis that the parser 

will provide the correct tree for the expression, as a result of syntax analysis.) 

 

12. COMPILING ALTERNATIVES / CONDITIONALS 

 

Compiling the if command is probably made by the largest module of the 

compiler. (Maybe the try  - catch – throw module could be bigger.) The 

compilation of a regular if … then … else … command will produce a piece of 

code composed by three little sequences (one for the expression, two for the 

branches) and two jumps. 

In order to assure the correct base address for the  code generation process 
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made by the three imbricated uses of other three modules of the compiler, the 

new base address for each code should be computed and stored in the state 

monad every time before the start of each  generator. (See before each writeSM 

action.) The symbol if being a reserved in the namespace, iif was used. 

 

 
iif  cond s1 s2   

  = do{a0 <-readSM;  

       (l1,cod1) <- cond;  

       writeSM (a0+l1+1);  

       (l2,cod2) <- s1;  

       writeSM  (a0 + l1 + 1 + l2 + 1) ;  

       (l3,cod3) <- s2;  

   writeSM  (a0 + l1 + 1 + l2 + 1 +l3);  

        return (l1+1+l2+1+l3 ,concat  

[cod1, 

                              [Instr "JZ "(a0+l1+1+l2+1)  ],  

                              cod2, 

           [Instr "JP " (a0+l1+1+l2+1+l3) ],  

      cod3 ] )  

        }  

Notations: l1,l2,l3 are the lengths of the three sequences of code. The following 

expressions are computing the base address for each sequence of code: 
         (a0+l1+1) ; 

           (a0 + l1 + 1 + l2 + 1) ;  

           (a0 + l1 + 1 + l2 + 1 +l3);  

This is particularly important if  the sequences are containing conditionals or 

loops, because the destination addresses appearing in that code should be 

correctly computed. 

Just as a little demonstration,in the beginning, let's compile a simple if, without 

interior loops or conditionals:  
mainI1 = compile (iif (gt (constant  10) (constant 20))  

     (attr 'x' (constant 45))   

     (attr 'x' (constant 50))  )  

which is the syntax tree of a funny statement like: if (10 > 20) then x:=45 else 

x:=50. 

 
Length of the code:9  

0 LD_INT 10  

1 LD_INT 20  

2 GT 0  

3 JZ 7  

4 LD_INT 45  

5 STORE 120  

6 JP 9  



109 

DAN V. POPA 

  v.010 

7 LD_INT 50  

8 STORE 120  

9  

 

Remark: This is un-optimized code, being produced by an un-optimized 

abstract syntax three, as the above. But it is not the task of the code generator to 

optimize such trees. A closed to the reality example may be: 
 

 mainI3 = compile (iif (gt (variable 'x')(constant 0))  

     (attr 'x' (constant 1))  

     (attr 'x' (constant 2 )) )  

This AST is reprezenting a statement like: if (x>0) then x:=1 else x:=2 
*MCOMP> mainI3  

Length of the code:9  

0 LD_VAR 120  

1 LD_INT 0  

2 GT 0  

3 JZ 7  

4 LD_INT 1  

5 STORE 120  

6 JP 9  

7 LD_INT 2  

8 STORE 120  

9  

Also, the 120 appearing in the code is the location of the 'x' variable as it was 

provided by the symbol table's function, symtable. 

 

13. SEQUENCES' COMPILATION 

 

In this demonstrative module of the modular monadic compiler only two 

intermediate addreses should be saved and stored in the state of the state 

monad. As a consequence, a simple let...in... Haskell expression can do the 

trick, and the module of the compiler is: 

 

-- Compiling sequences of two statements. Longest sequences can also be 

represented using a stair of such levels. 

-- The intermediate address, the first one after the first sequence of code should 

be saved in the state monad, in case that the second sequence is containing 

loops or conditionals. 
 

sequ s1 s2  -- “seq” is used otherwise in Haskell 

  =do {a0 <-readSM;  

       (l1,cod1) <- s1;  

       let a2 = a0 +l1  

       in do   
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       { writeSM a2;     

   -- the begining of the second code  

   -- should be stored in state  

        a2 <-readSM;   -- a bit redundant  

   (l2,cod2) <- s2;  

        let   a4 = a2 +  l2  

        in do { writeSM a4;  

                 return (l1+l2 , concat [cod1, cod2] )  

              }  

        }  

      }  

 

As it is visible above, the use of  let...in … expressions is an alternative to the 

use of those long expressions in the writeSM actions, but it did not shorten the 

code – in fact new levels of do-notation are introduced (with all accompanying 

symbols). That is why the previous module dedicated to the compilation of 

conditionals had NOT used the let … in … expressions.   

Now, let's compile a sequence of two statements by defining and firing an 

action: 
mainW = compile  (sequ (attr 'x' (constant 45)) 

   (attr 'x' (constant 50))  )  

Starting the above action we have got this code: 
MCOMP> mainW  

Length of the code:4  

0 LD_INT 45  

1 STORE 120  

2 LD_INT 50  

3 STORE 120  

4 

So, this module is also functional. 

 

14. COMPILING THE WHILE LOOP 

 

The layout of the code producing when a while loop is  compiled is containing 

only one (imbricated) major sequence of code, the corp of the loop. So, only 

one let...in..expression is used in this module of the compiler: 

 
while cond s1  

  =do {a0 <-readSM;  

         (l1,cod1) <- cond;  

         writeSM (a0+l1+1);  

         (l2,cod2) <- s1;  

         let   a2 = a0 + l1  + 1 + l2+1  

         in do {writeSM a2;  

                  return (l1+l2+2, concat 
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       [cod1, 

           [Instr "JZ " a2 ],  

                               cod2,  

                               [Instr "JP " a0]] )  

               }  

        }  

 

In this moment we can define this action in order to produce the code starting 

for this dummy while loop. 

 
mainW0 = compile (while (gt  (constant  10) (constant 20))  

                              (attr 'x' (constant 45)))  

And the generated code is: 
Length of the code:7  

0 LD_INT 10  

1 LD_INT 20  

2 GT 0  

3 JZ 7  

4 LD_INT 45  

5 STORE 120  

6 JP 0  

7  

 

A more realistic example can be this one, a while loop decrementing it's 

counter: 
mainW1 = 

 compile  

   (while  (gt (variable 'x') (constant 0))  

      (attr 'x' (minus (variable 'x') (constant 1)) ))  

Producing: 
Length of the code:9  

0 LD_VAR 120  

1 LD_INT 0  

2 GT 0  

3 JZ 9  

4 LD_VAR 120  

5 LD_INT 1  

6 SUB 0  

7 STORE 120  

8 JP 0  

9  

 

15. COMPILING THE DO-WHILE LOOP 

 

 

Another kind of loop is the do-while loop, also looping “around” a block 
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of code – only one. So an other module of the compiler can be written, defining 

an other pseudoconstructor over monadic values: 
 

dowhile s1 cond  

  = do { a0 <-readSM;  

         (l1,cod1) <- s1;  

         writeSM (a0+l1);   

         (l2,cod2) <- cond;  

         let   a2 = a0 + l1  + l2 + 1   

         in do {writeSM a2;  

                  return (l1+l2+1, concat 

  [cod1,  

                               cod2,  

[Instr "JNZ " a0 ] ] )  

               }  

        }  

 

The layout of the produced code is recognizable as argument of the monadic 

return operator, as usual in this paper. An action can be written, as ana example, 

too see how do-whiles are compiled by this module: 
mainDW1 = compile  

   (dowhile   (attr   'x' (constant 45))   

     (gt (constant  10) (constant 20) ) 

)  

And here is the machine code produced by running this action: 
*MCOMP> mainDW1  

 

Length of the code:6  

0 LD_INT 45  

1 STORE 120  

2 LD_INT 10  

3 LD_INT 20  

4 GT 0  

5 JNZ 0  

6 

 

And here is a bigger, more realistic example: 
mainDW2 = compile  

(dowhile   (attr 'x' (minus (variable 'x') (constant 1)) )  

    (gt (variable 'x') (constant 0)) )  

This tree build with pseudoconstructors is in fact the tree of a statement which 

looks similarly with:  do { x = x -1 ; } while  x > 0 . And here is the code: 

 
Length of the code:8  

0 LD_VAR 120  

1 LD_INT 1  
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2 SUB 0  

3 STORE 120  

4 LD_VAR 120  

5 LD_INT 0  

6 GT 0  

7 JNZ 0  

8  

 

16. CONCLUSIONS 

 

At this point, a set of conclusions can be drawn, the important, in our opinion 

are: 

1. The backpatching procedure can be successfully removed from the 

compiler, it's place being taken by the automatic graph-reduction 

procedure which is included in the lazy-evaluation mechanism of the 

Haskell language. The programmer should not worry about it, 

nowadays. As the reader had noticed by absence, the backpatching 

procedure is not necessary anymore when using a language like Haskell 

for compiler construction. 

2. The idea of using data types a la carte as presented by Wouter 

Swierstra, was  not used by us, leading to a simple, clear, solution. 

3. In fact, pseudoconstructors over monadic values are assuring us a 

simple and flexible environment. This is why his paper is not cited as 

reference, here. Modular monadic compilers, horizontally sliced in 

portions containing a modular monadic parser, a modular monadic 

typechecker , and this above described, modular code generators can be 

built (around pseudoconstructors over monadic values,) having  modular 

trees built on pseudoconstructors over monadic values as internal 

representations of ASTs. 

4. No explicit functors are used – even if implicit functors and categories - 

are involved in the compilation process. This makes a compiler design 

which is suitable for both students and programmers,too. 

5. The compiler is modularly extensible, being a collections of descriptions 

which can be all placed in different modules, imported and compiled 

together with a small main program. Modules are reusable. The 

replacement of usual tree declarations with pseudoconstructors over 

monadic values eliminates the need of back-reediting the tree's 

declarations, and also eliminates the dependence between modules and 

that AST's declarations.  

6. This design can be developed, still remaining based on this notions the 

state monad, code layouts, modular trees and pseudoconstructors over 

monadic values. More layouts of code can be found in classic books on 
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compiler constructions, like [1]. Speed can be improved, using 

functional composition. This should be investigated. The code of the 

compiler and also some different but related  approaches are available 

from [6]. 

 

 

APPENDIX A 

 

The module of the compiler which is responible of the compilation of the “>” 

comparation operator is presented below, in case the reader needs it. 

 
gt exp1 exp2  

  = do{  a0 <-readSM;  

         (l1,cod1) <- exp1;  

         writeSM (a0+l1);  

         (l2,cod2) <- exp2;  

         let   a3 = a0 + l1 + l2 + 1  

         in do {  writeSM a3;  

                  return (l1+l2+1, concat 

  [cod1,  

                               cod2,  

                               [Instr "GT " 0 ] ] )  

               } 

 

 

Of course, other modules of the modular compiler, responsible for other binary 

operators are similarly written. 

 

 APPENDIX B 

 

 

Also some programs from the end of section 7 of [1] was compiled as part of 

our experiments. Here is such a piece of code, represented using 

pseudoconstructors over monadic values: 

 
main4 = putStr . prettyprint $ runSM 0  

   (program (datas 2)  

            (sequ (readv 'n')  

             (sequ (iif (lt (variable 'n') (constant 10) )  

                        (attr 'x' (constant 1))  

                        (skip)  

                   )  

                   (while (lt (variable 'n')  (constant 10))  

                          (sequ (attr 'x' (mult (constant 5)(variable 'x'))  

                                )     

                                (attr 'n' (plus (variable 'n') (constant 1))  
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  v.010 

                                )  

                          )   

                   )    

             )  

            )  

   )  

Despite some different mnemonics (jumps are writtenby us  in Z80's notations) 

and the different symtable() function used – which allocates different addresses 

for variables - the produced code have the same layout. 
 

*MCOMP> main4  

 

Length of the code:22  

0 DATA 1  

1 IN_INT 110  

2 LD_VAR 110  

3 LD_INT 10  

4 LT 0  

5 JZ 9  

6 LD_INT 1  

7 STORE 120  

8 JP 9  

9 LD_VAR 110  

10 LD_INT 10  

11 LT 0  

12 JZ 22  

13 LD_INT 5  

14 LD_VAR 120  

15 MULT 0  

16 STORE 120  

17 LD_VAR 110  

18 LD_INT 1  

19 ADD 0  

20 STORE 110  

21 JP 9  

22*MCOMP>  

 

 

The original example from [2] can be found in Figure 7.2, page 35 in the 2004 

edition, and compared with the above code. 
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