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WELL-POSEDNESS AND PERIODIC POINT

PROPERTY OF MAPPINGS SATISFYING A

RATIONAL INEQUALITY IN AN ORDERED
COMPLEX VALUED METRIC SPACE

M. ABBAS, B. FISHER AND T. NAZIR

Abstract. Azam, Fisher and Khan [A. Azam, B. Fisher and M.
Khan, Common fixed point theorems in complex valued metric spaces,
Numerical Functional Analysis and Optimization, 32(3)(2011), 243-
253] introduced a notion of complex valued metric space and obtained
common fixed point result for mappings in the context of complex
valued metric spaces. In this paper, employing the concept of weakly
increasing mappings, the existence of common fixed points is obtained
in an ordered complex valued metric space. We apply our results to
study well-posedness of a common fixed point problem for two rational
type contractive mappings and a periodic point property of mapping
involved therein.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory is one of the famous and traditional theories
in mathematics and has a broad set of applications. In this theory,
contraction is one of the main tools to prove the existence and
uniqueness of a fixed point. Banach’s contraction principle which gives
an answer on the existence and uniqueness of a solution of an operator
equation Tx = x, is the most widely used fixed point theorem in all
of analysis. This principle is constructive in nature and is one of the
most useful tools in the study of nonlinear equations. There are many
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generalizations of the Banach’s contraction mapping principle in the
literature. These generalization were made either by using the con-
tractive condition or by imposing some additional conditions on an
ambient space. There have been a number of generalizations of met-
ric spaces such as, rectangular metric spaces, pseudo metric spaces,
fuzzy metric spaces, quasi metric spaces, quasi semi metric spaces,
probabilistic metric spaces, D-metric spaces and cone metric spaces
(see [1, 8, 11, 16, 21]). Recently, A. Azam, B. Fisher and M. Khan [6]
obtained the generalization of Banach’s contraction principal introduc-
ing the concept of complex valued metric space. Common fixed point
problem for two maps under several variants of non-commutativity has
been studied by many authors.

The existence of fixed points in ordered metric spaces has been
initiated in 2004 by Ran and Reurings [18], and further studied by
Nieto and Lopez [14].

Several authors have studied the problem of existence and unique-
ness of a fixed point for mappings satisfying different contractive
conditions in the framework of partially ordered metric spaces (e.g.
2, 3, 4, 5, 7, 10, 17, 20]). The purpose of this paper is to study
common fixed points of two mappings satisfying a rational inequality,
without exploiting any type of commutativity condition in the frame-
work of a complex valued metric space. The results presented in this
paper substantially extend and strengthen the results given in [6].

Consistent with Azam, Fisher and Khan [6], the following definitions
and results will be needed in the sequel.

Let C be the set of complex numbers and let z1, 25 € C. Define a
partial order < on C as follows:

21 < zy if and only if Re (21) < Re(zz), Im(21) < Im(zy).

It follows that z; < 25 if one of the following conditions is satisfied:

(1) Re(z1) = Re(zz), Im(z;) < Im(zy),
(2) Re(zl) < Re(za), Im(z1) = Im(z9),
(3) Re(z1) < Re(z2), Im(z1) < Im(zs),
(4) Re(z1) = Re(z2), Im(z1) = Im(z,).

In particular, we will write z; < 2z if one of (1), (2) and (3) is
satisfied and we will write z; < z if only (3) is satisfied.
Some elementary properties of the partial order < on C are the

following:
(i) If 0 < 21 < 29, then |z1| < |2z9].
(ii) 21 < 29 is equivalent to z; — 2o < 0.
(iii) If 23 < 2z and r > 0 is a real number, then rz; < rzs.
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(iv) If 0 < 2z and 0 < 25 with 21 + 25 # 0, then
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Note that L <z is equivalent to 0 <
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(v) 0 <z and 0 < 25 do not imply 0 < z;2s.
1 1
(vi) 0 < z; does not imply 0 < —. Moreover, if 0 < z; and 0 < —,
21 21
then Im(z;) = 0.

Definition 1.1 Let X be a non-empty set. Suppose that the mapping
d: X x X — C satisfies:

(a) 0<d(z,y) for all z,y € X and d(z,y) = 0 if and only if x = y;

(b) d(x,y) =d(y,x) for all z,y € X;

(c) d(z,y) <d(z,z)+d(z,y) for all z,y,z € X.

Then d is called a complex valued metric on X and (X, d) is called a
complex valued metric space.

A point x € X is called an interior point of a set A C X whenever
there exists 0 < r € C such that B(x,r) ={y € X : d(z,y) <r} C A.
A subset A in X is called open whenever each point of A is an interior
point of A. The family F' = {B (z,r) :x € X, 0 < r} is a sub-basis
for a Hausdorff topology 7 on X.

A point x € X is called a limit point of A whenever for every
0<reC, B(xz,r)N (A\z) # ¢. A subset B C X is called closed
whenever each limit point of B belongs to B.

Let {x,} be a sequence in X and z € X. If for every ¢ € C, with
0 < c there is ng € N such that for all n > ny, d(z,,z) < ¢, then

x is called the limit of {z,} and we write lim z, = x or z, — = as
n—roo

n — oo. If for every ¢ € C, with 0 < ¢, there is an ng € N such that for
all n > ng, d(x,, Tpim) < c, then {z,} is called a Cauchy sequence in
(X, d). If every Cauchy sequence is convergent in (X, d), then (X,d)
is called a complete complex valued metric space.

Lemma 1.2. [6] Let (X,d) be a complex valued metric space and
let {z,,} be a sequence in X. Then {z,} converges to z if and only if
|d (2, x)] — 0 as n — oo.

Lemma 1.3. Let (X, d) be a complex valued metric space and let
{z,} be a sequence in X. Then {z,} is a Cauchy sequence if and only

if sup |d (zn, Tpim)| = 0 as n — 0.
m>1
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Definition 1.4. Let X be a nonempty set. A binary relation 7 <"
on X is called a partial order on X if for x,y and z € X, the following
axioms are satisfied:

(1) z < z (reflexivity)

(2) z <y and y < = imply = = y (anti-symmetry)

(3) x =y and y = z imply x < z (transitivity).

The pair (X, <) is called a partially ordered set.

The following definition is due to Altun([3]).
Definition 1.5. [3] Let (X, =) be a partially ordered set. A pair
(f,g) of self-maps of X is said to be weakly increasing if fx < gfz
and gz < fgz for all z € X. If f = g, then we have fz < f?z for
all x in X and in this case, we say that f is a weakly increasing map.
Example 1.6. Let X = [0,00) be endowed with usual ordering.
Let f: X — X be defined by

o3 i 0 <2 <1,
fr= r, ifl <z <2
0, if2<z< 0.

1

Note that if z € [0,1], then fz = 23 < 25 = f2z. Also when
z € (1,2], then fz =z < f?z and if x € (2,00), then fz =0 = f?z.
Thus for < f2x for all z in X an so f is a weakly increasing map.
Note that f not increasing since 2 < 3 and f(2) =2 £ 0 = f(3).

A point x in X said to be a fized point of a self-map f on X if fo = z.
A fixed point problem is to find some z in X such that fz = z and we
denote it by FP(f,X). A point x € X is called a common fized point
of the pair (f,g) if x = fr = gz, where f and g are two self-maps on
X. A common fixed point problem is to find some z in X such that
x = fx = gz, and we denote it by CFP(f, g, X). A nonempty subset
W of a partially ordered set X is said to be totally ordered if every
two elements of W are comparable.

2. MAIN RESULTS

We begin with a common fixed point theorem for weakly increasing
maps on an ordered complex valued metric space.
Theorem 2.1. Let (X, <) be a partially ordered set such that there
exists a complete complex valued metric d on X and let S and T be
weakly increasing self-maps on X. Also, for every comparable z,y € X,
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we have either

a[{d(x, Ty)}* + {d(y, S)}?]
d(Sz, Ty) < d(x,Ty) + d(y, Sx)
+bld(z, Sx) + d(y, Ty)] + c[d(x, Ty) + d(y, Sz)] + ed(z,y),

if d(x, Ty) + d(y,Sx) # 0, a,b,c,e >0 and 2a +2b+ 2c+ e < 1, or
(2.2) d(Sz,Ty) =0 if d(z,Ty) + d(y, Sx) = 0.

(2.1)

If S or T is continuous or for any nondecreasing sequence {z,} with
T, — 2z in X we necessarily have z, < z for all n € N, then S and T
have a common fixed point. Moreover, the set of common fixed points
of S and T is totally ordered if and only if S and T" have one and only
one common fixed point.
Proof. First we shall show that if S or T" has a fixed point, then it is
a common fixed point of S and T'. Let u be a fixed point of S. Then
from (2.1) with x = y = u, we get
d(u,Tu) = d(Su,Tu)
al{d(u,Tu)}* + {d(u, Su)}*]

d(u, Tw) + d(u, Su)
+ bld(u, Su) + d(u, Tu)| + c[d(u, Tu) + d(u, Su)| + ed(u, u)
al{d(u, Tu)}* + {d(u,u)}*]

d(u, Tu) + d(u, u)
bld(u,w) + d(u, Tu)| + cld(u, Tu) + d(u, u)]
(a4 b+ c)d(u, Tu).

<

+

Hence
|d(u, Tu)| < (a+ b+ c)|d(u, Tu)|,

where a + b+ ¢ < 1 implies d(u, Tu) = 0 and so u is a common fixed
point of S and T.
Similarly, if v is a fixed point of T, then it is also fixed point of S.
Now let zy be an arbitrary point of X. If Sxy = xg, then the proof
is finished. Assume that Sxy # x¢. Define a sequence {z,} in X as
follows:

ry = SQ}O = TS.CEO = Till'l = T9,
Ty = Tl’1 j STCL’l = S(L’Q = I3.

Continuing this process, we have

T3 22, X1 2
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Assume that d(xo,, ro,41) > 0, for every n € N. If not, then z,, =
Zont1 for some n. For all those n, x9, = z9,1+1 = Swa, and the proof
is finished. Now, since w9, and z5,,; are comparable, then taking
d(xopn, Tons1) > 0 for n =10,1,2,3, ..., consider

d(Tont1, Tont2) = d(Sxay, T2op+1)+
< al{d(zan, Txgni1)}? + {d(@2n41, S720) }]
- d(zon, TTopt1) + d(x2n11, STay)
+b[d(w2n, Swan) + d(X2nt1, TTons1)|+
+cld(za,, Txopt1) + d(Tont1, STon)] + ed(xay, Topi1)
—a[{d(wan, Tan12) } + {d(w2n41, Ton11) )]

d(Z2n, Tonta) + d(Toni1, Tony1)
+b[d(2n, Tont1) + d(Tant1, Tons2)]
+cld(xan, Tant2) + d(Tont1, Tont1)] + ed(Ton, Tont1)
= ad(Zon, Tant2) + 0[d(Ton, Toni1)+
+d(xan41, Tont2)] + cd(Ton, Tont2) + €d(Ton, Tont1)
<(a+b+c+e)d(za, Tont1)+
+(CL + b+ C)d(QIQnJrl, $2n+2),

which implies that

_|_

d(Toni1, Tonta) < hd(Topn, Toni1)

for all n > 0, where

0<h— (a+b+c+e)
l—(a+b+c)

Similarly, we have d(za,,Z2n11) < hd(xe,_1,%2,) for all n > 0.
Hence for all n > 0

d<xn+17 xn+2) S hd(l’n, xn—s—l)
and consequently
d(xn+17xn+2) S hd(-rn; $n+1) <... S thrld(xO,xl)

for all n > 0. Now for m > n, we have

d(xp, xm) < d(xp, Tps1) + d(Tps1, Toge) + oo+ d(Tpg1, Tim)

S hnd(fﬂo, 33'1) + thrld(iIfo, 331) + ...+ hmild(ﬁfo, .ﬁl?l)
hr
S 1 — hd(‘xo’xl)'
Therefore,
|d(2n, 2m)| < |d(zo, 21)],

1—~h
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and so sup |d(xp, zp,)| — 0 asn — oo. It follows that {x,} is a Cauchy
m>1

sequence in X. Since X is complete, the sequence {x,} converges to
a point w in X.

If S or T is continuous, then it is clear that Su = u = Tu.

If neither S, nor T is continuous, z,, < u for all n € N. We claim
that u is a fixed point of S. If not, then d(u, Su) = z > 0. From (2.1),
we obtain

z < d(u,Tpi2) + d(zpie, Su)
= d(u,Tpy2) +d(Su, T2y 1)
al{d(u, Tzpni1) }* + {d(@ni1, Su)}’]
d(u, Tanrl) + d(anrla Su)
+bld(u, Su) + d(zpi1, Txpi1)]
+cld(u, Twpi1) + d(xpt1, Su)] + ed(u, xpi1)
al{d(u, tn12)}* + {d(zn41, Su)}’]
d(u, Tpy2) + d(Tpg1, Su)
+b[d(u, Su) + d(Tni1, Tnia)]
+cld(u, Tpi2) + d(Tpi1, Su)] + ed(u, xpi1),

IN

d<u> $n+2) +

= d(u,Tp2) +

and so

alld(w,mn+2)[*+|d(@ni1,5u) %]
|Z’ S |d('U/, xn+2)| + |d(u,x:j2)+d(xn+-:,15u)| +

+0l|d(u, Su)| + [d(@n 1, Tni2) |+
+elld(u, znio)| + |d(ni, Su)|] + e]d(u, zni)]

which on taking limit as n — co gives
2l < (a+b+c)le,

a contradiction, and so u = Su. Therefore Su = Tu = u.

Now suppose that set of common fixed points of S and T' is totally
ordered. We prove that common fixed point of S and T is unique.
Assume on contrary that u and v are distinct common fixed points of
S and T. By supposition, we can replace z by u and y by v in (2.1)
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to obtain

d(u,v) = d(Su,Tv)

a[{d(u,Tv)}* + {d(v, Su)}?]
d(u,Tv) + d(v, Su)

bld(u, Su) + d(v, Tv)] +

cld(u, Tv) 4+ d(v, Su)] + ed(u, v)

al{d(u,v)}* + {d(v,u)}’]
d(u,v) + d(v,u)

cld(u,v) + d(v,u)] + ed(u,v)

(a+ 2c+ e)d(u,v),

IN

+ 4

+ bld(u, u) + d(v,v)]

+

which implies that

|d(u,v)] < (a+2c+ e)|d(u,v)|,

a contradiction. Hence u = v.

Conversely, if S and T" have only one common fixed point then the
set of common fixed point of S and T being singleton is totally ordered.
OJ
Example 2.2. Let X = [0,1] be endowed with order x < y if and
only if y < z. Then < is a partial order in X. Let d(z,y) = |z — y| €
where 0 € [0, 5]. We define S,T: X — X by

1
x E, for z € [0, -),
Sex=-——forzeX and Tx =4 9 12
12 Z, for x € [5,1]

1 1 1
N hat T is di i h T(Z)= — 4 — =
ote that T is discontinuous map and that S (2) % + T

1
TS (5), which shows that S and T do not commute. Now
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(I) for z,y € [0, 3), we have Sz = =

Yy x
Ty=2.Ify <=, th
o 1Y y_Q,ten

6

1 1 . 7 (llz 5y\ .
dS,T :—< ——) 0 « 00 <« [ 227 4 0
(55 y) 63/ 5 e _6ye <30 12+6 e
_32 _1229

SLH:C 6| —l—‘y 12|]6 +1 £+5_y b0 1

20 Jr—L+|y-% 20\ 12 ' 6
Sy BT P

o= - = ——lle — |z —

20 6l "1V 19 o0 1T T YIe

al{d(x,Ty)}* + {d(y, Sz)}*]
d(x,Ty) + d(y, Sx)
+bld(x, Sx) + d(y, Ty)]+
+cld(x, Ty) + d(y, Sx)] + ed(z,y),

and if y > ;, then

d(St, T{y) —|<— - y]) <5 (5 + ) e’
o= 8ty

< 20 |$6_,|+|y1212‘ 2_70 (% ?y) e’

o 2]+ ]+ iy -2
_ al{d(z,Ty)}*+{d(y,5z)}* Iy

d(z,Ty)+d(y,Sx)
+[d(z, Sx) + d(y, Ty)]+
+eld(z, Ty) + d(y, Sz)] + ed(z,y).
(I) For z € [0,1) and y € [, 1), we have Sx—ﬁ Ty—%and
d(Sz, Ty) = (§ —5) e’ =3 (y—5) e’
y

5
E , Ty)]+

13



14 M. ABBAS, B. FISHER AND T. NAZIR

III) When y € [0, 3) ande[%,l),wehaveS:E:%, Ty == If

ol

then

s | 59) gi0

[m_g|+| 122]6i9+i|$—y|€i9
a[{d(z, Ty)}2+{d(y Sx)}?] +
d(xz,Ty)+d(y,Sx)
+bld(x, Sx) + d(y, Ty)]+
+cld(z, Ty) + d(y, Sz)| + ed(z,y),

l‘jl_

and if y > g, then

A2, Tg) = 1 (5~ ) e < 3 (% + %) "

[| ’+| 22}“) = 35
1 [=—§ Y- € 7 i
Sf‘o et a] T e T
35 [lo = gL+l — 5l e+
55y — x)e’

_ al{d(z,Ty)}*+{d(y, Sx)}2]+
d(z,Ty)+d(y,Sz)

+bld(x, Sx) + d(y, Ty)]+
+cld(z, Ty) + d(y, Sz)] + ed(z, y).

(IV) For z,y € [3,1), we have Sz = L

Zz
Ty==.Ity <X - th
12’ Y y_37 en

7 (1lz | 3y\ b
top (T )
+25 ‘x——‘—i—!y— 122He +20 |z —yle”
_ a[{d(z,Ty)}*+{d(y,Sz)} ]+
d(z,Ty)+d(y,Sz)
+bld(z, Sx) + d(y, Ty)]+

+cld(z, Ty) + d(y, Sz)| + ed(zx,y)
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and if y > %, then

]
d(z,Ty)+d(y,Sz) +
+bld(x, Sx) + d(y, Ty)]+
+eld(z, Ty) + d(y, Sx)] + ed(z, y).

1
Thus the conditions of Theorem 2.1 are satisfied with a =c=¢ = 20
7 19
and b = 20 where 2a+2b+2c+e = 20 < 1. Moreover, 0 is the unique

common fixed point of S and T

In Theorem 2.1, take S =T, to obtain the following corollary.
Corollary 2.3. Let (X, =) be a partially ordered set such that
there exists a complete complex valued metric d on X and let T be a
weakly increasing self-map on X. Also, for every comparable x,y € X,
suppose

a[{d(z, Ty)}* + {d(y, Tx)}*]
d(Tz,Ty) < d(x,Ty) + d(y, Tz)
+bld(x, Tx) + d(y, Ty)] + c[d(x, Ty) + d(y, Tz)] + ed(x,y)

(2.3)

if d(x,Ty) + d(y,Tz) # 0, a,b,c,e > 0 and 2a +2b+2c+e < 1, or
(2.4) d(Tz,Ty) =0if d(x,Ty) + d(y,Tz) = 0.

If T is continuous or for a nondecreasing sequence {z,} with z,, — z
in X we necessarily have x,, = z for all n € N, then T has a fixed
point. Moreover, the set of fixed points of T is totally ordered if and
only if T" has one and only one fixed point.

Theorem 2.4. Let (X, <) be a partially ordered set such that there
exists a complete complex valued metric d on X and let S and T" be
weakly increasing self-maps on X. Also, for every comparable x,y € X,
suppose

[d(z, Sz)d(x, Ty) + d(y, Ty)d(y, S)]

d(x,Ty) + d(y, Sx)
bd(z, Ty)d(y, Sx)

d(xz,Sz) + d(y, Ty)

d(Sz,Ty) < &

(2.5)
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if d(z, Ty) + d(y, Sz) # 0 and d(z, Sx) + d(y, Ty) # 0, where a,b > 0
with 0 <a+0b<1, or

(2.6)

d(Sz,Ty) =0 if d(z,Ty) + d(y, Sx) = 0 or d(z, Sx) + d(y, Ty) = 0.

If S or T is continuous or for a nondecreasing sequence {x,} with
T, — 2z in X we necessarily have x,, < z for all n € N. Then S and T
have a common fixed point. Moreover, the set of common fixed points
of S and T is totally ordered if and only if S and T have one and only
one common fixed point.

Proof.  First we shall show that if S or T" has a fixed point, then it
is a common fixed point of S and T'. Indeed, let u be a fixed point of
S. Then from (2.5) with x = y = u, we have

du,Tu) = d(Su,Tu)
ald(u, Su)d(u, Tu) + d(u, Tu)d(u, Su))
- d(u, Tu) + d(u, Su)
bd(u, Tu)d(u, Su)
d(u, Su) + d(u, T'u)
ald(u, w)d(u, Tu) + d(u, Tu)d(u, u)]
d(u, Tu) + d(u,u)
bed(u, Tu)d(u, )
d(u,u) + d(u, Tu)
= 0.

_|_

Hence d(u,Tu) = 0 and so u is a common fixed point of S and T.
Similarly, if u is a fixed point of T, then it is also fixed point of S.
Now let z¢ be an arbitrary point of X. If Sxy = xg, then the proof

is finished.

Assume that Sxy # . Define a sequence {x,} in X as follows:

r1 = S!EO j TSZL‘() == TJZl = XT9,
To = T,I‘l j ST:Ul = SIQ = 3.

Continuing this process we have
T X202 .22, T X

We may assume that d(za,, x2,41) > 0, for every n € N. If not, then
ZTop = Topy1 for some n and for all those n, x5, = 29,11 = Sz, and
proof is finished.
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Now, since xg,, and 5,1 are comparable and taking d(za,, 2,11) >
0forn=20,1,2,3,..., we have

d(T2n41, Tonio) d(Sxon, TTopy1)
ald(an, Ton+1)d(Tan, Tont2) +
(T2n+1; Tan+2)d(Tant1, Tans1)]/

d(xon, Tant2) + d(Tant1, Tont1) +

bd(ilfzm $2n+2)d($2n+17 $2n+1)
d(Ton, Tont1) + d(@ant1, Tony2)
ad(Zon, Toni1)d(Tan, Tani2)

d(T2n, Tony2)
= ad(Za,, Tant1)-

+ IA
.

Similarly, d(z2,, Ton+1) < ad(x9,_1,Z2,). It follows that
d(Tpy1, o) < ad(Tp, Tnyr)
and consequently
A(Tpy1, Tngo) < ad(Tp, Toyr) < ... < a"d(zg, 21)

for all n > 0.
Now for m > n, we have

d($n> $m) S d($n> zn—i—l) + d(xn+17 $n+2) +...+ d(xm-‘rl; xm)
< a"d(zo,x1) +a"d(xe, 21) + ...+ a™ (o, 1)
an
S 1_ad(x07xl)‘
Therefore,

an

A 7)| < T |d(zo, 1),

—a
and so |d(zp, xpy)| — 0, as m,n — oco. It follows that {z,} is a Cauchy
sequence in X. Since X is complete, the sequence {x,} converges to
a point u in X.

If S or T is continuous, then it is clear that Su = u = Tu.

If neither S nor T is continuous, then z,, = u for all z in N. We
claim that u is a fixed point of S. If not, then d(u, Su) = z > 0. Now
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from (2.5), we have

z < d(u, Tpi2) + d(xpi2, Su)
< d(u, Tpyo) + d(Su, Txpyq)
ald(u,Su)d(u,Txy d(xn+1,TTn+1)d(Xn+1,5u
< d(u, Tpis) + [d(u,Su)d( d(u,]facljrl)&d?ml,L+1,S+'ul)) (Tnt1,5u)]
bd(u,Txpn41)d(Tnt1,5u)

d(u,Su)+d(xn+1,TTn+1)
_ d(u T )‘I‘ ald(u,Su)d(u,xn42)+d(Tn+1,2n42)d(@nt1,5u)
» b2 d(u,Znt2)+d(@nt1,5u)

+ bd(u,Tn+2)d(Tn41,5u) '
d(u,Su)+d(Tn+1,Tn+2)
Taking the limit as n — oo gives |z| < 0, a contradiction and so
u = Su. Therefore Su =Tu = u.

Now suppose that set of common fixed points of S and T is totally
ordered. We claim that common fixed point of S and T is unique.
Assume on the contrary that u and v are distinct common fixed points
of S and T. By supposition, we can replace x by u and y by v in (2.5)
to obtain
v) = d(Su, Tv)
ald(u,Su)d(u,Tv)+d(v,Tv)d(v,Su)] + bd(u,Tv)d(v,Su)

d(u,Tv)+d(v,Su) d(u,Su)+d(v,Tv)”’
which implies that d(u,v) = d(Su,Tv) = 0 and hence u = v.

Conversely, if S and T" have only one common fixed point then the
set of common fixed point of S and T being a singleton is totally
ordered. [J

In Theorem 2.4, take S =T, to obtain the following corollary.
Corollary 2.5. Let (X, <) be a partially ordered set such that there
exists a complete complex valued metric d on X and T be weakly
increasing self-map on X. Also, for every comparable x,y € X, we
have

ald(z, Tz)d(x, Ty) + d(y, Ty)d(y, Tz)]

d(z, Ty) + d(y, Tx)
bd(z, Ty)d(y, Tx)

d(z,Tx) +d(y, Ty)
if d(z, Ty) +d(y, Tx) # 0 and d(z, Tx) + d(y, Ty) # 0, where a,b > 0
with 0 <a+b< 1, or
d(Tz,Ty) = 0if d(z,Ty) + d(y, Tz) =0
(2.8) or
d(z,Tz)+ d(y,Ty) = 0.

d(Tz, Ty) <
(2.7)

If T" is continuous or for any nondecreasing sequence {x, } with z, — =z
in X we necessarily have x,, < z for all n € N. Then T has a fixed
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point. Moreover, the set of fixed points of T is totally ordered if and
only if 7" has one and only one fixed point. [J

3. WELL-POSEDNESS

The notion of well-posedness of a fixed point has evoked much in-
terest to several mathematicians. Recently, Karapinar [13] studied
well-posed problem for a cyclic weak ¢—contraction mapping on a
complete metric space (see also, [15, 19] ). We define well-posedness
of fixed point and common fixed point problems for order contractive
mappings.

Definition 3.1. A fixed point problem of self-map S on X,
FP(S,X), is called well-posed if F'(S) (a set of fixed point of 5) is sin-
gleton and for any sequence {x, } in X whose every term is comparable
with z* € F'(S) and ILm d(Szp, x,) = 0 implies z* = ILm T,

Definition 3.2. A common fixed point problem of selfmap S and
T on X, CFP(S,T,X), is called well-posed if CF(S,T) (a set of
common fixed points of S and T') is singleton and for any sequence
{z,} in X whose every term is comparable with z* € CF(S,T) and

lim d(Sz,,x,) =0 or lim (Tx,,z,) = 0 implies z* = lim x,.
n—0o0 n—o0 n—oo

Theorem 3.3. Let (X, <) be a partially ordered set such that there
exists a complete complex valued metric d on X. Suppose that S and
T be self-maps on X as in Theorem 2.1. Then the common fixed point
problem of S and T is well-posed.

Proof. From Theorem 2.1, the mappings S and T have a unique
common fixed point, say u € X. Let {x,} be a sequence in X

whose every term is comparable with u and lim d(Sz,,z,) = 0 or
n—oo

lim (T'z,,z,) = 0. Without loss of generality, we may suppose that

n—oo
u # x, for every non-negative integer n. Then from the triangle in-

equality and inequality (2.1) we have

d(u, x,) < d(Sx,, Tu) + d(Sz,, x,)
< al{d(z,, Tu)}? + {d(u, Sx,) }?]/[d(xn, Tu) + d(u, Sx,)]+
+b[d(2n, Sxy) + d(u, Tu)] + cld(z,, Tu) + d(u, Sz,,) ]+

1) 105, 3,) = SR

+bd(zy, Sxy) + c[d(zy, u) + d(u, Sx,)| + ed(zp, u)+

al{d(zn.u)}*+{d(u,5zn)}?]
+d<an, I‘n) S d(zn,u)+d(u,Szn) ™

+(1+ b+ c)d(xy, Sxy,) + (2¢+ e)d(zp, u),

since d(x,,u) + d(u, Sz,) # 0 for each n.
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If d(z,,u) + d(u,Sz,) = 0 for some n, then for those n, we have
from (2.2), d(Sz,,Tu) = 0 and so

d(u,x,) < d(Szy, Tu) + d(Sxy,, x,) = d(Sxy, ).

Taking limit as n — oo implies |d(u, x,)| — 0, that is lim z,, = .
n—oo

Thus d(z,,u) + d(u, Sx,) # 0 for each n. The following three cases
now arise:

(i)

d(u, z,)

(i)

If d(z,,u) # 0 and d(u, Sz,) # 0, then
- a{d(z,,u)}> a{d(u, Sz,)}?
= d(zp,u) +d(u, Sx,)  d(z,,u) + d(u, Sx,)
+(1+ b+ c)d(xy, Sxy,) + (2¢+ €)d(xn, u)
a{d(z,,u)}? N a{d(u, Swz,)}?
d(p, u) d(u, Swy)
+(1+ b+ c)d(xp, Szy) + (2¢ + €)d(zp, u)
= (1+a+0b+c)d(xy, St,) + (a+ 2¢ + e)d(x,, u),

IN

which implies that

d(u,x,) < (I+atbto)

S e)d(xn,an).

Taking limit as n — oo implies |d(u, z,)| — 0, that is lim z, =

n—00
Uu.
If d(zp,u) # 0 and d(u, Sz,) = 0, then
a{d(zn,u)}? a{d(u,Sz,)}?
d<u’ x”) S d(zn,u)+d(u,Szy) d(zn,u)+d(u,Szn)

+(14 b+ ¢)d(zy, Sxn) + (2¢ + e)d(xn, u)
= eldlentdl® 4 (14 b+ ¢)d(x, Sz) + (2 + €)d(, 1)
= (14+ b+ c)d(zn, Sxpn) + (a + 2¢ + €)d(xp, u),

which implies that

A, 3,) < (1+b+c¢)

“1—(a+2c+ e)d(xn’ Stn).

Taking limit as n — oo implies |d(u, z,)| — 0, that is lim z, =

n—oo
u.
If d(z,,u) = 0 and d(u,Sz,) # 0, then taking the limit as
n — oo implies |d(u,z,)| — 0. That is lim x, = w. This

n—oo

completes the proof. [
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4. PERIODIC POINT RESULTS

Clearly, a fixed point p of T is also a fixed point of T for every
n € N. However, the converse is false. For example, consider, X =
[0,1], and define T' by Tax = 1 — z. Then T has a unique fixed point

5 and every even iterate of T is the identity map, which has every

point of [0,1] as a fixed point. On the other hand, if X = [0,n],
Tx = cosz, then every iterate of T" has the same fixed point as 7" (cf.
1,9, 12])

If a map T satisfies F'(T') = F(T™) for each n € N, then it is said
to have property P [12]. The set O(z,00) = {x, Tz, T?x, ...} is called
the orbit of x.

Theorem 4.1. Let (X, <) be a partially ordered set such that there
exists a complete complex valued metric d on X. Let T" be a self-map
on X as in Corollary 2.3. If O(z,00) is totally ordered, then 7" has
property P.

Proof.  From Corollary 2.3, T has a fixed point. Let u € F(T™). Now
from (2.3), we have

du,Tu) = d(T(T" 'u),T(T"u))
al{d(T™  u, T )} + {d(T"u, T"u) }?]

d(Tn=Yu, T u) + d(Tmu, T™u)
bl d(T"  u, T"u) + d(T"u, T" )] +
cld(T™ Y, T" ) + d(T"u, T™u)] + ed(T™ *u, T"u)
= (a+c)d(T™ 'u, T" ) + (b + e)d(T™ tu, T™u) +
bd(T"u, T" )
(a+ c)d(T"  u, Tu) + (b4 e)d(T™  u, u) + bd(u, Tu)
(a+b+c+e)dT"  u,u) + (a+ b+ c)d(Tu,u),

+ 0+ + A

IN

which implies

< (cH—b—l—c—l—e)d(Tn_1

dfu, Tu) < 1—(a+b+c)

u,u).

Put A\ = % Obviously 0 < A < 1 and we have

du,Tu) = d(Tu,T"u) < Xd(T" 'u, T"u) <
< AT ?u, T" ') < o < A (u, T).

Since 0 < A < 1, this implies that d(u,Tu) =0 and so v = Tu. O
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Theorem 4.2. Let (X, <) be a partially ordered set such that there
exists a complete complex valued metric d on X. Let T" be a self-map
on X as in Corollary 2.5. If O(x,00) is totally ordered, then T has
property P.

Proof.  From Corollary 2.5, T" has a fixed point. Let u € F(T™). Now
from (2.7), we have

d(u, Tu) = d(T(T" 'u), T(T"u))

< ald(T™ Y, T™u)d(T™ tu, TP ) +d(Tu, T ) d(Tu, T )]
— [d(T— 1w, Tt u)+d(Tu, Tu)] +
bd (T Yu, T 1) d(T"u,T"u)

AT u,Tmu)+d(T"u, T+ u)

_ad(T" tuu)d(T" Tu,Tu)

o d(T—1u,Tu)

= ad(T" 'u,u).

+

Thus we have

du,Tu) = d(Tu,T"u) < ad(T"  u, T"u)
< a?d(T"2u, T ) < ... < a"d(u, Tu).

Since 0 < a < 1, this implies that d(u, Tu) = 0 and so u = Tu. O
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