"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 22 (2012), No. 1, 71 - 76

ON THE LOCALLY MINKOWSKI GLⁿ SPACE

VALER NIMINEŢ AND OTILIA LUNGU

Abstract. We continue the investigations of generalized Lagrangian mechanical system [5] with the study of the GL-metric when the Finsler space F^n is a locally Minkowski space. Moreover we replace the nonlinear connection with a new one.

1. Generalized Lagrangian mechanical systems

Definition 1.1. A GL^n -mechanical system is a triple $\sum = (M, g_{ij}, F_i)$ where g_{ij} is the fundamental tensor of the Finsler space F^n from [5] and $F_i(x, y)$ are the external forces.

We assume that the evolution equation of the GL^n -mechanical system \sum are:

(1.1)
$$\frac{d^2x^i}{dt^2} + \gamma^i_{jk}\left(x, \frac{dx}{dt}\right)\frac{dx^j}{dt}\frac{dx^k}{dt} = \lambda^{ij}F_j\left(x, \frac{dx}{dt}\right)\left(1 - \frac{1}{n^2\left(x, \frac{dx}{dt}\right)}\right)$$

The reason for considering this system of second order differential equation is that it is determined only by the mechanical system \sum . But the evolution equation (1.1) give us a local dynamical system.

In the case when the Finsler fundamental function F(x, y), the refractive index n(x, y) and the external forces $F_i(x, y)$ are globally defined, then the dynamical system (1.1) can be characterized by a vector field S on the phase space TM.

We have

Theorem 1.1. The following properties hold:

1°. There exists a semispray S on the manifold TM, which depends only on the mechanical system \sum .

Keywords and phrases: generalized Lagrangian mechanical system, nonlinear connection, locally Minkowski space.

(2010)Mathematics Subject Classification: 53B40.

 2° . The integral curves of S the solution curves of the evolution equations (1.1).

Proof. 1°. A semispray S on TM given in a local coordinates (x^i, y^i) has the form: $S = y^{i} \frac{\partial}{\partial x^{i}} + S^{i}(x, y) \frac{\partial}{\partial y^{i}}$

A change of local coordinates $(x^i, y^i) \to (\tilde{x}^i, \tilde{y}^i)$ on TM, changes (S^i) to (\tilde{S}^i) such that $\tilde{S}^i = \frac{\partial \tilde{x}^i}{\partial x^j} S^j + \frac{\partial^2 \tilde{x}^i}{\partial x^j \partial x^k} y^j y^k$.

Conversely, if sets of locally given functions $(S^{i}(x, y))$ verify this rule under a change of coordinates, then they define a semispray. Consider the system of functions:

(1.2)
$$2G^{i}(x,y) = \gamma_{jk}^{i}(x,y) y^{j} y^{k} - (1 - n^{2}(x,y)) F^{i}(x,y)$$

where

(1.3)
$$F^{i}(x,y) = \gamma^{ij}(x,y) F_{j}(x,y)$$

Taking into account that $\left(\gamma_{jk}^{i}\left(x,y\right)\right)$ transform like the coefficients of a linear connection on M and $(F^{i}(x, y))$ transform like the components of a vector field on M, by a direct computation one finds that $-2G^i$ are the coefficients of a semispray S:

(1.4)
$$S = y^{i} \frac{\partial}{\partial x^{i}} - 2G^{i} \frac{\partial}{\partial y^{i}}$$

Evidently, the coefficients G^i depend only on the mechanical system $\sum_{2^{\circ}}$. The integral curves of S are expressed by

(1.5)
$$\frac{dx^i}{dt} = y^i, \ \frac{dy^i}{dt} + 2G^i = 0$$

By virtue of (1.2), this system of differential equations is equivalent to system (1.1).

This is an important result, since the geometrical theory of the mechanical system \sum is the geometry of the triple (T, M, S). So, we have

Theorem 1.2. The nonlinear connection N of the mechanical system \sum has the coefficients

(1.6)
$$N_j^i = \frac{\partial G^i}{\partial y^j} = \overset{o}{N}_j^i + 2u \frac{\partial u}{\partial y^j} F^i - (1 - u^2) \frac{\partial F^i}{\partial y^j}$$

Theorem 1.3. The canonical metrical connection CT(N) of the mechanical system \sum has the coefficients

(1.7)
$$L_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{sk}}{\partial x^{j}} + \frac{\delta g_{js}}{\partial x^{k}} - \frac{\delta g_{jk}}{\delta x^{s}}\right)$$

$$C_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\partial g_{sk}}{\partial y^{j}} + \frac{\partial g_{js}}{\partial y^{k}} - \frac{\partial g_{jk}}{\partial y^{s}}\right)$$

where the operators $\frac{\delta}{\delta x^i}$ are

$$(1.8) \quad \frac{\delta}{\delta x_i} = \frac{\partial}{\partial x^i} - N_i^j \frac{\partial}{\partial y^j} = \frac{\overset{0}{\delta}}{\delta x^i} - \left[2u \frac{\partial u}{\partial y^i} F^j - \left(1 - u^2\right) \frac{\partial F^j}{\partial y^i} \right] \frac{\partial}{\partial y^j}$$

All important geometrical properties of system \sum can be derived from the connections N and CT(N).

2. Main result

We consider the case when F^n is a locally Minkowski space around every point $u = (x, y) \in T_0 M := TM/\{0\}$ there exists a system of local coordinates in which the function F does not depend on (x^i) . In such a system of coordinates, the metric (γ_{ij}) depends only on (y^i) , the Christoffel symbols vanish and so the coefficients of the nonlinear connection vanish, too.

If, moreover, one assumes that the refractive index does not depend on (x^i) , that is $\frac{\partial n}{\partial x^i} = 0 \quad \forall i = \overline{1, n}$ it follows that the Finsler-Synge metric [5] has the property $\frac{\partial g_{ij}}{\partial x^k} = 0$. We give some properties of the space $GL^n = (M, g_{ij}(y))$ with

(2.1)
$$g_{ij}(y) = \gamma_{ij}(y) + \left(1 - \frac{1}{n^2(y)}\right) y_i y_j, \ y_i = \gamma_{ij}(y) y^j$$

Properties

 1° The nonlinear connection N is integrable.

 2° The autoparallel curves of N are solutions of the differential system $\frac{d^2x^i}{dt^2} = 0$,

3° The refractive index is *h*-covariant constant, that is $\frac{\delta n}{\delta x^k} = 0$.

4° The canonical metrical connection $CT(N) = (L_{jk}^i, C_{jk}^i)$ has the coefficients

(2.2)
$$L^{i}_{jk} = 0, \ C^{i}_{jk} = \overset{o}{C}^{i}_{jk} + \overset{1}{\overset{i}{C}}^{i}_{jk}$$

with $\overset{o}{C}_{jk}^{i} = \frac{1}{4} \gamma^{ih} \frac{\partial^{3} F^{2}}{\partial y^{h} \partial y^{j} \partial y^{k}}$. 5° The *h*-paths of the space GL^{n} are solutions of the differential system $\frac{d^{2}x^{i}}{dt} = 0$, $\frac{dy^{i}}{dt} = 0$.

6° The *v*-paths of the space GL^n in a point $x_0 \in M$ are characterized by $x^i = x_0^i, \frac{d^2y^i}{dt^2} + \left[\overset{o}{C}_{jk}^i(y) + \overset{1}{C}_{jk}^i(y) \right] \frac{dy^i}{dt} \frac{dy^k}{dt} = 0.$ 7° The Einstein equations of the space GL^n reduce to $S_{ij} - \frac{1}{2}Sg_{ij} = x\breve{T}_{ij}$ and $\overset{\vee}{T}_{ij} \mid_i = 0.$

Recall that we postulated that the GL-space with the Finsler-Synge metric is equipped with the nonlinear connection N with the coefficients N_j^i . This nonlinear connection does not depend on the refractive index n(x, y).

In order to involve also the function n(x, y) at the nonlinear level we replace N with a nonlinear connection N^* of local coefficients

(2.3)
$$N_j^{*i} = N_j^i - a(x, y) \,\delta_j^i$$

where $a(x, y) = 1 + \left(1 - \frac{1}{n^2(x,y)}\right) F^2$ Then we have

Theorem 2.1. The autoparallel curves of N^* are solutions of the differential system

(2.4)
$$\frac{dy^{i}}{dt} + \gamma^{i}_{jk}(x,y) y^{j} y^{k} = a(x,y) y^{i}, \ y^{i} = \frac{dx^{i}}{dt}$$

Proof. The autoparallel curves of N^* are solutions of the differential system $\frac{\delta^* y^i}{dt} := \frac{dy^i}{dt} + N_j^{*i} \frac{dx^j}{dt} = 0, \ y^i = \frac{dx^i}{dt}.$ By (2.3) this reduces to (2.4).

Theorem 2.2. The metrical N*-linear connection $CT(N^*) = (L_{ik}^{*i}, C_{ik}^{*i})$ has the coefficients

(2.5)
$$L_{jk}^{*i} = L_{jk}^{i} + aC_{jk}^{i}, \ C_{jk}^{*i} = C_{jk}^{i}$$

Proof. The said coefficients have the same form as in (1.7) with $\frac{\delta}{\delta x^i}$ replaced with $\frac{\delta^*}{\delta x^i} = \frac{\partial}{\partial x^i} - N_j^{*i} \frac{\partial}{\partial y^k}$. The second formula in (2.5) is clear. The first follows by a direct computation using (2.3).

Now is again of interest the case $1 - \frac{1}{n^2} = \frac{1}{c^2}$.

Also, it is of interest to review the case when F^n is a locally Minkowski space when N was replaced by N^* . We have (assuming that *n* depends only on *y*, hence a(x, y) becomes a(y)) the following **Properties**

1° g_{ij} depends only on (y^i) ,

2° the nonlinear connection has the coefficients $N_i^{ki} = -a(y) \, \delta_i^i$

3° N* has the weak torsion t_{jk}^{*i} : $\frac{\partial N_j^{ki}}{\partial y^k} - \frac{\partial N_k^{ki}}{\partial y^j}$ of the form $t_{jk}^{*i} = \delta_k^i \frac{\partial a}{\partial y^j} - \delta_j^i \frac{\partial a}{\partial y^k}$,

4° The curvature takes the form $R_{jk}^{*i} = -at_{jk}^{*i}$,

- 5° N^{*} is integrable if and only if $t_{jk}^{*i} = 0$,
- 6° $t_{jk}^{*i} = 0$ if and only if $\frac{\partial a}{\partial y^i} = 0 \Leftrightarrow y^i \frac{\partial u^2}{\partial y^i} = 2(1-u^2).$

7° The autoparallel curves of N^* are solutions of the differential system

$$\frac{dy^{i}}{dt} - a\left(y\right)y^{i} = 0, \ y^{i} = \frac{dx^{i}}{dt}$$

References

- [1] Anastasiei, M., Shimada, S., **Deformations of Finsler Metrics, Finslerian Geometrics**, edited by P.L. Antonelli, Kluwer Academic Publishers, 2000.
- [2] Beil, R.G, On the Physics of a Generalized Lagrangian Geometry, Analele Ştiinţifice ale Univ. "Al.I.Cuza" Iaşi, T XLIX, Ser. I a Math. f2, 2003, 229-238.
- [3] Miron, R., Anastasiei, M., The Geometry of Lagrange spaces: Theory and Applications, Kluwer Academic Publishers, 1994, FTPH 59.
- [4] Miron, R., Kawaguchi, T., Relativistic Geometrical Optics, Int. J. Theor. Phys. 30/11, 1991, 1521-1543.
- [5] Nimineţ V., A note on the Finsler-Synge Metric, Studii şi Cercet. Ştiinţ., Ser.Mat., Nr.13, 2003, 97-100.

Valer Nimineţ

Department of Mathematics and Informatics, Faculty of Sciences, "Vasile Alecsandri" University of Bacău, Calea Mărăşeşti 157, Bacău 600115, ROMANIA, e-mail: valern@ub.ro

Otilia Lungu

Department of Mathematics and Informatics, Faculty of Sciences, "Vasile Alecsandri" University of Bacău, Calea Mărăşeşti 157, Bacău 600115, ROMANIA, e-mail: otilia.lungu@ub.ro