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INGARDEN SPACES WITH A SPECIAL NONLINEAR
CONNECTION

OTILIA LUNGU AND VALER NIMINEŢ

Abstract. In this paper we consider a new nonlinear connection
constructed from N, a given Lorentz nonlinear connection, and we
obtain a condition for the Ingarden space to be a space of scalar cur-
vature.

1. Introduction

Let M be an n-dimensional, real C∞ manifold. Denote by
(TM, τ,M) the tangent bundle of M and let F n = (M,F (x, y))
be a Finsler space, where F : TM → R+ is it fundamental function,
i.e., F verifies the following axioms:

i) F is a differentiable function on
˜

TM = TM −{0} and it is contin-
uous on the null section of the projection τ : TM →M ;
ii) F is positively 1- homogeneous with respect to the variables yi;

iii) (∀) (x, y) ∈
˜

TM the Hessian of F 2 with respect yi is positive

defined. Consequently, the d-tensor field gij (x, y) = 1
2
∂2F 2

∂yi∂yj
is positive

defined. It is called the fundamental tensor or metric tensor of F n .
In 1941 G.Randers first introduced a special fundamental function

F (x, y) = α (x, y) + β (x, y) where α (x, y) =
√
aij (x) yiyj is a Rie-

mannian or pseudo-Riemannian metric and β (x, y) = bi (x) yi is a
1-form. This metric was called a Randers metric by R.S.Ingarden
(1957) who used it to study a problem of electron microscope.
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Actually, the Randers spaces are considered as the Finsler space
F n = (M,F (x, y)) = (M,α (x, y) + β (x, y)) equipped with the Car-

tan nonlinear connection
C

N . So, the pairRF n =

(
F n,

C

N

)
is called the

Randers space. Instead of the Cartan nonlinear connection, R.Miron
introduced in [ 5 ] the Lorentz nonlinear connection N determined by
the Lorentz equations of the space F n. The local coefficients of N are
N i
j = γijky

k−F i
j , where γijk are the Christoffel symbols of the Riemann-

ian structure a = aij (x) dxi⊗dxj and F i
j (x) = aisFsj, Fsj = ∂bs

∂xj
− ∂bj

∂xs
.

The Finsler space F n = (M,F (x, y)) = (M,α (x, y) + β (x, y))
equipped with the Lorentz nonlinear connection N is called an In-
garden space. It is denoted by IF n = (F n, N) .

In this paper we consider a new nonlinear connection constructed
from N a given Lorentz nonlinear connection and we obtain condi-
tions for Ingarden space to be of scalar curvature based on this new
connection.

2. Lorentz nonlinear connection. Ingarden spaces

Let F n = (M,F (x, y)) be a Finsler space with the fundamental

function F (x, y) = α (x, y) + β (x, y) where α (x, y) =
√
aij (x) yiyj

and β (x, y) = bi (x) yi. a = aij (x) dxidxj is a pseudo-Riemannian
metric on M and bi (x) is a covector field on the manifold M . We
consider the integral of action of the energy F 2 (x, y) along a curve
c : t ∈ [0, 1]→ c (t) ∈M :

(2.1) I (c) =
∫ 1

0
F 2
(
x, dx

dt

)
dt =

∫ 1

0

[
α
(
x, dx

dt

)
+ β

(
x, dx

dt

)]2
dt

The variational problem for I (c) leads to the Euler-Lagrange equa-
tions:
(2.2) Ei (F

2) := ∂(α+β)2

∂xi
− d

dt
∂(α+β)2

∂yi
= 0, yi = dxi

dt
.

The energy of F 2 is
(2.3) εF 2 = yi ∂F

2

∂yi
− F 2 = F 2

The covector field Ei (F
2) is expressed by

(2.4) Ei (F
2) = Ei (α

2) + 2αEi (β) + 2dα
dt

∂α
∂yi
.

Let us fix a parametrization of the curve c, by natural parameter s
with respect to Riemannian metric α (x, y). It is given by
(2.5) ds2 = α2

(
x, dx

dt

)
dt2.

It follows F 2
(
x, dx

ds

)
= 1 and dα

ds
= 0.

Along to an extremal curve c, canonical parametrized by (2.5),
Ei (β) is expressed by
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(2.6) Ei (β) =
(
∂bj
∂xi
− ∂bi

∂xj

)
dxj

ds
= Fij (x) dxj

ds
.

One obtains [4]:
Theorem 2.1.(Miron-Hassan) In the canonical parametrization,

the Euler-Lagrange equations of the Lagrangian (α + β)2 are given by

(2.7) Ei (α
2) + 2Fij (x) yj = 0, yi = dxi

ds
.

Theorem 2.2. The Euler-Lagrange equations (2.7) are equivalent
to the Lorentz equations:

(2.8) d2xi

ds2
+ γijk (x) dxj

ds
dxk

ds
=
◦
F
i

j (x) dxj

ds
,

where
◦
F
i

j (x) = a isFsj (x ) and γijk are the Christoffel symbols of the
Riemannian metric tensor aij (x).

The Euler-Lagrange equations Ei (F
2) = 0 determines a canonical

semispray or a Dynamical System S on the total space of the tangent
bundle :
(2.9) S = yi ∂

∂xi
− 2Gi ∂

∂yi

where the coefficients Gi (x, y) are:
(2.10) 2Gi (x, y) = γijk (x) yjyk − F i

j (x) yj.
Now we can consider the nonlinear connection N with the coeffi-

cients N i
j = ∂Gi

∂yj
. Of course, we have

(2.11) N i
j = γijk (x) yk − F i

j (x),

where F i
j (x) = 1

2

◦
F
i

j (x) .
Since the autoparallel curves ofN are given by the Lorentz equations

(2.8), we call it the Lorentz nonlinear connection of the Randers metric
α + β.

The nonlinear connection N determines the horizontal distribution,
denoted by N too, with the property TuTM = Nu ⊕ Vu , ∀u ∈ TM ,
where Vu being the natural vertical distribution on the tangent mani-
fold TM .

The local adapted basis to the horizontal and vertical vector spaces

Nu and Vu is given by
(

δ
δxi
, ∂
∂yi

)
, i = 1, ..., n , where

(2.12) δ
δxi

= ∂
∂xi
−Nk

i
∂
∂yk

= ∂
∂xi
− γkis (x) ys ∂

∂yk
+ F k

i
∂
∂yk

=
◦
δ
δxi

+ F k
i

∂
∂yk

,

where

(2.13)
◦
δ
δxi

= ∂
∂xi
− γkis (x) ys ∂

∂yk
.

The adapted cobasis to N is (dxi, δyi) , i = 1, ..., n with

(2.14) δyi = dyi +N i
jdx

j = dyi + γijk (x) ykdxj − F i
jdx

j =
◦
δyi − F i

jdx
j,

where



50 OTILIA LUNGU AND VALER NIMINEŢ

(2.15)
◦
δyi = dyi + γijk (x) ykdxj.

The weakly torsion of N is

(2.16) T ijk =
∂N i

j

∂yk
− ∂N i

k

∂yj
= 0.

The integrability tensor of N is

(2.17) Ri
jk =

δN i
j

δxk
− δN i

k

δxj
.

Definition 2.1. The Finsler space F n = (M,F = α + β) equipped
with the Lorentz nonlinear connection N is called an Ingarden space.
It is denoted IF n.

The fundamental tensor gij of IF n is given by

(2.18) gij = F
α

(aij − l̃il̃j) + lilj
where l̃i = ∂α

∂yi
, li = ∂F

∂yi
, li = l̃i + bi.

The following results holds [4].
Theorem 2.3. There exists an unique N-metrical connection

IΓ (N) =
(
F i
jk, C

i
jk

)
of the Ingarden space IF n which verifies the fol-

lowing axioms:
i) ∇H

k gij = 0; ∇V
k gij = 0;

ii) T ijk = 0; Sijk = 0.
The connection IΓ (N) has the coefficients expressed by the generalized
Christoffel symbols:

(2.19)

 F i
jk = 1

2
gis
(
δgsj
δxk

+ δgsk
δxj
− δgjk

δxs

)
Ci
jk = 1

2
gis
(
∂gsj
∂yk

+ ∂gsk
∂yj
− ∂gjk

∂ys

)
where δ

δxi
are given by (2.12).

3. A special nonlinear connection N∗

Let IF n be an Ingarden space and N the Lorenz nonlinear con-
nection with the coefficients given by (2.11). Instead of N we now

consider a new nonlinear connection
∗
N [8] with the coefficients

(3.1)
∗
N i
j = N i

j +
F|jy

i

F
,

where ”|” denote the covariant differentiation with respect to IΓ (N) .

The nonlinear connection
∗
N determines the horizontal distribution,

denoted by
∗
N too, with the property TuTM =

∗
Nu⊕Vu , ∀u ∈ TM , Vu

being the natural vertical distribution on the tangent manifold TM .
The local adapted basis to the horizontal and vertical vector spaces
∗
Nu and Vu is given by

(
∗
δ
δxk
, ∂
∂yk

)
, k = 1, ..., n , where
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(3.2)

∗
δ

δxk
=

∂

∂xk
−

∗
N r
k

∂

∂yr
=

∂

∂xk
−N r

k

∂

∂yr
−
F|ky

r

F

∂

∂yr

=
δ

δxk
−
F|ky

r

F

∂

∂yr
=

◦
δ

δxk
+ F r

k

∂

∂yr
−
F|ky

r

F

∂

∂yr

=

◦
δ

δxk
+

(
F r
k −

F|ky
r

F

)
∂

∂yr

and
◦
δ
δxk

are given by (2.13).

The adapted cobasis to N is

(
dxi,

∗
δyi
)

, i = 1, ..., n with

(3.3)

δyi = dyi +
∗
N i
jdx

j = dyi +N i
jdx

j +
F|jy

i

F
dxj

= dyi + γijk (x) ykdxj − F i
jdx

j +
F|jy

i

F
dxj

=
◦
δyi −

(
F i
j −

F|jy
i

F

)
dxj

where
◦
δyiare given by (2.15).

Theorem 3.1. There exists an unique
∗
N- metrical connection

I
∗
Γ

(
∗
N

)
=

( ∗
F i
jk,

∗
Ci
jk

)
of the Ingarden space IF n which satisfies the

following axioms:

i)
∗
∇H

k gij = 0;
∗
∇V

k gij = 0;

ii)
∗

T i
jk= 0;

∗
S i
jk= 0.

The connection I
∗
Γ

(
∗
N

)
has the coefficients expressed by the gen-

eralized Christoffel symbols

(3.4)


∗
F i
jk = 1

2
gis
( ∗
δgsj
δxk

+
∗
δgsk
δxj
−
∗
δgjk
δxs

)
∗
Ci
jk = 1

2
gis
(
∂gsj
∂yk

+ ∂gsk
∂yj
− ∂gjk

∂ys

)
From a direct calculus, using (3.2) and ∂gik

∂yj
yj = 0, we get

(3.5)
∗
F i
jk = F i

jk.
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The hv-torsion
∗
P i
jk is

(3.6)

∗
P i
jk =

∂
∗
N i
j

∂yk
−
∗
F i
jk =

∂N i
j

∂yk
+

∂

∂yk

(
F|jy

i

F

)
− F i

jk

= P i
jk +

∂

∂yk
(Fpj) l

i +
Fpj

F
− Fpj

F

Fpk

F
yi

The vh-torsion
∗
Ri
jk of I

∗
Γ

(
∗
N

)
is

(3.7)
∗
R
i

jk =
∗
δ
∗
N

i

j

δxk
−
∗
δ
∗
N

i

k

δxj
= Ri

jk +
(
Bi
j|k −Br

k

∂Bi
j

∂yr

)
−
(
Bi
k|j −Br

j
∂Bi

k

∂yr

)
where, Bi

j =
F|jy

i

F
.

Equivalently,
(3.8)

∗
R
i

jk = Ri
jk +

(
F|j|kl

i − F|jF|kli
)
−
(
F|k|jl

i − F|kF|jli
)

= Ri
jk +

(
F|j|k − F|k|j

)
li

Using the Ricci Identity we get

(3.9)
∗
R
i

jk = Ri
jk − lsRs

jkl
i.

Transvecting (3.9) by yj it results

(3.10)
∗
R
i

jky
j = Ri

jky
j − lsRs

jkl
iyj,

or, equivalently

(3.11)
∗
R
i

0k = Ri
0k − lsRi

0kl
i.

If the space IF n is of scalar curvature K, then,
(3.12) Ri

0k = KF 2hik
and

(3.13)
∗
R
i

0k = KF 2hik − lsF 2hskl
i.

Since lsh
s
k = 0, it results

(3.14)
∗
R
i

0k = KF 2hik.
Now we can state
Theorem 3.2.If an Ingarden space IF n is of scalar curvature K,

then the space IF n equipped with
∗
N nonlinear connection is also of

scalar curvature.
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