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CALCULUS WITH WEAK UPPER GRADIENTS
BASED ON BANACH FUNCTION SPACES

MARCELINA MOCANU

Abstract. In this paper we extend some results regarding the prop-
erties of weak upper gradients, from the cases when B is an Orlicz
space or a Lorentz space to the general case of a Banach function
space. We provide methods to cut and paste B−weak upper gradients
and give extensions to the case of B−weak upper gradients for the
product rule and the chain rule. These results require no additional
assumptions on the Banach function space B. We also prove the ex-
istence of a norm minimizing B−weak upper gradient for a function
possessing at least one B−weak upper gradient that belongs to B,
under the assumption that B is reflexive or B has an absolutely con-
tinuous norm. If in addition the norm of B is strictly monotone, it
turns out that a norm minimizing B−weak upper gradient of a func-
tion is also minimal pointwise µ−almost everywhere among all the
B−weak upper gradients of that function.

1. Introduction

In this paper (X, d, µ) is a metric measure space, where d is a metric
and µ is outer regular Borel measure, that is assumed to be positive
and finite on balls. (B, ‖·‖B) is a Banach function space corresponding
to the measure space (X,µ).
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The extension of the first-order calculus to the setting of metric
measure spaces with no a priori smooth structure is an active area
of research since 1996. An important step in the development of this
research area, motivated by the study on quasiconformal mappings de-
fined on metric spaces, was the introduction in 1999 of the Newtonian
spaces N1,p (X), 1 ≤ p < ∞ by Shanmugalingam [20], [21]. Together
with Haj lasz-Sobolev spaces [7] and Cheeger type Sobolev spaces [4],
the Newtonian spaces extend Sobolev spaces of order one to metric
measure spaces. Roughly speaking, N1,p (X) is the space of functions
u ∈ Lp (X) admitting at least one upper gradient gu ∈ Lp (X).

Definition 1. Let u : X → R. A Borel function g : X → [0,+∞] is
said to be an upper gradient of u in X if

(1.1) |u (γ (a))− u (γ (b))| ≤
∫
γ

g ds

whenever γ : [a, b]→ X is a rectifiable curve.

An upper gradient of a function u : X → R is a substitute for the
length of the gradient of a real-valued function of class C1 defined on
a Riemannian manifold. Since upper gradients are nor stable under
changes µ−a.e. and under limits, the notion of upper gradient was
generalized to the notion of p−weak upper gradient, which is more
flexible. The notion of upper gradient was introduced by Heinonen
and Koskela in [8, 2.9] and the notion of p−weak upper gradient was
first defined by Koskela and MacManus [9].

In the definition of p−weak upper gradients the notion of
p−modulus of a curve family plays an essential role. Note that a
function u : X → R has a p−integrable upper gradient if and only if
it has a p−integrable p−weak upper gradient. If Ω ⊂ Rn is a domain
and 1 ≤ p <∞, then N1,p (Ω) agrees with the Sobolev space W 1,p (Ω),
in the following sense: N1,p (Ω) is continuously embedded in W 1,p (Ω)
and every function u ∈ W 1,p (Ω) has a representative belonging to
N1,p (Ω) [6, Theorem 7.13]. The length of the distributional gradient
of a function u ∈ W 1,p (Ω) is the least p−weak upper gradient of u [6,
Corollary 7.15].

Two independent generalizations of Newtonian spaces are the
Orlicz-Sobolev spaces introduced in 2004 by Aı̈ssaoui [1] and Tuominen
[23], on one hand, and the Sobolev-Lorentz spaces introduced in 2011
by Costea and Miranda [5], on the other hand. Orlicz-Sobolev spaces
and Sobolev-Lorentz spaces are special cases of Newtonian spaces
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based on Banach function spaces introduced in [18]. Given a Banach
function space B on X, the Newtonian space N1,B (X) based on B
contains the functions u ∈ B that possess at least one (B−weak) up-
per gradient belonging to B. Very recently, L. Malý began the study of
a more general case, that of Newtonian spaces based on quasi-Banach
function lattices [13].

In the study of Newtonian functions, the basic properties of their
(weak) upper gradients play a fundamental role. Therefore, we need
to extend some results regarding the properties of weak upper gra-
dients, from the cases when B is an Orlicz space or a Lorentz space
to the general case of Banach function spaces. We provide methods
to cut and paste B−weak upper gradients and give extensions to the
case of B−weak upper gradients for the product rule and the chain
rule. These results require no additional assumptions on the Banach
function space B. We also prove the existence of a norm minimizing
B−weak upper gradient for a function possessing at least one B−weak
upper gradient that belongs to B, under the assumption that B is re-
flexive or B has an absolutely continuous norm. If in addition the
norm of B is strictly monotone, it turns out that a norm minimiz-
ing B−weak upper gradient of a function is also minimal pointwise
µ−almost everywhere among all the B−weak upper gradients of that
function.

2. Preliminaries

The notion of Banach function space represents an axiomatic frame-
work for the study of several spaces of measurable functions, such as
Lebesgue spaces Lp(X), 1 ≤ p ≤ ∞, Orlicz spaces, Lorentz spaces,
Marcinkiewicz spaces [2]. Some Lebesgue spaces with variable expo-
nent Lp(·) are Banach function spaces [12].

Let (X,Σ, µ) be a complete σ−finite measure space and let M+(X)
be the collections of all measurable functions f : X → [0,+∞].

Definition 2. [2] A function N : M+(X)→ [0,∞] is called a Banach
function norm if, for all f , g, fn (n ≥ 1) in M+(X), for all constants
a ≥ 0 and for all measurable sets E ⊂ X, the following properties
hold:

(P1) N(f) = 0 ⇔ f = 0 µ−a.e.; N(af) = aN(f); N(f + g) ≤
N(f) +N(g).

(P2) If 0 ≤ g ≤ f µ−a.e., then N(g) ≤ N(f).
(P3) If 0 ≤ fn ↑ f µ−a.e., then N(fn) ↑ N(f).
(P4) If µ(E) <∞, then N(χE) <∞.
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(P5) If µ(E) < ∞, then
∫
E

f dµ ≤ CEN(f), for some constant

CE ∈ (0,+∞) depending only on E and ρ.

The collection B of the µ−measurable functions f : X → [−∞,+∞]
for which N(|f |) < ∞ is called a Banach function space on X. For
f ∈ B define

‖f‖B = N(|f |).

Remark 1. By (P5), every function in B is locally integrable, hence
finite µ−a.e. in X, since µ is σ−finite.

Remark 2. The Fatou property (P3) implies the lower semicontinuity
of the norm ‖·‖B [2, Theorem 1.4, Theorem 1.7]: if the sequence fn ∈
B (n ≥ 1) satisfies the conditions fn → f µ−a.e. and lim inf

n→∞
‖fn‖B <

∞, then f ∈ B and ‖f‖B ≤ lim inf
n→∞

‖fn‖B.

A fundamental fact is that (B, ‖·‖B) is a complete normed space,
see [2, Theorem 1.6].

The following special cases of Banach function spaces will be re-
peatedly invoked in this paper. B =LΨ (X) represents an Orlicz space
endowed with the Luxemburg norm (or with the equivalent Orlicz
norm), see [19], [23]. B =Lp,q (X), where 1 < p <∞ and 1 ≤ q ≤ ∞,
represents a Lorentz space endowed with the norm ‖·‖(p,q) (alterna-

tively, with the equivalent norm ‖·‖p,q if 1 ≤ q ≤ p), see [5]. Note that

‖·‖p,q is a quasinorm in the general case.

We mean by a curve in the metric space (X, d) any continuous map-
ping γ : I → X, where I ⊂ R is an interval. The image of γ will be
denoted as |γ| := γ (I). A curve is said to be compact if it is defined
on a compact interval I = [a, b]. Any restriction of a curve γ : I → X
to a subinterval J of I is called a subcurve of γ.

The length of a compact curve γ : [a, b] → X is defined as l (γ) =

sup

{
n∑
k=1

d (γ (tk) , γ (tk−1))

}
, where the supremum is taken over all

partitions a = t0 < t1 < ... < tn = b. If the interval I is not compact,
then the length of a curve γ : I → X is defined as the supremum of
lengths of all compact subcurves of γ.

We say that a curve γ is rectifiable if l (γ) <∞. A curve is said to
be locally rectifiable if each of its compact subcurves is rectifiable.

We will denote by Γrec the family of all rectifiable compact curves
in X.
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For any compact rectifiable curve γ : [a, b] → X there is an as-
sociated length function sγ : [ a, b] → [0, l (γ)] defined by sγ (t) =

l
(
γ|[a,t]

)
. We may extend this definition to the case when γ : I → X

is rectifiable and I is not necessarily compact, so that sγ (t) =

sup
[a,t]⊂I

l
(
γ|[a,t]

)
. For each compact rectifiable curve γ : [a, b] → X

there exists a unique curve γ̃ : [0, l (γ)] → X such that γ = γ̃ ◦ sγ,
called the arc length parameterization of γ, which is also rectifiable
and is 1−Lipschitz. [6, Theorem 3.2]. This results holds also for
rectifiable noncompact curves [8, p. 8]. A compact rectifiable curve
γ : [a, b]→ X will be said to be parameterized by arc length if γ̃ = γ,
i.e. a = 0, b = l (γ) and sγ (t) = t for all t ∈ [a, b].

Let γ : I → X be a rectifiable curve and let ρ : |γ| → [0,+∞] be
a Borel measurable function. Then the line integral of ρ along γ is

defined by
∫
γ

ρds =
l(γ)∫
0

ρ (γ̃ (t)) dt, where γ̃ is the arc length parame-

terization of γ.
If γ : I → X is locally rectifiable, we set

∫
γ

ρds = sup
γ′

∫
γ′
ρds, where

the supremum is taken over all the rectifiable subcurves γ′ of γ. If γ
is not locally rectifiable, no line integrals are defined.

Let Γ be a family of curves in X. A nonnegative Borel function
ρ : X → [0,+∞] is called an admissible function for Γ if

(2.1)

∫
γ

ρds ≥ 1

for all locally rectifiable curves γ ∈ Γ. Denote by F (Γ) the family of
all functions that are admissible for Γ.

Definition 3. [18, p. 255] The B−modulus of a family Γ of curves in
X is

MB(Γ) = inf
ρ∈F (Γ)

‖ρ‖B .

It is said that a property holds for B−almost every curve if it holds
for every curve except a family of curves of zero B−modulus.

Note that the B−modulus of the family of curves that are not rec-
tifiable is zero.

Remark 3. If B = Lp (X), 1 ≤ p < ∞, then the B−modulus MB

and the p−modulus Modp [21] are related by MB (Γ) = (Modp (Γ))1/p.
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If B = LΨ (X) is an Orlicz space, then the B−modulus MB coincides
with the Ψ−modulus ModΨ [23], [1].

Remark 4. In the case B = Lp,q (X) the p, q−modulus of a curve
family was introduced in [5] by Modp,q(Γ) = inf

ρ∈F (Γ)
‖ρ‖pLp,q(X), where

1 < p < ∞ and 1 ≤ q ≤ ∞. If 1 ≤ q ≤ p we have two

choices: ‖·‖B = ‖·‖Lp,q(X), in which case MB (Γ) = (Modp,q (Γ))1/p

or ‖·‖B = ‖·‖L(p,q)(X). If 1 < p < q ≤ ∞ we have to take

‖·‖B = ‖·‖L(p,q)(X). In the cases when ‖·‖B = ‖·‖L(p,q)(X) we have

(Modp,q (Γ))1/p ≤MB (Γ) ≤ p
p−1

(Modp,q (Γ))1/p [5, p. 3]. Note that in

all cases MB (Γ) and Modp,q (Γ) are simultaneously equal to zero.

The following basic properties of the B−modulus have been proved
in [18] as natural extensions of the corresponding properties known in
the case when B is an Orlicz space.

Lemma 1. [18, Proposition 1]
(a) The B−modulus is an outer measure on the collection of all

curves in X.
(b) MB(Γ) = 0 if and only if there is a non-negative Borel function

ρ ∈ B so that
∫
γ

ρ ds = ∞ for all γ ∈ Γ. In particular, if ρ ∈ B

is a non-negative Borel function,
∫
γ

ρ ds < ∞ for B−almost every

γ ∈ Γrec.
(c) If µ(E) = 0, then MB(Γi) = 0 for i = 1, 2, where Γ1 (Γ2) is

the family of all rectifiable curves γ with L1(γ−1(E)) > 0 (respectively,
H1(|γ| ∩ E) > 0).

(d) (Fuglede’s Lemma) If gi (i ∈ N) and g are Borel functions in B
such that lim

i→∞
‖gi − g‖B = 0, then there is a subsequence (gik)k such

that lim
k→∞

∫
γ

|gik − g| ds = 0 for all B−almost every γ ∈ Γrec.

Remark 5. If Γ1 and Γ2 are curve families such that every curve
γ1 ∈ Γ1 has a subcurve γ2 ∈ Γ2, then MB(Γ1) ≤ MB(Γ2), since every
function admissible for Γ2 is also admissible for Γ2.

The definition of a B−weak upper gradient is obtained from that
of an upper gradient, by admitting some exceptions for the condi-
tion (1.1), namely this condition holds for B−almost every compact
rectifiable curve.
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Definition 4. Let u : X → R. A Borel function g : X → [0,+∞] is
said to be a B−weak upper gradient of u in X if the inequality

|u (γ (a))− u (γ (b))| ≤
∫
γ

g ds

holds for every B−almost every rectifiable curve γ : [a, b]→ X.

Taking account of Remark 3 it follows that the notion of B−weak
upper gradient is a generalization of the notions of Ψ−weak upper gra-
dient [23, Definition 4.1] and p−weak upper gradient [21, Definition
2.3].

The concepts of upper gradient and B−weak upper gradient can
be extended to functions u : X → [−∞,+∞]. In this case, it is said
that (1.1) holds if its right-hand side is infinite whenever its left-hand
side is infinite or is not well-defined. This extended concept of upper
gradient was used in [4], while the extended concept of B−weak upper
gradient for B = Lp,q (X) a Lorentz space was introduced and studied
in [5], under the name of p, q-upper gradient. Note that for a function
u : X → R a Borel function g : X → [0,+∞] is a B−weak upper
gradient with B = Lp,q (X) if and only if g is a p, q−weak upper
gradient of u, by Remark 4.

In the following we will deal only with B−weak upper gradients of
real-valued functions.

Let us mention some elementary properties of B−weak upper gra-
dients, that follow by the triangle inequality.

Remark 6. If gk is a B−weak upper gradient of uk : X → R,

k = 1, .., n and λk,k = 1, .., n are real constants, then
n∑
k=1

|λk| gk is

a B−weak upper gradient of
n∑
k=1

λkuk.

Remark 7. The set of the functions u : X → R having at least one
B−weak upper gradient is a lattice. If gk is a B−weak upper gradient
of uk : X → R, k = 1, 2, then g := max (g1, g2) is a B−weak upper
gradient of max (u1, u2) and min (u1, u2). See [18, p.257].

We recall some basic properties of B−weak upper gradients.

Lemma 2. [18, Proposition 2] (a) For every B−weak upper gradient
g ∈ B of a function u : X → R there is a decreasing sequence (gi)i≥1

of upper gradients of u such that lim
i→∞
‖gi − g‖B = 0.
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(b) If (gi)i≥1 is a decreasing sequence of B−weak upper gradients of
u : X → R, then g := lim

i→∞
gi is a B−weak upper gradient. of u

(c) If (ui)i≥1 is a sequence of measurable functions with correspond-
ing B−weak upper gradients (gi)i≥1 and if u := sup

i≥1
ui is finite µ−a.e.,

then g := sup
i≥1

gi is a B−weak upper gradient of u.

(d) Each function that is µ−a.e. equal with a B−weak upper gra-
dient of a function u : X → R is also a B−weak upper gradient of
u.

(e) Assume that for each i ≥ 1, ui : X → R is a measurable function
with a B−weak upper gradient gi ∈ B. Let E ⊂ X be a set such that
MB(ΓE) = 0. If there exist a measurable function u : X → R and
a Borel function g : X → [0,+∞] such that lim

i→∞
ui(x) = u(x) for all

x ∈ X \E and lim
i→∞

gi = g in B, then g is a B−weak upper gradient of
u.

We denoted by ΓE the family of curves γ ∈ Γrec for which |γ| ∩E 6=
∅.

Definition 5. Let u : X → R. The function u is said to be absolutely
continuous on a compact rectifiable curve γ if u ◦ γ̃ : [0, l (γ)] → R
is absolutely continuous. The function u is said to be absolutely con-
tinuous on B−almost every curve if there exists a family Γ0 ⊂ Γrec
with MB (Γ0) = 0, such that u is absolutely continuous on each curve
γ ∈ Γrec \ Γ0.

We will denote by ACCB (X) the family of all functions u :
X → R that are absolutely continuous on B−almost every curve. If
B =Lp (X) with 1 ≤ p <∞ ( B =LΨ (X) is an Orlicz space) we have
u ∈ ACCB (X) if and only if u has the ACCp property [21, Definition
2.2] (respectively, u ∈ ACCΨ (X) [23, 4.1]).

Assume that u : X → R has a B−weak upper gradient g ∈ B
in X. The family Γ0 ⊂ Γrec of curves γ for which

∫
γ

g ds = ∞ has

zero B−modulus, by Lemma 1 (b). Let Γ1 ⊂ Γrec be the family of
curves having at least one subcurve γ for which the inequality (1.1) is
not satisfied. By the definition of a B−weak upper gradient and by
Remark 5, Γ1 has zero B−modulus. Then MB(Γ0 ∪ Γ1) ≤ MB(Γ0) +
MB(Γ1) = 0. Using the absolute continuity of the integral

∫
γ

g ds, one



CALCULUS WITH WEAK UPPER GRADIENTS 49

proves that u is absolutely continuous on each γ ∈ Γrec \ (Γ0 ∪ Γ1).
We obtain the following

Lemma 3. If u : X → R has a B−weak upper gradient g ∈ B in X,
then u ∈ ACCB (X).

The following characterization of B−weak upper gradients extends
from the case B = Lp (X), 1 ≤ p <∞ to the general case (see Lemmas
3.1 and 3.3 from [14, Lemmas 3.1 and 3.3]).

Lemma 4. [17, Lemma 2] Let u : X → R and let g ∈ B be a Borel
measurable nonnegative function. For each compact rectifiable curve γ
parameterized by arc length define h (s) = u (γ (s)), s ∈ [0, l (γ)].

a) Assume that for B−almost every curve γ ∈ Γrec the function h
is absolutely continuous on [0, l (γ)] and

(2.2) |h′ (s)| ≤ g(γ(s)) for almost every s ∈ [0, l (γ)] .

Then g is a B−weak upper gradient of u.
b) Conversely, if g is a B−weak upper gradient of u, then (2.2)

holds for B−almost every curve γ ∈ Γrec.

3. Cutting and pasting weak upper gradients

The ”cut and paste” results on weak upper gradients allow us to
build new weak upper gradients from old ones.

Lemma 5. Assume that uk : X → R, k ∈ {1, 2, 3}, where u1 ∈
ACCB (X) and uk has a B−weak upper gradient gk ∈ B in X for
k ∈ {2, 3}. If F ⊂ X is a Borel set such that u1|F = u2|F and
u1|X\F = u3|X\F , then the function g1 := g2χF + g3χX\F is a B−weak
upper gradient of u1 in X.

Proof. We have uk ∈ ACCB (X) for k ∈ {2, 3}, since uk has a B−weak
upper gradient that belongs to B. Denote by Γk the family of curves
on which uk is not absolutely continuous, k ∈ {1, 2, 3}. Note that
MB (Γk) = 0 for k ∈ {1, 2, 3}.

Let γ ∈ Γrec\ (Γ1 ∪ Γ2 ∪ Γ3) parameterized by arc length. For each
k ∈ {1, 2, 3} there is a set Ek ⊂ [0, l (γ)] with L1 (Ek) = 0 such
that the derivative d

ds
(uk ◦ γ) (s) is defined whenever s ∈ [0, l (γ)] \

Ek. Moreover, for k ∈ {2, 3} we may assume by Lemma 4 (b) that∣∣ d
ds

(uk ◦ γ) (s)
∣∣ ≤ gk (γ (s)) for all s ∈ [0, l (γ)] \ Ek.

Let s0 ∈ [0, l (γ)] \ (E1 ∪ E2 ∪ E3). If s0 is an interior point
of γ−1 (F ) ∩ [0, l (γ)] relative to [0, l (γ)], then d

ds
(u1 ◦ γ) (s0) =
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d
ds

(u2 ◦ γ) (s0), hence
∣∣ d
ds

(u1 ◦ γ) (s0)
∣∣ ≤ g2 (γ (s0)) = g1 (γ (s0)).

Similarly, if s0 is an interior point of γ−1 (X \ F ) ∩ [0, l (γ)] rel-
ative to [0, l (γ)], then d

ds
(u1 ◦ γ) (s0) = d

ds
(u3 ◦ γ) (s0), hence∣∣ d

ds
(u1 ◦ γ) (s0)

∣∣ ≤ g3 (γ (s0)) = g1 (γ (s0)). Now consider the re-
maining case, when s0 is a boundary point of both γ−1 (F ) ∩
[0, l (γ)] and γ−1 (X \ F ) ∩ [0, l (γ)] relative to [0, l (γ)]. The
existence of the derivatives d

ds
(uk ◦ γ) (s0), k ∈ {1, 2, 3} im-

plies d
ds

(u1 ◦ γ) (s0) = d
ds

(uk ◦ γ) (s0) for k ∈ {2, 3}, hence∣∣ d
ds

(u1 ◦ γ) (s0)
∣∣ ≤ min {g2 (γ (s0)) , g3 (γ (s0))} ≤ g1 (γ (s0)).

We proved that
∣∣ d
ds

(u1 ◦ γ) (s)
∣∣ ≤ g1 (γ (s)) for all s ∈

[0, l (γ)] \ (E1 ∪ E2 ∪ E3). Note that L1 (E1 ∪ E2 ∪ E3) = 0 and
MB (Γ1 ∪ Γ2 ∪ Γ3) = 0. By Lemma 4 (a) it follows that g1 is a B−weak
upper gradient of u1 in X. �

Corollary 1. Assume that g, h ∈ B are two B−weak upper gradients
of a function u : X → R in X and that F ⊂ X is a Borel set. Then
ρ := gχF + hχX\F is a B−weak upper gradient of u in X.

Proof. Since u has a B−weak upper gradient that belongs to B, we
have u ∈ ACCB (X) , by Lemma 3. We apply Lemma 5 with u1 =
u2 = u3 = u, g2 = g and g3 = h. �

Corollary 2. Assume that u : X → R , c0 ∈ R and F ⊂
{x ∈ X : u (x) = c0} is a Borel set. If u has a B−weak upper gra-
dient g ∈ B in X, then gχX\F is also a B−weak upper gradient of u
in X.

Proof. As in the above corollary, u ∈ ACCB (X). We apply Lemma
5 with u1 = u2 = u, u3 ≡ c0, g2 = g and g3 ≡ 0. It follows that
g1 = gχX\F is a B−weak upper gradient of u1 = u in X. �

We also give a slight generalization of Corollary 2, as follows.

Corollary 3. Assume that F ⊂ X is a Borel set and u : X → R is
constant µ−a.e. on F . If u has a B−weak upper gradient g ∈ B in
X, then gχX\F is also a B−weak upper gradient of u in X.

Proof. Denote by c0 the constant value of u on F , except a set of zero
measure, namely E = {x ∈ F : u (x) 6= c0}. By the Borel regularity
of the measure µ, there exists a Borel set E ′ ⊂ X such that E ⊂ E ′

and µ (E ′) = µ (E) = 0. Then F \ E ′ is a Borel set and F \ E ′ ⊂
{x ∈ X : u (x) = c0}. By Corollary 2, a B−weak upper gradient of u
in X is g′1 = gχ(X\F )∪E′ . Let g1 = gχX\F . Since µ (E ′) = 0, we have
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g1 = g′1 µ−a.e. in X, therefore g1 is also a B−weak upper gradient of
u in X, by Lemma 2 (d). �

Remark 8. Lemma 5 generalizes Lemma 4.11 from [23]. Corollary
1 was also proved as an independent result in [17] and generalizes
Lemma 4.10 from [23] and Lemma 4.7 from [5]. Corollary 2 generalizes
Corollary 4.12 from [23] and Corollary 3 generalizes Lemma 4.6 from
[5].

Comparing Corollary 3 in the case B = Lp (X) with Lemma 4.3
from [21], it is natural to ask if we can remove the assumption g ∈ B
from the statement of this corollary. The answer is positive and we
arrive at the following stronger form of Corollary 3.

Lemma 6. Assume that F ⊂ X is a Borel set and that the function
u ∈ ACCB (X) is constant µ−a.e. on F . If u has a B−weak upper
gradient g in X, then gχX\F is also a B−weak upper gradient of u in
X.

Proof. We use some techniques from the proof of Lemma 4.3 [21] and
the proof of Lemma 4.6 [5]. Denote by c0 the constant value of u
on F , except a set of zero measure. As in the proof of Corollary 3,
denote E = {x ∈ F : u (x) 6= c0} and let By the Borel regularity of the
measure µ, there exists a Borel set E ′ ⊂ X be a Borel set such that
E ⊂ E ′ and µ (E ′) = µ (E) = 0.

Denote by Γ+
E′ the family of all rectifiable compact curves that

intersect E ′ on a set of positive linear measure. By Lemma 1 (c),
MB

(
Γ+
E′

)
= 0.

Let Γ0 be the family of all rectifiable curves γ : [a, b]→ X on which
u is not absolutely continuous or on which the inequality

(3.1) |u (γ (a))− u (γ (b))| ≤
∫
γ

g ds

is not satisfied. By our assumptions u ∈ ACCB (X) and g is a B−weak
upper gradient of u in X, MB (Γ0) = 0. Denote by Γ1 the family of
all curves having a subcurve in Γ0. Then every nonnegative Borel
function which is admissible for Γ0 is also admissible for Γ1, therefore
MB (Γ1) ≤MB (Γ0) = 0, i.e. MB (Γ1) = 0.

Let γ : [a, b] → X, γ ∈ Γrec \
(
Γ+
E′ ∪ Γ1

)
. We shall analyze several

cases.
Case I. If γ (a) , γ (b) ∈ F \ E ′, then |u (γ (a))− u (γ (b))| =
|c0 − c0| ≤

∫
γ

gχX\F ds.
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Case II. If γ ([a, b]) ⊂ (X \ F ) ∪ E ′, then |u (γ (a))− u (γ (b))| ≤∫
γ

g ds, since γ /∈ Γ0 and
∫
γ

g ds =
∫
γ

gχX\F ds, since γ /∈ Γ+
E′ . We

obtain |u (γ (a))− u (γ (b))| ≤
∫
γ

gχX\F ds.

Case III. Assume that γ ([a, b]) is not included in (X \ F )∪E ′ and
that {γ (a) , γ (b)} is not included in F \E ′. It suffices to assume that
γ (a) ∈ (X \ F ) ∪ E ′.

Consider the set K := (u ◦ γ)−1 ({c0}), that is nonempty by the
assumption that γ ([a, b]) has at least one point in F \E ′. Since u ◦ γ
is continuous on [a, b] [6, Lemma 7.3], K is relatively closed in [a, b],
therefore K is compact in R. Then a0 := inf K and b0 := supK belong
to K.

Since u (γ (a0)) = u (γ (b0)) = c0, we have by the triangle inequality
|u (γ (a))− u (γ (b))| ≤ |u (γ (a))− u (γ (a0))|+ |u (γ (b0))− u (γ (b))|.

Since γ /∈ Γ1, |u (γ (a))− u (γ (a0))| ≤
∫

γ|[a,a0]

g ds and

|u (γ (b0))− u (γ (b))| ≤
∫

γ|[b0,b]

g ds. Since γ (t) ∈ (X \ F ) ∪ E ′ for

t ∈ [a, a0) ∪ (b0, b], we have
∫

γ|[a,a0]

g ds =
∫

γ|[a,a0]

gχ(X\F )∪E′ ds and∫
γ|[b0,b]

g ds =
∫

γ|[b0,b]

gχ(X\F )∪E′ds. Moreover, since γ /∈ Γ+
E′ , each of the

images of the restrictions γ|[a,a0] and γ|[b0,b] intersects E ′ only on a set

of zero linear measure, therefore
∫

γ|[a,a0]

gχ(X\F )∪E′ ds =
∫

γ|[a,a0]

gχX\F ds

and
∫

γ|[b0,b]

gχ(X\F )∪E′ds =
∫

γ|[b0,b]

gχ(X\F )ds.

We conclude that

|u (γ (a))− u (γ (b))| ≤
∫

γ|[a,a0]

gχX\F ds+

∫
γ|[b0,b]

gχ(X\F )ds

≤
∫
γ

gχX\F ds,

hence |u (γ (a))− u (γ (b))| ≤
∫
γ

gχX\F ds. �

Remark 9. Lemma 4.3 from [21] follows by the above lemma, when
B =Lp (X), F is a closed set and g is an upper gradient of u.
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4. Minimal weak upper gradient

For u : X → R denote by Gu the family of all B−weak upper
gradients g ∈ B of u in X.

Lemma 7. For every u : X → R the set Gu is closed and convex in
B.

Proof. If Gu is empty, there is nothing to prove. Assume that Gu is
nonempty. By Remark 6, Gu is convex.

In order to prove that Gu is closed, we will show that for each se-
quence (gj)j≥1 in Gu, that is convergent in B to some function g,
the limit g is a B−weak upper gradient of u in X. By Fuglede’s
lemma (Lemma 1 (d)), there exists a subsequence (gjk)k≥1 such that

lim
k→∞

∫
γ

|gjk − g| ds = 0 for B−a.e. rectifiable curve γ. Using a renum-

bering, we may assume that lim
j→∞

∫
γ

|gj − g| ds = 0 for all γ ∈ Γrec \Γ0,

where MB (Γ0) = 0.
For each j ≥ 1 we find Γj ⊂ Γrec a family of compact curves, with

MB (Γj) = 0, such that

|u (x)− u (y)| ≤
∫
γ

gj ds

for all compact curves γ ∈ Γrec \ Γj with endpoints x and y.

Let γ ∈ Γrec \
∞⋃
j=0

Γj be a compact curve with endpoints x and y.

Taking j →∞ in the above inequality, we get |u (x)− u (y)| ≤
∫
γ

gds.

SinceMB

(
∞⋃
j=0

Γj

)
= 0, this proves that g is a B−weak upper gradient

of u in X. �

Note that we proved in [17, Lemma 4] that Gu is closed and convex
in B, but under the assumption u ∈ B, using a version of Mazur’s
lemma [18, Theorem 1] that is not applicable here.

Proposition 1. Assume that B is reflexive. Then for every u : X →
R for which Gu is nonempty, there exists gu ∈ Gu such that ‖gu‖B =
inf
g∈Gu

‖g‖B.

Proof. Let u : X → R be a function such that Gu is nonempty. By
Lemma 7, Gu is closed and convex in B.
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As a consequence of James’ characterization of reflexivity of Ba-
nach spaces, it follows that each nonempty closed convex subset of a
reflexive Banach space has at least one element of smallest norm (see
[3, Proposition 4]). Since B is reflexive, the nonempty closed convex
subset Gu of B has an element gu of smallest norm. �

Remark 10. If a Banach space is not reflexive, then there exists
at least one nonempty closed convex subset of the space that has no
element of smallest norm. As an Erratum, let us note that we have
to replace the assumption ”B is strictly convex” by ”B is reflexive” in
the statements of Lemma 5 and Theorem 1 from [17], as it was hinted
in [13].

Remark 11. An Orlicz space LΨ (X) is reflexive if and only if Ψ and
its complementary function are doubling (satisfy the ∆2−condition).
Note that the complementary function of a Young function Ψ is dou-
bling if and only if Ψ satisfies a ∇2−condition.

The Lorentz space Lp,q (X) is reflexive when 1 < q < ∞, provided
that the measure µ is nonatomic, see Costea and Miranda [5, p. 3],
Bennet and Sharpley [2, Theorem IV.4.7 and Corollaries I.4.3 and
IV.4.8].

The reflexivity of the Banach space B is a strong condition. For-
tunately, we may replace the condition of reflexivity by the condition
that B has absolutely continuous norm.

Definition 6. [2, Definition I.3.1] A function f in a Banach function
space B is said to have absolutely continuous norm if lim

n→∞
‖fχEn‖B =

0 for every sequence (En)n≥1 of measurable functions satisfying the

condition µ

(
lim sup
n→∞

En

)
= 0. If each function in B has absolutely

continuous norm, then the space B itself is said to have absolutely
continuous norm.

Example 1. Every Lebesgue space Lp (X), 1 ≤ p <∞ has absolutely
continuous (AC) norm.

If the Young function Ψ is doubling, then the Orlicz space LΨ(X)
has AC norm. Moreover, if Ψ is doubling, then for each f ∈ LΨ (X)
and every ε > 0 there is δ (ε) > 0 such that µ (A) < δ (ε) implies
‖fχA‖B < ε. See [?, Lemma 3] for a proof.

If 1 < p < ∞ and 1 ≤ q < ∞, then the Lorentz space Lp,q (X) has
absolutely continuous norm, provided that the measure µ is σ−finite
(see [5, p.16], [2, Proposition I.3.6], [2, Corollary IV.4.8]).
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Proposition 2. Assume that B has absolutely continuous norm. For
every u : X → R for which Gu is nonempty, there exists gu ∈ Gu such
that ‖gu‖B = inf

g∈Gu

‖g‖B.

Proof. Let u : X → R be a function such that Gu is nonempty. By
Lemma 7, Gu is closed and convex in B.

We will use a technique of Haj lasz [6, Theorem 7.16]. Let m :=
inf
g∈Gu

‖g‖B. Consider a sequence of positive numbers (εi)i≥1 converging

to zero. Let (gi)i≥1 be a sequence in Gu such that ‖gi‖B < m+ εi for
every i ≥ 1. The sequence (gi)i≥1 will be modified in order to obtain
a decreasing sequence (ρi)i≥1 with ρi ∈ ρi and ‖ρi‖B < m + 2εi for
every i ≥ 1. The sequence (ρi)i≥1 is defined inductively, as follows. Set
ρ1 = g1. Suppose that ρ1, ..., ρk have already been chosen such that
ρ1 (x) ≥ ... ≥ ρk (x) for x ∈ X and ‖ρi‖B < m + 2εi for i = 1, ..., k.
We will define ρk such that ρk ∈ Gu, ρk (x) ≥ ρk+1 (x) for every x ∈ X
and ‖ρk+1‖B < m+2εk+1. Consider Ek = {x ∈ X : gk+1 (x) < ρk (x)}.
Note that Ek is a Borel set, since gk+1 and ρk are Borel functions. By
the Borel regularity of µ, for each δk > 0 there exists a closed set
Fk = Fk (δk) ⊂ Ek such that µ (Ek \ Fk) < δk. We will choose a
convenient δk > 0 later. Define

ρk+1 = gk+1χFk
+ ρkχX\Fk

.

By Corollary 1, ρk+1 is a B−weak upper gradient of u in X. Obviously,
ρk+1 ∈ B, hence ρk+1 ∈ Gu. For x ∈ Fk we have ρk+1 (x) = gk+1 (x) <
ρk (x), while x ∈ X \ Fk implies ρk+1 (x) = ρk (x). Then ρk+1 (x) ≤
ρk (x) for every x ∈ X.

Let hk := gk+1χ(X\Ek)∪Fk
+ρkχEk\Fk

. We see that x ∈ X \Ek ⊂ X \
Fk implies ρk+1 (x) = ρk (x) ≤ gk+1 (x) = hk (x), and x ∈ Fk implies
ρk+1 (x) = gk+1 (x) < hk (x), while x ∈ Ek \ Fk implies ρk+1 (x) =
gk+1 (x) < ρk (x) = hk (x). Then ρk+1 ≤ hk on X, hence ‖ρk+1‖B ≤
‖hk‖B by the monotonicity of the norm of B.

By the triangle inequality and the monotonicity of the norm of B,

‖hk‖B ≤
∥∥gk+1χ(X\Ek)∪Fk

∥∥
B

+
∥∥ρkχEk\Fk

∥∥
B
≤

≤ ‖gk+1‖B +
∥∥ρkχEk\Fk

∥∥
B
≤ m+ εk+1 +

∥∥ρkχEk\Fk

∥∥
B
.(4.1)

Since B has absolutely continuous, for each f ∈ B and every ε > 0
there exists δ = δ (f, ε) > 0 such that µ (E) < δ implies ‖fχE‖B < ε
[2, Lemma I. 3.4. ]. We choose δk = δ (ρk, εk+1). Then

∥∥ρkχEk\Fk

∥∥
B
<

εk+1. Using this inequality and (4.1), we get ‖hk‖B < m+2εk+1, hence
‖ρk+1‖B ≤ m+ 2εk+1, q.e.d.
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Since (ρi)i≥1 is decreasing on X, there exists the pointwise limit ρ :=
lim
i→∞

ρi. Since lim inf
i→∞

‖ρi‖B <∞, it follows by the lower semicontinuity

of the norm ‖·‖B (see Remark 2) that ρ ∈ B and ‖ρ‖B ≤ lim inf
i→∞

‖ρi‖B.

But m ≤ ‖ρi‖B < m + 2εi for every i ≥ 1 and lim
i→∞

εi = 0 implies

lim
i→∞
‖ρi‖B = m. Then ‖ρ‖B ≤ m.

On the other hand, by Lemma 2 (b), ρ is a B−weak upper gradient
of u in X, as a pointwise limit of a decreasing sequence of B−weak
upper gradients of u. Then ρ ∈ Gu and consequently ‖ρ‖B ≥ m.

Now the claim follows for gu := ρ. �

Definition 7. Let (B, ‖·‖B) be a Banach function space. The norm
‖·‖B is said to be strictly monotone if for every f, g ∈ B with 0 ≤ g ≤ f
µ−almost everywhere. in X, ‖g‖B = ‖f‖B implies g = f µ−almost
everywhere.

Example 2. If the Young function Ψ : [0,∞) → [0,∞) is strictly
increasing and doubling, then the Luxemburg norm of the Orlicz space
LΨ (X) is strictly monotone (see [17, p. 127])

If 1 < p < ∞ and 1 ≤ q < ∞, then the Lorentz space Lp,q (X) has
strictly monotone norm (see [5, p.16], [11, Proposition 2.1])

Lemma 8. Assume that B has a strictly monotone norm. Let u :
X → R. If there exists gu ∈ Gu such that ‖gu‖B = inf

g∈Gu

‖g‖B, then

gu(x) ≤ g(x) for µ− a.e. x ∈ X, whenever g ∈ Gu.

Note that the existence of gu ∈ Gu such that gu(x) ≤ g(x) for µ−
a.e. x ∈ X implies ‖gu‖B = inf

g∈Gu

‖g‖B.

Proof. Assume that there exists gu ∈ Gu such that ‖gu‖B = inf
g∈Gu

‖g‖B.

Let g ∈ Gu. We have to prove that F := {x ∈ X : gu(x) > g(x)} is of
measure zero. F is a Borel set, since gu and g are Borel measurable
functions. By Corollary 1, the function ρ = guχX\F + gχF belongs to
Gu.

By the definition of gu, we have ‖gu‖B ≤ ‖ρ‖B. By the definition
of ρ, we have ρ (x) ≤ gu(x) for every x ∈ X, hence ‖ρ‖B ≤ ‖gu‖B, by
the monotonicity of the norm in a Banach function space. It follows
that ‖ρ‖B = ‖gu‖B.

Since the norm ‖·‖B is strictly monotone, from ρ ≤ gu µ−a.e. in X
and ‖ρ‖B = ‖gu‖B we get ρ = gu µ−a.e. in X. Then (g − gu)χF = 0
µ−a.e. in X, but g − gu < 0 on F , hence µ (F ) = 0, q.e.d. �
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Remark 12. Assume that B is reflexive or B has absolutely contin-
uous norm. Assume also that B is strictly convex or B has strictly
monotone norm. Then there exists a unique (up to a set of zero mea-
sure) gu ∈ Gu such that ‖gu‖B = inf

g∈Gu

‖g‖B.

The existence of gu follows from Proposition 1 and Proposition 2.
If B has a strictly monotone norm, the uniqueness (up to a set of
zero measure) of gu is a straightforward consequence of Lemma 8.
Assume now that B is strictly convex, i.e. ‖f + g‖ < 2 whenever
f, g ∈ B are distinct norm one elements. Denote m := inf

g∈Gu

‖g‖B. Let

g1, g2 ∈ Gu such that ‖g1‖B = ‖g2‖B = m. If m = 0, then g1 and
g2 are null µ−a.e., hence g1 = g2 µ−a.e in X. Suppose that m > 0.
For every λ ∈ [0, 1], ‖(1− λ) g1 + λg2‖B ≤ m and (1− λ) g1 + λg2 ∈
Gu, hence ‖(1− λ) g1 + λg2‖B = m. In particular, for λ = 1

2
we get∥∥ 1

m
g1 + 1

m
g2

∥∥
B

= 2, Since
∥∥ 1
m
g1

∥∥
B

=
∥∥ 1
m
g2

∥∥
B

= 1, if g1 6= g2 in B,

then we deduce by the strict convexity of B that
∥∥ 1
m
g1 + 1

m
g2

∥∥
B
< 2,

a contradiction. Then g1 = g2 in B, hence g1 = g2 µ−a.e in X.

By Proposition 1, Proposition 2 and Lemma 8 we obtain

Theorem 1. Assume that B is reflexive or B has an absolutely con-
tinuous norm and that B has a strictly monotone norm. Then for
every u : X → R for which Gu is nonempty, there exists gu ∈ Gu such
that gu(x) ≤ g(x) for µ− a.e. x ∈ X, whenever g ∈ Gu.

Remark 13. In the case when B =LΨ (X) is an Orlicz space, with Ψ
a doubling and strictly increasing Young function, Theorem 1 shows
that every function in B admitting at least one B−weak upper gradient
g ∈ B has a norm minimizing B−weak upper gradient gu, which is also
minimal pointwise µ−almost everywhere. This was proved in [23], see
Theorem 6.6, Theorem 6.7, Lemma 6.8, Corollary 6.9 and Theorem
6.11.

In the case when B =Lp,q (X) is a Lorentz space, with 1 < p < ∞
and 1 ≤ q <∞, Theorem 1 implies Theorem 4.8 from [5], in the case
of real-valued functions.

5. Product rule and chain rule

The following theorems provide counterparts of the product rule and
of the chain rule for derivatives, extending some corresponding results
of Costea and Miranda [5] from the case when B is a Lorentz space
to the general case. We will show that the proofs of Lemma 6.7 and
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Proposition 3.11 from [5] still work in the setting of general Banach
function spaces.

Theorem 2. Assume that uk : X → R is a Borel function which has
a B−weak upper gradient gk ∈ B in X, for k ∈ {1, 2}. Then the
function g := |u1| g2 + |u2| g1 is a B−weak upper gradient of u := u1u2

in X and g ∈ B.

Proof. Since uk and gk are Borel functions for k = 1, 2, we see that g
is a Borel nonnegative function. By the properties (P1) and (P2) of a
Banach function norm, g ∈ B.

Let ε > 0. Denote hε := (|u1|+ ε) g2 + (|u2|+ ε) g1. Using a tech-
nique of Cheeger [4, Lemma 1.7] we will prove that

(5.1) |u (γ (0))− u (γ (l (γ)))| ≤
∫
γ

hε ds <∞,

for B−almost every γ ∈ Γrec parameterized by arc length.
Let Γ0 ⊂ Γrec be the family of curves γ for which

∫
γ

(g1 + g2) ds =

∞. Since gk ∈ B for k = 1, 2 we have MB (Γ0) = 0 by Proposition 1
(b). For k = 1, 2 let Γk ⊂ Γrec be the family of curves γ parameterized
by arc length for which the inequality |uk (γ (0))− uk (γ (l (γ)))| ≤∫
γ

gk ds is not satisfied. Since gk is a B−weak upper gradient of uk,

MB (Γk) = 0 for k = 1, 2. Let Γ3 ⊂ Γrec be the family of curves
that have a subcurve in Γ1 ∪ Γ2. Then MB (Γ3) ≤ MB (Γ1 ∪ Γ2) ≤
MB (Γ1)+MB (Γ2) = 0, henceMB (Γ3) = 0. Note thatMB (Γ0 ∪ Γ3) =
0.

Fix γ ∈ Γrec \ (Γ0 ∪ Γ3) parameterized by arc length and de-
note l = l (γ). Fix a positive integer n and let ti = i l

n
,

i = 0, 1, ..., n. We have |u (γ (ti))− u (γ (ti−1))| ≤ |u1 (γ (ti))| ·
|u2 (γ (ti))− u2 (γ (ti−1))|+ |u2 (γ (ti−1))| · |u1 (γ (ti))− u1 (γ (ti−1))| for

i = 1, ..., n. But |uk (γ (ti))− uk (γ (ti−1))| ≤
ti∫

ti−1

gk (γ (t)) dt for

k = 1, 2 and i = 1, ..., n. Then

|u (γ (ti))− u (γ (ti−1))| ≤
ti∫

ti−1

[|u1 (γ (ti))| g2 (t) + |u2 (γ (ti−1))| g1 (t)] dt

for i = 1, ..., n.
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Summing the above inequalities over i we obtain
(5.2)

|u (γ (0))− u (γ (l))| ≤
n∑
i=1

ti∫
ti−1

[|u1 (γ (ti))| g2 (t) + |u2 (γ (ti−1))| g1 (t)] dt.

Let k ∈ {1, 2}. Since uk ◦ γ is absolutely continuous on I := [0, l],
it is uniformly continuous on I. There exists δk > 0 such that
|uk (γ (v))− u (γ (w))| < ε whenever |v − w| < δk, v, w ∈ I.

Choose n such that l
n

< min {δ1, δ2}. Then |u1 (γ (ti))| <
|u1 (γ (t))| + ε and |u2 (γ (ti−1))| < |u2 (γ (t))| + ε for all t ∈ [ti−1, ti],
for i = 1, ..., n. Using these inequalities in (5.2) we obtain inequality
(5.1).

Taking advantage of the integrability of hε ◦ γ and letting
ε → 0 we obtain, by Lebesgue’s dominated convergence theo-
rem, |u (γ (0))− u (γ (l))| ≤

∫
γ

[|u1| g2 + |u2| g1] ds and the claim fol-

lows. �

We give another variant to the product rule, with the assumptions
u1 Borel, u2 bounded and gk ∈ B, k = 1, 2 removed and a slightly
weaker claim.

Proposition 3. Assume that uk : X → R is has a B−weak upper
gradient gk in X, for k ∈ {1, 2}, u1 is bounded and u2 is Borel. Then
the function g := ‖u‖∞ g2 + |u2| g1 is a B−weak upper gradient of
u := u1u2 in X.

Proof. We will use a technique of Shanmugalingam [22, Lemma 4.10],
where a similar claim was proved for upper gradients. As in the proof
of Theorem 2 let Γk ⊂ Γrec be the family of curves γ parameterized by
arc length for which the inequality |uk (γ (0))− uk (γ (l (γ)))| ≤

∫
γ

gk ds

is not satisfied, for k = 1, 2. Let Γ3 ⊂ Γrec be the family of curves that
have a subcurve in Γ1 ∪ Γ2. Then MB (Γ3) = 0.

Fix γ ∈ Γrec \ Γ3 parameterized by arc length. Denote x = γ (0)
and y = γ (l (γ)). By the triangle inequality

|u1(x)u2(x)− u1(y)u2(y)| ≤ ‖u1‖∞
∫
γ

g2ds+ |u2(y)|
∫
γ

g1ds.

For each z = γ (c), c ∈ I := [0, l (γ)], denote by γxz and γzy the
restrictions of γ to [0, c] and [c, l (γ)], respectively. Applying the above
inequality for γxz and γzy we get



60 MARCELINA MOCANU

|u1(x)u2(x)− u1(y)u2(y)| ≤ |u1(x)u2(x)− u1(z)u2(z)|+
+ |u1(z)u2(z)− u1(y)u2(y)|

≤ ‖u1‖∞
∫
γxz

g2ds+ |u2(z)|
∫
γxz

g1ds+

+ ‖u1‖∞
∫
γzy

g2ds+ |u2(z)|
∫
γzy

g1ds.

Then |u1(x)u2(x)− u1(y)u2(y)| ≤ ‖u1‖∞
∫
γ

g2ds+ |u2(z)|
∫
γ

g1ds for

each z ∈ γ(I) =: |γ|, hence

|u1(x)u2(x)− u1(y)u2(y)| ≤
∫
γ

(‖u1‖∞ g2 + inf
z∈|γ|
|u2(z)| g1)ds.

This implies

|u1(x)u2(x)− u1(y)u2(y)| ≤
∫
γ

(‖u1‖∞ g2 + |u2| g1)ds,

which completes the proof. �

Theorem 3. Let F : R→R be a C1 function. If u : X → R has
a B−weak upper gradient g ∈ B in X, then |F ′ (u)| g is a B−weak
upper gradient of the function F ◦ u : X → R .

Proof. Let Γ0 be the family of all rectifiable curves γ : [0, l (γ)] → X
for which

∫
γ

g ds = ∞. Then MB (Γ0) = 0, by Proposition 1. Let Γ1

be the family of all rectifiable curves γ : [0, l (γ)] → X on which the
inequality

|u (γ (a))− u (γ (b))| ≤
∫
γ

g ds

is not satisfied. Then MB (Γ1) = 0. Denoting by Γ2 the family of
all curves having a subcurve in Γ1, we have MB (Γ2) = 0. Then
MB (Γ0 ∪ Γ2) = 0 and u is absolutely continuous on γ for each γ ∈
Γrec \ (Γ0 ∪ Γ2).

Let γ ∈ Γrec \ (Γ0 ∪ Γ2) a curve parameterized by arc length,
γ : [0, l] → X, where l := l (γ). For every 0 ≤ t1 < t2 ≤ l we

have |u (γ (t1))− u (γ (t2))| ≤
∫

γ|[t1,t2]

g ds =
t2∫
t1

g (γ (t)) dt. The function
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u◦γ is absolutely continuous on [a, b], in particular it is uniformly con-
tinuous. Note that F ′ is uniformly continuous on the compact interval
I := (u ◦ γ) ([0, l]).

Fix a positive integer n. We consider the points tk := k l
n
,

k = 0, 1, .., n. We will estimate |(F ◦ u) (γ (0))− (F ◦ u) (γ (l))| ≤
n−1∑
k=0

|(F ◦ u) (γ (tk+1))− (F ◦ u) (γ (tk))| in terms of a line integral in-

volving |F ′ (u)| g.
By Lagrange’s mean value theorem for F and the intermediate

value theorem for u ◦ γ, for each k ∈ {1, ..., n} there exists a
point τk ∈ (tk−1, tk) such that (F ◦ u) (γ (tk)) − (F ◦ u) (γ (tk−1)) =
F ′ ((u ◦ γ) (τk)) [(u ◦ γ) (tk)− (u ◦ γ) (tk−1)]. Then

|(F ◦ u) (γ (tk))− (F ◦ u) (γ (tk−1))| ≤
≤ |F ′ ((u ◦ γ) (τk))| · |(u ◦ γ) (tk)− (u ◦ γ) (tk−1)| ≤

≤ |F ′ ((u ◦ γ) (τk))|
tk∫

tk−1

g (γ (t)) dt.

Since F ′ is uniformly continuous on I, for each ε > 0 there exists
δ > 0 such that |F ′ (v)− F ′ (w)| < ε whenever |v − w| < δ, v, w ∈ I.
Since u◦γ is uniformly continuous on [0, l], for each δ > 0 there exists
η > 0 such that |(u ◦ γ) (t)− (u ◦ γ) (τ)| < δ whenever |t− τ | < η,
t, τ ∈ [0, l].

Fix ε > 0. Choose a positive integer n such that l
n

<
η. Then |F ′ ((u ◦ γ) (τk))− F ′ ((u ◦ γ) (t))| < ε for all t ∈

[tk−1, tk], k = 1, ..., n, hence |F ′ ((u ◦ γ) (τk))|
tk∫

tk−1

g (γ (t)) dt ≤

tk∫
tk−1

(|F ′ ((u ◦ γ) (t))|+ ε) g (γ (t)) dt, k = 1, ..., n. Then

|(F ◦ u) (γ (tk))− (F ◦ u) (γ (tk−1))| ≤

≤
tk∫

tk−1

(|F ′ ((u ◦ γ) (t))|+ ε) g (γ (t)) dt, k = 1, ..., n.

Summing over k it follows that

(5.3)

|(F ◦ u) (γ (0))− (F ◦ u) (γ (l))| ≤

≤
l∫

0

(|F ′ ((u ◦ γ) (t))|+ ε) g (γ (t)) dt,

for every ε > 0.
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Since
l∫

0

g (γ (t)) dt < ∞ and F ′ ◦ u ◦ γ is bounded on [0, l],

we have
l∫

0

(|F ′ ((u ◦ γ) (t))|+ ε) g (γ (t)) dt < ∞ for every ε > 0.

Letting ε → 0 in (5.3) we get by Lebesgue’s dominated con-
vergence theorem the inequality |(F ◦ u) (γ (0))− (F ◦ u) (γ (l))| ≤
l∫

0

|F ′ ((u ◦ γ) (t))| g (γ (t)) dt, which completes the proof. �
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