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COUPLED FIXED POINT THEOREMS FOR
NONLINEAR CONTRACTIONS IN PARTIALLY
ORDERED GENERALIZED METRIC SPACES

NGUYEN VAN LUONG AND NGUYEN XUAN THUAN

Abstract. In this paper, we prove some coupled fixed point theo-
rems for nonlinear contractive mappings having the mixed monotone
property in partially ordered G - metric spaces.

1. INTRODUCTION

In recent years, many studies in the area of fixed point theory in par-
tially ordered metric spaces have been performed. Many well-known
fixed point theorems in this area can be found in [1], [2], [4], [7 - 15], [21
- 26]. Some of these theorems were given and proved by Bhaskar and
Lakshmikantham in [10]. In this paper, the authors introduced the
notions of mixed monotone mapping and coupled fixed point and dis-
cussed the existence and uniqueness of a solution for periodic boundary
value problem. Coupled fixed point theorems and coupled coincidence
point results are given in [3 - 5], [9], [13 - 15], [26]. Mustafa and Sims
[17] introduced a new structure of generalized metric spaces, namely
G-metric space. As a result, many fixed point theorems for various
mappings in this space was established [6], [17 - 19], [27]. In this re-
search stream, Choudhury and Maity [5] proved several fixed point
theorems for mixed monotone mappings satisfying a contractive con-
dition. In this paper, we prove some coupled fixed point theorems for
nonlinear contractive mappings in partially ordered G-metric spaces,
which generalize results in [5].
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2. PRELIMINARIES

Definition 2.1. ([17]) Let X be a non-empty set and G : X x X x X —
R, be a function satisfying the following properties:

(i) G(z,y,2) =0ifz =y = z,

(i) 0 < G(x,z,y), for all z,y € X with = # y,

(ii) G(z,z,y) < G(x,y, 2), for all z,y,z € X with z # vy,

(iv) G(x,y, 2) = G(z, 2,y) = G(y, z,x) = ..., (symmetry in all three
variables),

(v) G(z,y,2) < G(z,a,a)+G(a,y, z), forall x,y, z,a € X (rectangle
inequality).
Then the function G is called a G-metric on X and the pair (X, G) is
called a G-metric space.

Definition 2.2. ([17]) Let (X, G) be a G-metric space and let {x,}
be a sequence of points of X. A point x € X is said to be the limit of
the sequence {z,} if lim, oG (2, Tp, Tm) = 0 and one says that the
sequence {x,} is G-convergent to .

Thus, if x, — 2 in the G-metric space (X, G) then for any € > 0,

there exists a positive integer N such that G(z,x,,x,,) < €, for all
n,m > N.
In [17], the authors have shown that the G-metric induces a Hausdorff
topology and the convergence described in the above definition is rel-
ative to this topology. The topology being Hausdorff, a sequence can
converge at most to a point.

Definition 2.3. ([17]) Let (X, G) be a G-metric space. A sequence
{z,} is called G-Cauchy if for every e > 0, there is a positive in-
teger N such that G(x,,x,,x;) < €, for all n,m,l > N, that is, if
G(zp, Tm, ) = 0, as n,m,l — oo.
Lemma 2.4. (/17]) If (X, G) is a G-metric space, then the following
are equivalent:

(1) {z,} is G-convergent to x,

(2) G(zp, zp,x) = 0 as n — oo,

(3) G(xp,z,2) = 0 as n — oo,

(4) G(zp, zp, ) = 0 as m,n — oco.
Lemma 2.5. ([17]) If (X, G) be a G-metric space, then the following
are equivalent:

(1) The sequence {x,} is G-Cauchy,

(2) For every € > 0, there ezists a positive integer N such that

G(Tp, Tm, ) < €, for allm,m > N .
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Lemma 2.6. (/17]) If (X,G) is a G-metric space then G(x,y,y) <
2G(y, z,x) for all z,y € X.

Lemma 2.7. If (X,G) is a G-metric space then
G(z,z,y) < G(z,z,2) + G(2, 2,9)

forall z,y,z € X.
Proof. For all z,y,z € X, by Definition 2.1 (iv) and (v), we have

Gz,z,y) =Gy, z,z) < Gy,z2)+G(z,x,7)

= G(z,2,2) +G(z,2,9)

This ends the proof. O
Definition 2.8. ([17]) Let (X,G),(X’,G’) be two G-metric spaces.
Then a function f : X — X’ is said to be G-continuous at a point

r € X if and only if it is G sequentially continuous at z, that is,
whenever {z,} is G-convergent to z, { f(x,)} is G'-convergent to f(z).

Lemma 2.9. (/17]) Let (X, G) be a G-metric space, then the function
G(z,vy, 2) is jointly continuous in all three of its variables.

Definition 2.10. ([17]) A G-metric space (X, G) is called symmetric
G-metric space if G(z,y,y) = G(y,z,z) for all z,y € X.

Definition 2.11. ([17]) A G-metric space (X,G) is said to be G-
complete (or complete G-metric space) if every G-Cauchy sequence in
(X, @) is convergent in X.

Definition 2.12. ([5]) Let (X,G) be a G-metric space. A mapping
F: XxX — X issaid to be continuous if for any two GG-convergent se-
quences {z,} and {y,} converging to x and y respectively, { F'(z,,y,)}
is G-convergent to F'(z,y).

Definition 2.13. ([10]) Let (X, =) be a partially ordered set and
F: X xX — X. The mapping F' is said to have the mixed monotone
property if F'(z,y) is monotone non - decreasing in x and is monotone
non - increasing in y, that is, for any x,y € X,

r1,22 € X, 11 3x9= F(x1,y) 2 F(29,y)
and
U,y € X, 1 2y = F(z,y1) = F(z,y2)

Definition 2.14. ([10]) An element (z,y) € X x X is called a coupled
fixed point of the mapping F': X x X — X if

v =F(r,y) and y = F(y,z)
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The following Lemma will be useful in the sequel.

Lemma 2.15. (See e.g. [16]) Let {x,} and {y,} are two sequences of
positive real numbers such that

lim (z,, + yn) =a >0
n—oo

Then there exists subsequences {xnkj} of {x,} and {ynkj} of {yn} such
that

lim z,, =aoq,limy, =oa andog + o =«

J—00 J J—00 J

Proof. Since the sequence {x, + y,} is convergent, it is bounded.

On other hand, due to 0 < x,,y, <, + yn , {2} and {y,} are also
bounded.

Since {x,} is bounded, by Bolzano - Weierstrass theorem, {z, } has a
convergent subsequence, say {z,, }. Assume that lim_,. z,, = a.
Also, due to {yn,} is bounded, there exists a subsequence {ynkj} of
{yn, } such that lim;_, Yny, = 2. Since limy_o0 Tn, = a1 , We have
lim;_, Ty, = Q1

Finally, we have

o= ]lgglo(mnk] + ynkj) = Qg + Qo.

3. MAIN RESULTS

Let © denote the family of all functions 6 : [0,00)? — [0,00) for
which there exists
lim 6 (t1,t5) > 0 for all (ry,75) € [0,00)? with r{ + 75 > 0

t1—r1
to—ro

For example,
O(t1,t2) = kmax{ty,ta},k > 0, O(t1,t2) = ath +btd, a,b,p,q > 0 for all
(t1,t9) € [0,00)?* are in ©.

Now, we prove our main results.

Theorem 3.1. Let (X, <) be a partially ordered set and suppose that

there exists a G-metric G on X such that (X,G) is a complete G-

metric space. Let F': X x X — X be a mapping having the mized

monotone property on X. Suppose that there exists 0 € © such that
G(F(z,y), F(u,v), F(w,z)) + G(F(y,x), F(v,u), F(z,w))

(3.1) < G(z,u,w) + G(y,v,z) — 0(G(z,u,w),G(y,v, z))
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forall x > u > w and y 2 v <X z. Suppose that either
(a) F is continuous or
(b) X has the following property:

(1) if a non-decreasing sequence {x,} is G-convergent to x, then
Tn 2 x for all n,

(i) if a non-increasing sequence {y,} is G-convergent to y, then
Yy = Y, for alln.

If there exist xo,yo € X such that xy < F(xo,v0) and yo = F(yo, o),
then F' has a coupled fixed point in X.

Proof. Let xo,y0 € X be such that xy < F(zo,40) and yo = F(yo, To).
We construct the sequences {z,,} and {y,} in X as follows

(3.2) Tpr1 = F(xn,yn) and ypi1 = F(Yn, xy), foralln >0

We shall show that

(3.3) Tp 2 Tntl,
and

(3.4) Yn = Yn+1,
for all n > 0.

Since xg = F(zo,y0) and yo = F(yo, o) and as x; = F(x0,yo) and
y1 = f(yo, o), we have xyp = z; and yo = y;. Thus (3.3) and (3.4)
hold for n = 0.

Suppose that (3.3) and (3.4) hold for some n > 0. Then, since
Tp = Tpy1 and Y, = Yny1 and by the mixed monotone property of F,
we have

(35) Tpy2 = F($n+1>yn+l) i_ F(mrmyn-i-l) i F(xnvyn)
and
(36) Yn+2 = F(yn+1>$n+1) j F(ynaxn—i-l) j F(ynaxn)

Now from (3.5) and (3.6), we obtain

Tpgl = Tpayo and Ypi1 = Ynio

Thus by mathematical induction we conclude that (3.3) and (3.4) hold
for all n > 0.
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Let n > 1. Since z,, = x,_1 and y,, < yn_1, from (3.1) and (3.2), we
have
G(Tnt1,Tps1, %)+ G(Ynt1, Ynt1, Yn)
= G(F(xm yn)a F(wna yn)a F("En—h yn—l))
+G(F(Yns Tn)s F(Yn, Tn), F(Yn-1,Tn-1))
< G(xm Tn, mn—l) + G (Yns Yn, yn—l)

(3.7) —0 (G2, 2, Tn-1); G(Yns Y Yn—1))
As O(ty,ty) > 0, for all (t1,t5) € [0,00)?, we have
(3.8)

G(xn+1a Tn41, xn>+G(yn+la Yn+1, yn) < G(xm T,y xn—1)+G<yn7 Yn, yn—l)
Set 8, = G(Tpi1, Tnt1, Tn) + G(Ynt1, Ynt1, Yn), then the sequence {0, }
is decreasing. Therefore, there is some 0 > 0 such that

(3.9) lim 6, = ¢

n—oo

We shall show that 6 = 0. Suppose, on the contrary, that
9 > 0. By Lemma 2.15, the sequences {G(x,i1,%ni1,%,)} and
{G(Yn+1,Yn+1,Yn)} have convergent sequences that be still denoted
{G(anrlaanv:En)} and {G(ynJrlaynJrlayn)}’ respeCtiVGIY- Assume
that

lim,, 00 G(xn+laxn+17$n> = 01 and lim,_, G(yn+1;yn+1>yn> = 527
then 0; + o, = 6 > 0.

Then taking the limit as n — oo of both sides of (3.8), we have
0 = lim 9,

n—oo

S lim [G(xn,xn,an) + G(ynaynaynflﬂ

n—oo

— nh_}r{)lo 0 (G(I’n, T, xnfl); G(yTu Yn, ynfl))
o — lim 6 (ry,79)

7”1—)(51

1”2—)62

< 0,
in which r; = G(zp, Tn, n_1),72 = G(Yn, Yn, Yn—1). This is a contra-
diction. Thus 0 = 0, that is
(3.10) lim o, = JLIQO[G(%H, Tnt1; Tn) + G(Ynt1s Ynt1, Yn)] = 0

In what follows, we shall show that {z,,} and {y,} are Cauchy se-
quences. Suppose, on the contrary, that at least one of the se-
quences {z,} or {y,} is not a Cauchy sequence. Then there exists
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an ¢ > 0 for which we can find subsequences {z,)}, {:cm(k)} of {z,}
and {yn@) } » {Ym } of {yn} with n(k) > m(k) > k such that

(3.11) G(Tn(k) Tk, Tmk)) + G (Yn(k) Yn(k)> Ymk)) = €

Further, corresponding to m(k), we can choose n(k) such that it is the
smallest integer with n(k) > m(k) > k and satisfies (3.11). Then

(3-12) G(xn(k)—la Tn(k)—15 fﬁm(k)) + G(yn(k)—l, Yn(k)—1, ym(k)) <€

By rectangle inequality, Definition 2.1 (v), we have
(3.13)
G(Zn(k)s Tnk)> Tmk) < G(Tnk)s Tngk)s Tnk)—1) G (Tnk) =1, Tnk)—1> Tm(k))

and

(3.14)
G(yn(k)a Yn(k)> ym(k)) < G(yn(k)a Yn(k), yn(k)—l) +G<yn(k’)—1a yn(kz)—hym(k))

From (3.11) - (3.14), we obtain

< G(l’n(k), Tn(k), In(k)—l) + G(yn(k)a Yn(k), yn(k)—l) te

Letting k& — oo and using (3.10), we have
(3.15) ]}LT{}O[G(%(@, Tk, Tm(k)) + G(Yn(k)s Yn(k)> Ymk))] = €

By Lemma 2.7 , we have

IN

G (Zn(k)> Tn(k), Tm(k)) G(Zn(k)> Tn(k)> Tn(k)+1)

+G<xn(k)+17 Tn(k)+1; $m(k))

VAN

G(Tn (ks Tn(k) Tn(k)+1)

+G<In(/€)+17 Tn(k)+1, xm(k)—l—l)

F+G (T (k)41 Tim(k)+15 Tm(k))

On the other hand, G(Zy k), Tngk)s Trk)+1) < 2G(Tpk)+1, Tngk)+15 Tn(k))

since by Definition 2.1, G(z,z,y) < G(z,y,y) + G(y,z,y) =
2G(y,y,x). Thus,

G(Tnk), Tnk), Tmk)) < 2G(Tpk)41, Tnlk)+15 Tn(k))
+G(Tn(k)+15 Tr(k)+1> Tm(k)+1)
(3.16) +G(Tp(k)+15 Tom(k)+15 Tm(k))



62 NGUYEN VAN LUONG AND NGUYEN XUAN THUAN
Similarly,

G(yn(k)a Yn(k), ym(k)) < QG(yn(k)Jrla Yn(k)+1, yn(k))
G (Yn(k) 41> Yn(k)+1> Ym(k)+1)
(3.17) +G (Ym(k)+15 Ym(k)+1> Ym(k))

From (3.16), (3.17), we have

G(Tnk)s Tagkys Tmk)) T GYnk)s Yn(k)s Ym(k))
< 2000k + Om(k) + G(Tn(k)+1, Tn(k)+15 Tm(k)+1)
(3.18) FG(Yn(k)+1> Yn(k)+15 Ym(k)+1)
Since n(k) > m(k), we have T,y = Tmk) and Yy = Ymk), hence
from (3.1) and (3.2),

G(Tnk)+15 Ty +15 Tmk)+1) T G Yne)y+15 YUn(k)+15 Ym(k)+1)
= G(F(Tn(k)s Yn(k))s F(@nik)s Ynk) )y F(Tim(rys Ym(r)))
+G(F (yn(k 2(8))s F(Unie)> Tu))s F WYme)s Tm(r)))
< Gy, Tok)s Tmiky) + G (Ynk)s Yn(k)s Ym())

(3.19) —0 (G( (k)> Tn(k)s Tm(k))s G(yn(k),yn(k),ym(k)))

From (3.18) and (3.19), we have

(3.20) 0 (G(Zn(ry): Zn(k)s Tm(k))s G(Un(wys Yn(kys Ymr))) < 20n(k) + Omir)

By Lemma 2.15 and (3.15), the sequences {G(Znk), Tn(k)s Tmk))}
and {G(Yn(k)s Yn(k), Ym(k)) } have subsequences converging to, say, &;
and &9, respectively, and €1 + €9 = ¢ > 0. By passing to subse-
quences, we may assume that limy o G(Zn@), Tn(k), Tmek)) = €1 and
imy oo G(Yn(k)s Un(k)s Ym(k)) = €2-

Taking & — oo in (3.20) and using (3.10), we have

0 = lim [25n(k) + 5m(k)]

> lim¢ (G(@n(w)s Tak)s Timk))s G (Yn(ry s Yn(k)s Ym()))
= T}g}gl 0 (ry,m2) .
ro—€2
in which 11 = G(Zp k), Tnk), Tmk)) a0d 72 = G (Yn(k): Yn(k)> Ym(k))- That
is a contradiction. Thus, {z,} and {y,} are Cauchy sequences Since
(X, G) is a G-complete space, there exist z,y € X such that
(3.21) lim z, = 2 and hm Yn =Y

n—oo
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Thus
(3.22)  lim F(zp,yn) = lim z, = x; lim F(y,,z,) = lim y, =y
n—oo

n—oo n—oo n—o0

Now, suppose that assumption (a) holds. From (3.2), we have

x = lim x, = lim F(z,,y,) = F(lim z,, lim y,) = F(z,y)
n—00 n—00 n—r00 n—00

and

y = lim y, = lim F(y,, x,) = F(lim y,, lim z,) = F(y,x)
n—00 n—00 n o

1-)00 n—
Finally, suppose that (b) holds. Since {z,} is a non-decreasing se-
quence and z,, — x and as {y,} is a non-increasing sequence and
Yn — Yy, we have x,, < x and y, > y for all n.
If x,, = x and y,, = y for some n, then, by our construction, z,,; ==
and y,+1 = y and (z,y) is a coupled fixed point of F. So we can
assume either x,, # x or y, # y.
Then we have
G(F(z,y),2,2) + G(F(y, ), y,9)
G(F(z,y), F(zn, yn), F(Tn, yn)) + G(F (0, yn), z, @)
+G(F (Y, ), F(Yns ¥n)s F(Yns ¥0)) + G(F(Yns ¥n), Y, y)
+G<xn+la xz, 3:) + G(ynJrla Y, y)
< G(@n, Ty @) + GWYns Yy y) — 0 (G (@0, 20y ), G(Yns Yy Y)
+G<In+1, xz, I) + G<yn+17 Y, y)
< G Tn, @) + G(Yn, Yn, y) + G(@ns1, 2, %) + G(Yns1, 4, 9)

Letting n — oo in the inequality
G(F(z,y) = 2) + G(F(y,2),y,y)
S G(Q?n, T, .17) + G(yna Yn, y) + G<xn+1a z, ZL’) + G(yn—i-la Y, y)

we obtain

IN

G(F(z,y),r,x) + G(F(y,),y,y) <0

which implies G(F(z,y),z,z) = 0 and G(F(y,z),y,y) = 0. That is,
r = F(z,y) and y = F(y, x).
The proof is complete. O
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Let @ denote the family of all functions ¢ : [0,00) — [0, c0) satisfy-
ing
Pm (t) > 0 for each r > 0.
—r

Corollary 3.2. Let (X, =) be a partially ordered set and suppose that
there exists a G-metric G on X such that (X,G) is a complete G-
metric space. Let F': X x X — X be a mapping having the mized
monotone property on X. Suppose that there exists 1) € ® such that

G(F(z,y), F(u,v), F(w, 2)) + G(F(y, x), F (v, u), F(z,w))
< G(x,u,w) + Gy, v, 2)
(3.23) —tp (max{G(z,u,w),G(y,v, z)})

forall x = u > w and y X v =X z. Suppose that either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} is G-convergent to x, then
Tp, S x for all n,

(i) if a non-increasing sequence {y,} is G-convergent to y, then
y 2y for all n.

If there exist xo,y0 € X such that xy < F(x9,v0) and yo = F(yo, o),
then F' has a coupled fized point in X.

Proof. By taking 0(t1,ts) = t(max{t1,t2}) in Theorem 3.1 for all
(t1,t2) € [0,00)%, we get Corollary 3.2, since ¢ € ® implies § € ©. [

Corollary 3.3. Let (X, =) be a partially ordered set and suppose that
there exists a G-metric G on X such that (X,G) is a complete G-
metric space. Let F': X x X — X be a mapping having the mized
monotone property on X. Suppose that there exists 1) € ® such that

G(F(z,y), F(u,v), F(w, 2)) + G(F(y,x), F(v,u), F(z,w))
(3.24) < G(z,u,w) + Gy, v, 2) =Y (G(z,u,w) + G(y, v, 2))

forallz > u>w and y 2 v <X z. Suppose that either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} is G-convergent to x, then
T, 2 x for all n,

(i) if a non-increasing sequence {y,} is G-convergent to y, then
Yy = Y, for alln.

If there exist xo,yo € X such that xy < F(xo,v0) and yo = F(yo, o),
then F' has a coupled fixed point in X.
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Proof. By taking 0(tq,t3) = ¢ (t; +t2) in Theorem 3.1 for all (¢1,t2) €
[0,00)%, we obtain Corollary 3.2. O

Corollary 3.4. Let (X, <) be a partially ordered set and suppose there
exists a G-metric G on X such that (X, Q) is a complete G- metric
space. Let F': X x X — X be a mapping having the mixed monotone
property on X . Suppose that there exists 0 € © with O(t1,ts) = 0(to,t1)
for all (t1,t2) € [0,00)? such that

G(F(z,y), F(u,v), F(w,z)) < Glz, u, w) ;F G(y,v,2)

(3.25) —0 (G(z,u,w),G(y,v, 2))

forall x = u > w and y < v =X z. Suppose that either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} is G-convergent to x, then
Tp, S x for all n,

(i) if a non-increasing sequence {y,} is G-convergent to y, then
y 2y for all n.

If there exist xo,yo € X such that xo < F(x0,y0) and yo = F(yo, To),
then F' has a coupled fized point in X.

Proof. From (3.25), for all x > u = w and y < v < z, we have

G(x,u,w)+ G(y,v, 2)
2
—0 (G(z,u,w),G(y,v, 2))

G(F(z,y), F(u,v), F(w,z)) <

and

G(F(y,z), F(v,u), F(z,w)) = G(F(zw),F(v,u), F(y,z))
G(z,v,y) + G(w,u, )

2
—0(G(z,v,y), G(w,u,x))
G(z,u,w) + G(y,v, 2)

2
—0 (G(z,u,w),G(y,v,2))

Therefore,

G(F(z,y), F(u,v), F(w, 2)) + G(F(y, ), F(v,u), F(z,w))
G(z,u,w) + G(y,v, z) — 20 (G(x,u,w),G(y,v, 2))
G(z,u,w) + G(y,v, z) — 01 (G(z,u,w),G(y,v, 2))

IA A

G
G
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forall z = u = w and y < v < z, where 0;(t1,t2) = 20(t1,1s) for all
(t1,t2) € [0,00)% Since §; € O, applying Theorem 3.1, we conclude
that F' has a coupled fixed point in X. O

Remark 3.5. In Corollary 3.4, if we take 0(t1,ty) = w, we
obtain Theorem 3.1 and 3.2 in [5].

Now we shall prove the uniqueness of the coupled fixed point. Note
that if (X, <) is a partially ordered set, then we endow the product
X x X with the following partial order relation:

(z,y), (w,v) € X X X, (z,9) 2 (u,v) &z Su,y = v.

Theorem 3.6. In addition to the hypotheses of Theorem 3.1, suppose
that for every (x,y), (z,t) € X x X, there ezists a pair (u,v) € X x X
such that (u,v) is comparable to (x,y) and (z,t). Then F has a unique
coupled fized point.

Proof. Suppose (z,y) and (z,t) are coupled fixed points of F', that is,
x=F(x,y),y=F(y,x), 2 = F(z,t) and t = F(t,2). We shall show
that x = z and y = t.

By the assumption, there exists (u,v) € X x X that (u,v) is compa-
rable to (z,y) and (z,1).

We define the sequences {u,} and {v,} as follows

Uy = U, Vg = U, Upt1 = F(uy,v,) and v,yq = F (v, u,), for all n.

Since (u,v) is comparable with (z,y), we may assume that (z,y) =
(u,v) = (ug,vo) (the other case being similar). By mathematical in-
duction and the mixed monotone property of F', it is easy to prove
that

(3.26) (z,y) = (up,vy), for all n.
From (3.1) and (3.26), we have

Gz, z,u,) + Glon,y,y) = G(F(x,y), F(x,y), F(up—1,0n-1))
+G(F(vn-1,un-1), F(y, ), F(y,7)))
< Gz, z,up-1) + G(vn-1,9,9)
(3.27) —0(G(x,z,up1), G(Un—1,Y,Y))

which implies

G(l’, x, un) + G(vna Y, y) < G(ZL’, z, un—l) + G(vn—h Y, y)
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that is, the sequence {G(x, z,u,) + G(v,,y,y)} is decreasing. There-
fore, there exists a > 0 such that

lim G(x,x,u,) + G(vn, y,y) = «

n—oo

We shall show that o = 0. Suppose, on the contrary, that a > 0.
Therefore, {G(x,z,u,)}, {G(vn,y,y)} have subsequences converging
to ay, ao, respectively, where a; + as = a. Taking the limit, up to
subsequences, as n — 0o in (3.27), we have

a<a-— lim 0(G(z,z,up1), G(Un-1,y,Y)) < «

n—oo

which is a contradiction. Thus, a = 0, that is,

lim [G(x, z,u,) + G(vn,y,y)] =0

n—oo
which implies
(3.28) lim G(z,z,u,) = lim G(v,,y,y) =0
n—oo n—oo
Similarly, we can show that
(3.29) nh_}rgo G(z, z,up) = nh_}rgo G(vp,t,1) =0

From (3.28) and (3.29), we get = z and y = ¢, by the uniqueness of
the limit of a G— convergent sequence.
Therefore, the coupled fixed point of F' is unique. 0

Theorem 3.7. If in addition to the hypotheses of Theorem 3.1 xy and
Yo are comparable then F has a fixed point.

Proof. Following the proof of Theorem 3.1, F' hax a coupled fixed
point (z,y). We only have to show that x = y. Since zg and yo
are comparable, we may assume that zo > yo (the other case being
similar). By using mathematical induction and the mixed monotone
property of F', one can easily show that

(3.30) Ty = Yp, forall n >0

where 2,11 = F(zp,yn) and ypy1 = F(yn, ), n=0,1,2, ...
By Lemma 2.7, we have

G(z,x,y) + G(Tnt1s Tng1,Y)
G(2, 7, Zn11) + G(Tni1, Tnit, Ynt1) + G(Yni1s Yni1, Y)
= G(x,z,2p41) + GYnt1, Yni1,Y)

+G(F (2, Yn)s F (T Yn)s F(Yns T0))

G(ZL‘, z, xn+1)

IA A
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Similarly,

Gly,y,2) < G, Y, Yns1) + G(@ny1, Tny1, @)
+G<F(yn7$n>7F(yTL’xn)’F(xnayn))

Therefore,

Gz, z,y) + Gy, y.x) < G, Zpsr, Tns1) + GYnt1s Yns1,Y)
+G(Y, Y, Yn+1) + G(@ns1, Tnsr, T)
+G(F (T, Yn)s F(Tns Yn)s F(Yns T0))
TG (F(Yn, 20), F(Yn, ), F (20, yn))
G(z,2,Tn11) + G(Ynt1, Ynt1, Y)
+G(Y, Y, Ynt1) + G(Tnt1, Toy1, T)
+G(zp, Tny Yn) + G(Yns Yy Tn)
—0(G(n, Ty Yn), G(Yns Yns Tn))

Suppose that = # y. Taking n — oo in the last inequality, using (3.21)
and the continuity of G, we have

G(z,z,y)+G(y,y,x) < G(w,w,y)+G(y,y,x)—nILH309(G(xn,xmy),G(y, YnsTn))

IA

hence,
lim §(G(2n, Tp, y), G(Y: Yn, Tn)) <0,
n—oo
which is false. Indeed,  since  lim G(z,,x,,y) =
n—oo
G(z,z,y) > 0 and limG(y,yn,x,) = G (y,y,z), we have
n—oo
lim H(G(an, T, y)v G(y7 Yn, xn)) = hmm—)G(:p,m,y) 0 (Tla TQ) > O'T2 —
n—00 ro—G(z,x,y)
G (y,y,2)
Therefore, x = y. In other words, we conclude that F' has a fixed
point in X. O
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