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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 22 (2012), No. 2, 99 - 112

A GENERAL FIXED POINT THEOREM FOR
OCCASIONALLY WEAKLY COMPATIBLE HYBRID

PAIRS IN QUASI - METRIC SPACES AND
APPLICATIONS

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. In this paper a general fixed point theorem for two pairs
of occasionally weakly compatible hybrid pairs in quasi - metric spaces
is proved. As an application we reduce the study of fixed points for
occasionally weakly compatible pairs in G - metric spaces to the study
of occasionally weakly compatible pairs in quasi - metric spaces.

1. Introduction

Let A and S be self mappings of a metric space (X, d). Jungck
[12] defined A and S to be compatible if limn→∞ d(ASxn, SAxn) =
0, whenever {xn} is a sequence in X such that limn→∞Axn =
limn→∞ Sxn = t for some t ∈ X.

A point x ∈ X is a coincidence point of A and S if Sx = Ax. We
denote by C(A, S) the set of all coincidence points of A and S. In [22],
Pant defined A and S to be pointwise R - weakly commuting if for
each x ∈ X, there exists R > 0 such that d(SAx,ASx) ≤ Rd(Ax, Sx).

It is proved in [23] that pointwise R - weakly commuting is equiva-
lent with the commuting at coincidence points.

Definition 1.1. A and S is said to be weakly compatible [13] if ASu =
SAu for u ∈ C(A, S).

Definition 1.2. A and S are occasionally weakly compatible [4] (owc)
if ASu = SAu for u ∈ C(A, S).

————————————–
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Remark 1.3. If C(A, S) 6= ∅ and A and S are weakly compatible then
A and S are occasionally weakly compatible, but the converse is not
true (see Example [4]).

Some fixed point theorems for owc mappings are proved in [14], [2],
[27] and in other papers.

Recently, Abbas and Rhoades [1] extended Definition 1.2 for pairs
of hybrid mappings.

Definition 1.4. Let f : X → X and F : X → 2X .
1) A point x ∈ X is said to be a coincidence point of f and F

if fx ∈ Fx. The set of coincidence points of f and F is denoted by
C(f, F ).

2) A point x ∈ X is a fixed point of F if x ∈ Fx.

Definition 1.5. A hybrid pair f : X → X and F : X → 2X is
occasionally weakly compatible (owc) [1] if there exists x ∈ C(f, F )
such that fFx ⊂ Ffx.

Some results of fixed points for hybrid points of owc hybrid map-
pings are proved in [1], [5] and in other papers. In [3] some general
results for occasionally weakly compatible hybrid pairs in symmetric
spaces are proved.

2. Preliminaries

Definition 2.1. Let X be a nonempty set. A quasi - metric on X
[30] is a nonnegative real function Q on X ×X such that:

(Q1) : Q(x, y) = 0 if and only if x = y,
(Q2) : Q(x, y) ≤ Q(x, z) +Q(z, y) for all x, y, z ∈ X.

A quasi - metric space is a nonempty set X with a quasi - metric Q
on X and is denoted by (X,Q).

Some theorems for self mappings in a quasi - metric space are proved
in [9], [10], [11], [28], [29] and in other papers. Recently, some fixed
points theorems for multivalued mappings in quasi - metric spaces are
proved in [6], [15] and in other papers.

In [7], [8] Dhage introduced a new class of generalized metric spaces
named D - metric spaces. Mustafa and Sims [17], [18] proved that
most of the claims concerning the fundamental topological structures
on D - metric spaces are incorrect and introduced appropriate no-
tion of generalized metric spaces, named G - metric spaces. In fact,
Mustafa, Sims and other authors studied many fixed point results for
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self mappings in G - metric spaces under certain conditions [16] - [21],
[26] and other papers.

Definition 2.2. Let X be a nonempty set and G : X3 → R+ be a
function satisfying the following properties:

(G1) : G(x, y, z) = 0 if x = y = z,
(G2) : 0 < G(x, x, y) for all x, y ∈ X with y 6= x,
(G3) : G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X and y 6= z,
(G4) : G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all

three variables),
(G5) : G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rec-

tangle inequality).
The function G is called a G - metric on X and the pair (X,G) is

called a G - metric space, [17], [18].

Remark 2.3. If G(x, y, z) = 0, then x = y = z [18].

Lemma 2.4. Let (X,G) be a G - metric space and Q(x, y) =
G(x, y, y). Then Q(x, y) is a quasi - metric on X.

Proof. (Q1) : By (G1) and Remark 2.3, Q(x, y) = 0 if and only if
x = y.

(Q2) : Q(x, y) = G(x, y, y) ≤ G(x, z, z) + G(z, y, y) = Q(x, z) +
Q(z, y).

Hence, Q(x, y) is a quasi - metric space. �

In the following we denote by

D(A,B) = inf{Q(a, b) : a, b ∈ X}, where A,B ∈ 2X .

The study of fixed points for mappings satisfying an implicit relation
is initiated by Popa in [24], [25].

In this paper a general fixed point theorem for two pairs of occasion-
ally weakly compatible hybrid pairs in quasi - metric spaces satisfying
an implicit relation is proved.

As an application we reduce the study of fixed points for occasionally
weakly compatible pairs in G - metric spaces to the study of fixed
points of occasionally weakly compatible pairs in quasi - metric spaces.

3. Implicit relations

Definition 3.1. Let Fa be the set of all functions φ(t1, ..., t6) : R6
+ →

R satisfying the following conditions:

(φ1): φ is nonincreasing in variables t2, t5, t6,
(φ2): φ(t, t, 0, 0, t, t) > 0, ∀t > 0.
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Example 3.2. φ(t1, ..., t6) = t1−kmax{t2, t3, ..., t6}, where k ∈ (0, 1).

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− k) > 0, ∀t > 0.

Example 3.3. φ(t1, ..., t6) = t1 − hmax
{
t2, t3, t4,

1
2
(t5 + t6)

}
, where

h ∈ (0, 1).

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− h) > 0, ∀t > 0.

Example 3.4. φ(t1, ..., t6) = t1 − kmax

{
t2,

t3 + t4
2

,
t5 + t6

2

}
, where

k ∈ (0, 1).

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− k) > 0, ∀t > 0.

Example 3.5. φ(t1, ..., t6) = t1−at2−bmax{t3, t4}−cmax{t2, t5, t6},
where a, b, c ≥ 0 and a+ c < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− (a+ c)) > 0, ∀t > 0.

Example 3.6. φ(t1, ..., t6) = t1−at2− b(t3 + t4)− cmin{t5, t6}, where
a, b, c ≥ 0 and a+ c < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− (a+ c)) > 0, ∀t > 0.

Example 3.7. φ(t1, ..., t6) = t1 − at2 − b(t3 + t4) − c
√
t5t6, where

a, b, c ≥ 0 and a+ c < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− (a+ c)) > 0, ∀t > 0.

Example 3.8. φ(t1, ..., t6) = t1−αmax{t2, t3, t4}− (1−α)(at5 + bt6),
where 0 < α < 1, a, b ≥ 0 and a+ b < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− α)(1− (a+ b)) > 0, ∀t > 0.

Example 3.9. φ(t1, ..., t6) = t21 − at22 − b
min{t5, t6}
1 + t3 + t4

, where a, b ≥ 0

and a+ b < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t2(1− (a+ b)) > 0, ∀t > 0.
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Example 3.10. φ(t1, ..., t6) = t1 − at2 − b
t5 + t6

1 + t3 + t4
, where a, b ≥ 0

and a+ 2b < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1− (a+ 2b)) > 0, ∀t > 0.

Example 3.11. φ(t1, ..., t6) = t1 −max{ct2, ct3, ct4, at5 + bt6}, where
0 < c < 1, a, b ≥ 0 and max{c, a+ b} < 1.

(φ1): Obviously.
(φ2): φ(t, t, 0, 0, t, t) = t(1−max{c, a+ b}) > 0, ∀t > 0.

4. Main results

Theorem 4.1. Let f, h be self mappings of a quasi - metric space and
F,H be maps of X into 2X such that the pairs (f, F ) and (h,H) are
owc. If

(4.1)
φ(Q(fx, hy), D(Fx,Hy), D(fx, Fx),

D(hy,Hy), D(fx,Hy), D(Fx, hy)) ≤ 0,

hold for all x, y ∈ X for which fx 6= hy and φ ∈ Fa, then f, h, F and
H have a unique common fixed point.

Proof. Because (f, F ) and (h,H) are owc, there exist x, y ∈ X such
that fx ∈ Fx and hy ∈ Hy and fFx ⊂ Ffx and hHy ⊂ Hhy. First
we prove that fx = hy. Suppose that fx 6= hy. Then 0 6= Q(fx, hy) ≥
D(Fx,Hy). By (4.1) and (φ1) we have

φ(Q(fx, hy), Q(fx, hy), 0, 0, Q(fx, hy), Q(fx, hy)) ≤ 0,

a contradiction of (φ2). Hence fx = hy. Next we prove that fx = f 2x.
Suppose that fx 6= f 2x. Then

0 6= Q(f 2x, fx) ≥ D(Ffx, fx) = D(Ffx, hy) ≥ D(Ffx,Hy).

By (4.1) and (φ1) we have successively

φ(Q(f 2x, hy), D(Ffx,Hy), 0, 0, D(f 2x,Hy), D(Ffx, hy)) ≤ 0,

φ(Q(f 2x, hy), Q(f 2x, hy), 0, 0, Q(f 2x, hy), Q(f 2x, hy)) ≤ 0,

φ(Q(f 2x, fx), Q(f 2x, fx), 0, 0, Q(f 2x, fx), Q(f 2x, fx)) ≤ 0,

a contradiction of (φ2). Hence fx = f 2x and fx is a fixed point of f .
Similarly, hy = h2y. Therefore fx = f 2x = hy = h2y = hfx and fx
is a fixed point of h. On the other hand fx = f 2x ∈ fFx ⊂ Ffx,
hence fx is a fixed point of F . Similarly, fx = f 2x = hy = h2y ⊂
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hHy ∈ Hhy = Hfx and fx is a fixed point of H. Hence w = fx is a
common fixed point of f, h, F and H.

Suppose that w′ 6= w is an other common fixed point of f, h, F and
H. Then by (4.1) and (φ1) we have successively

φ(Q(fw, gw′), D(Fw,Hw′), D(fw, Fw),
D(hw′, Hw′), D(fw,Hw′), D(Fw, hw′)) ≤ 0,

φ(Q(w,w′), Q(w,w′), 0, 0, Q(w,w′), Q(w,w′)) ≤ 0,

a contradiction of (φ2). Hence w = w′ and w is the unique common
fixed point of f, h, F and H. �

If f, F, h,H are single valued mappings, then by Theorem 4.1 we
obtain

Theorem 4.2. Let f, h, F and H be self mappings of a quasi - metric
space (X,Q) such that (f, F ) and (h,H) are owc. If

(4.2)
φ(Q(fx, hy), Q(Fx,Hy), Q(fx, Fx),
Q(hy,Hy), Q(fx,Hy), Q(Fx, hy)) ≤ 0,

for all x, y ∈ X for which fx 6= hy and φ ∈ Fa, then f, h, F and H
have a unique common fixed point.

By Theorem 4.1 and Examples 3.2 - 3.11 we obtain the following
theorem

Theorem 4.3. Let f, h be self mappings of a quasi - metric space
(X,Q) and F,H be maps of X into 2X . If one of the following in-
equalities holds for all x, y ∈ X with fx 6= hy:

1)

Q(fx, hy) ≤ kmax{D(Fx,Hy), D(fx, Fx),

D(hy,Hy), D(fx,Hy), D(Fx, hy)},

where k ∈ (0, 1),
2)

Q(fx, hy) ≤ hmax{D(Fx,Hy), D(fx, Fx), D(hy,Hy),

1

2
[D(fx,Hy) +D(Fx, hy)]},

where h ∈ (0, 1),
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3)

Q(fx, hy) ≤ kmax{D(Fx,Hy),
D(fx, Fx) +D(hy,Hy)

2
,

D(fx,Hy) +D(Fx, hy)

2
},

where k ∈ (0, 1),
4)

Q(fx, hy) ≤ aD(Fx,Hy) + bmax{D(fx, Fx), D(hy,Hy)}+

+cmax{D(Fx,Hy), D(fx,Hy), D(Fx, hy)},
where a, b, c ≥ 0 and a+ c < 1,

5)

Q(fx, hy) ≤ aD(Fx,Hy) + b(D(fx, Fx) +D(hy,Hy)) +

+cmin{D(fx,Hy), D(Fx, hy)},
where a, b, c ≥ 0 and a+ c < 1,

6)

Q(fx, hy) ≤ aD(Fx,Hy) + b(D(fx, Fx) +D(hy,Hy)) +

+c
√
D(fx,Hy) ·D(Fx, hy),

where a, b, c ≥ 0 and a+ c < 1,
7)

Q(fx, hy) ≤ αmax{D(Fx,Hy), D(fx, Fx), D(hy,Hy)}+

+(1− α)(aD(fx,Hy) + bD(Fx, hy)),

where 0 < α < 1, a, b ≥ 0 and a+ b < 1,
8)

[Q(fx, hy)]2 ≤ a[D(Fx,Hy)]2 + b
min{D(fx,Hy), D(Fx, hy)}
1 +D(fx, Fx) +D(hy,Hy)

,

where a, b ≥ 0 and a+ b < 1,
9)

Q(fx, hy) ≤ aD(Fx,Hy) + b
D(fx,Hy) +D(Fx, hy)

1 +D(fx, Fx) +D(hy,Hy)
,

where a, b ≥ 0 and a+ 2b < 1,
10)

Q(fx, hy) ≤ max{cD(Fx,Hy), cD(fx, Fx),

cD(hy,Hy), aD(fx,Hy) + bD(Fx, hy)},
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where 0 < c < 1 and max{c, a+ b} < 1,
and (f, F ) and (h,H) are owc, then f, h, F and H have a unique

common fixed point.

By Theorem 4.2 and Examples 3.2 - 3.11 we obtain

Theorem 4.4. Let f, h, F and H be self mappings of a quasi - met-
ric space (X,Q) such that (f, F ) and (h,H) are owc. If one of the
following inequalities holds for all x, y ∈ X for which fx 6= hy:

1)

Q(fx, hy) ≤ kmax{Q(Fx,Hy), Q(fx, Fx),

Q(hy,Hy), Q(fx,Hy), Q(Fx, hy)},
where k ∈ (0, 1),

2)

Q(fx, hy) ≤ kmax{Q(Fx,Hy), Q(fx, Fx), Q(hy,Hy),

1

2
[Q(fx,Hy) +Q(Fx, hy)]},

where k ∈ (0, 1),
3)

Q(fx, hy) ≤ kmax{Q(Fx,Hy),
Q(fx, Fx) +Q(hy,Hy)

2
,

Q(fx,Hy) +Q(Fx, hy)

2
},

where k ∈ (0, 1),
4)

Q(fx, hy) ≤ aQ(Fx,Hy) + bmax{Q(fx, Fx), Q(hy,Hy)}+

+cmax{Q(Fx,Hy), Q(fx,Hy), Q(Fx, hy)},
where a, b, c ≥ 0 and a+ c < 1,

5)

Q(fx, hy) ≤ aQ(Fx,Hy) + b(Q(fx, Fx) +Q(hy,Hy)) +

+cmin{Q(fx,Hy), Q(Fx, hy)},
where a, b, c ≥ 0 and a+ c < 1,

6)

Q(fx, hy) ≤ aQ(Fx,Hy) + b(Q(fx, Fx) +Q(hy,Hy)) +

+c
√
Q(fx,Hy) ·Q(Fx, hy),

where a, b, c ≥ 0 and a+ c < 1,
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7)

Q(fx, hy) ≤ αmax{Q(Fx,Hy), Q(fx, Fx), Q(hy,Hy)}+

+(1− α)(aQ(fx,Hy) + bQ(Fx, hy)),

where 0 < α < 1, a, b ≥ 0 and a+ b < 1,
8)

[Q(fx, hy)]2 ≤ a[Q(Fx,Hy)]2 + b
min{Q(fx,Hy), Q(Fx, hy)}
1 +Q(fx, Fx) +Q(hy,Hy)

,

where a, b ≥ 0 and a+ b < 1,
9)

Q(fx, hy) ≤ aQ(Fx,Hy) + b
Q(fx,Hy) +Q(Fx, hy)

1 +Q(fx, Fx) +Q(hy,Hy)
,

where a, b ≥ 0 and a+ 2b < 1,
10)

Q(fx, hy) ≤ max{cQ(Fx,Hy), cQ(fx, Fx),

cQ(hy,Hy), aQ(fx,Hy) + bQ(Fx, hy)},
where 0 < c < 1 and max{c, a+ b} < 1,

then f, h, F and H have a unique common fixed point.

5. Applications

Theorem 5.1. Let f, h, F and H be self mappings of a G - metric
space (X,G) such that (f, F ) and (h,H) are owc. If

(5.1)
φ(G(fx, hy, hy), G(Fx,Hy,Hy), G(fx, Fx, Fx),

G(hy,Hy,Hy), G(fx,Hy,Hy), G(Fx, hy, hy)) ≤ 0,

for all x, y ∈ X for which fx 6= hy and φ ∈ Fa, then f, h, F and H
have a unique common fixed point.

Proof. As in Lemma 2.4, Q(x, y) = G(x, y, y) is a quasi - metric on X.
Then

G(fx, hy, hy) = Q(fx, hy), G(Fx,Hy,Hy) = Q(Fx,Hy),

G(fx, Fx, Fx) = Q(fx, Fx), G(hy,Hy,Hy) = Q(hy,Hy),

G(fx,Hy,Hy) = Q(fx,Hy), G(Fx, hy, hy) = Q(Fx, hy).

Then in (X,Q) by (5.1) we have

(5.2)
φ(Q(fx, hy), Q(Fx,Hy), Q(fx, Fx),
Q(hy,Hy), Q(fx,Hy), Q(Fx, hy)) ≤ 0,
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which is the inequality (4.2), Hence, the conditions of Theorem 4.2 are
satisfied and f, h, F and H have a unique common fixed point. �

By Theorem 5.1 and Examples 3.2 - 3.11 we obtain

Theorem 5.2. Let f, h, F and H be self mappings of a G - metric
space such that (f, F ) and (h,H) are owc. If one of the following
inequalities holds for all x, y ∈ X for which fx 6= hy:

1)

G(fx, hy, hy) ≤ kmax{G(Fx,Hy,Hy), G(fx, Fx, Fx),

G(hy,Hy,Hy), G(fx,Hy,Hy), G(Fx, hy, hy)},

where k ∈ (0, 1),
2)

G(fx, hy, hy) ≤ kmax{G(Fx,Hy,Hy), G(fx, Fx, Fx),

G(hy,Hy,Hy),
1

2
[G(fx,Hy,Hy) +G(Fx, hy, hy)]},

where k ∈ (0, 1),
3)

G(fx, hy, hy) ≤ kmax{G(Fx,Hy,Hy),

G(fx, Fx, Fx) +G(hy,Hy,Hy)

2
,

Q(fx,Hy,Hy) +G(Fx, hy, hy)

2
},

where k ∈ (0, 1),
4)

G(fx, hy, hy) ≤ aG(Fx,Hy,Hy) +

+bmax{G(fx, Fx), G(gy,Hy,Hy)}+

+cmax{G(Fx,Hy,Hy), G(fx,Hy,Hy),

G(Fx, hy, hy)},

where a, b, c ≥ 0 and a+ c < 1,
5)

G(fx, hy, hy) ≤ aG(Fx,Hy,Hy) +

+b(G(fx, Fx, Fx) +G(hy,Hy,Hy)) +

+cmin{G(fx,Hy,Hy), G(Fx, hy, hy)},

where a, b, c ≥ 0 and a+ c < 1,
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6)

G(fx, hy, hy) ≤ aG(Fx,Hy,Hy) +

+b(G(fx, Fx, Fx) +G(hy,Hy,Hy)) +

+c
√
G(fx,Hy,Hy) ·G(Fx, hy, hy),

where a, b, c ≥ 0 and a+ c < 1,
7)

G(fx, hy, hy) ≤ αmax{G(Fx,Hy,Hy),

G(fx, Fx, Fx), G(hy,Hy,Hy)}+

+(1− α)(aG(fx,Hy,Hy) + bG(Fx, hy, hy)),

where 0 < α < 1, a, b ≥ 0 and a+ b < 1,
8)

[G(fx, hy, hy)]2 ≤ a[G(Fx,Hy,Hy)]2+b
min{G(fx,Hy,Hy), G(Fx, hy, hy)}
1 + G(fx, Fx, Fx) + G(hy,Hy,Hy)

,

where a, b ≥ 0 and a + b < 1,
9)

G(fx, hy, hy) ≤ aG(Fx,Hy,Hy) + b
G(fx,Hy,Hy) + G(Fx, hy, hy)

1 + G(fx, Fx, Fx) + G(hy,Hy,Hy)
,

where a, b ≥ 0 and a + 2b < 1,
10)

G(fx, hy, hy) ≤ max{cG(Fx,Hy,Hy), cG(fx, Fx, Fx),

cG(hy,Hy,Hy), aG(fx,Hy,Hy) + bG(Fx, hy, hy)},
where a, b ≥ 0, 0 < c < 1 and max{c, a + b} < 1,
then f, h, F and H have a unique common fixed point.

Remark 5.3. In the proof of the existence of fixed points in the papers
[18] - [21] and in other papers is used ”G(x, y, y)” instead ”G(x, y, z)”.
Hence, the study of fixed points in G - metric spaces can be reduced in
this cases at the study of fixed points in quasi - metric spaces.
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