"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 22 (2012), No. 2, 99-112

A GENERAL FIXED POINT THEOREM FOR OCCASIONALLY WEAKLY COMPATIBLE HYBRID PAIRS IN QUASI - METRIC SPACES AND APPLICATIONS

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract

In this paper a general fixed point theorem for two pairs of occasionally weakly compatible hybrid pairs in quasi - metric spaces is proved. As an application we reduce the study of fixed points for occasionally weakly compatible pairs in G - metric spaces to the study of occasionally weakly compatible pairs in quasi - metric spaces.

1. Introduction

Let A and S be self mappings of a metric space (X, d). Jungck [12] defined A and S to be compatible if $\lim _{n \rightarrow \infty} d\left(A S x_{n}, S A x_{n}\right)=$ 0 , whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=$ $\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$.

A point $x \in X$ is a coincidence point of A and S if $S x=A x$. We denote by $C(A, S)$ the set of all coincidence points of A and S. In [22], Pant defined A and S to be pointwise R - weakly commuting if for each $x \in X$, there exists $R>0$ such that $d(S A x, A S x) \leq R d(A x, S x)$.

It is proved in [23] that pointwise R - weakly commuting is equivalent with the commuting at coincidence points.

Definition 1.1. A and S is said to be weakly compatible [13] if $A S u=$ $S A u$ for $u \in C(A, S)$.

Definition 1.2. A and S are occasionally weakly compatible [4] (owc) if $A S u=S A u$ for $u \in C(A, S)$.

Keywords and phrases: Quasi - metric space, occasionally weakly compatible hybrid pair, fixed point, G - metric space.
(2010) Mathematics Subject Classification: 54H25, 47H10.

Remark 1.3. If $C(A, S) \neq \emptyset$ and A and S are weakly compatible then A and S are occasionally weakly compatible, but the converse is not true (see Example [4]).

Some fixed point theorems for owc mappings are proved in [14], [2], [27] and in other papers.

Recently, Abbas and Rhoades [1] extended Definition 1.2 for pairs of hybrid mappings.

Definition 1.4. Let $f: X \rightarrow X$ and $F: X \rightarrow 2^{X}$.

1) A point $x \in X$ is said to be a coincidence point of f and F if $f x \in F x$. The set of coincidence points of f and F is denoted by $C(f, F)$.
2) A point $x \in X$ is a fixed point of F if $x \in F x$.

Definition 1.5. A hybrid pair $f: X \rightarrow X$ and $F: X \rightarrow 2^{X}$ is occasionally weakly compatible (owc) [1] if there exists $x \in C(f, F)$ such that $f F x \subset F f x$.

Some results of fixed points for hybrid points of owe hybrid mappings are proved in [1], [5] and in other papers. In [3] some general results for occasionally weakly compatible hybrid pairs in symmetric spaces are proved.

2. Preliminaries

Definition 2.1. Let X be a nonempty set. A quasi - metric on X [30] is a nonnegative real function Q on $X \times X$ such that:
$\left(Q_{1}\right): Q(x, y)=0$ if and only if $x=y$,
$\left(Q_{2}\right): Q(x, y) \leq Q(x, z)+Q(z, y)$ for all $x, y, z \in X$.
A quasi - metric space is a nonempty set X with a quasi - metric Q on X and is denoted by (X, Q).

Some theorems for self mappings in a quasi - metric space are proved in [9], [10], [11], [28], [29] and in other papers. Recently, some fixed points theorems for multivalued mappings in quasi - metric spaces are proved in [6], [15] and in other papers.

In [7], [8] Dhage introduced a new class of generalized metric spaces named D - metric spaces. Mustafa and Sims [17], [18] proved that most of the claims concerning the fundamental topological structures on D - metric spaces are incorrect and introduced appropriate notion of generalized metric spaces, named G - metric spaces. In fact, Mustafa, Sims and other authors studied many fixed point results for
self mappings in G - metric spaces under certain conditions [16] - [21], [26] and other papers.
Definition 2.2. Let X be a nonempty set and $G: X^{3} \rightarrow \mathbb{R}_{+}$be a function satisfying the following properties:
$\left(G_{1}\right): G(x, y, z)=0$ if $x=y=z$,
$\left(G_{2}\right): 0<G(x, x, y)$ for all $x, y \in X$ with $y \neq x$,
$\left(G_{3}\right): G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ and $y \neq z$,
$\left(G_{4}\right): G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in all three variables),
$\left(G_{5}\right): G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

The function G is called a G - metric on X and the pair (X, G) is called a G-metric space, [17], [18].
Remark 2.3. If $G(x, y, z)=0$, then $x=y=z$ [18].
Lemma 2.4. Let (X, G) be a G - metric space and $Q(x, y)=$ $G(x, y, y)$. Then $Q(x, y)$ is a quasi - metric on X.

Proof. $\left(Q_{1}\right): \quad B y\left(G_{1}\right)$ and Remark 2.3, $Q(x, y)=0$ if and only if $x=y$.
$\left(Q_{2}\right): Q(x, y)=G(x, y, y) \leq G(x, z, z)+G(z, y, y)=Q(x, z)+$ $Q(z, y)$.

Hence, $Q(x, y)$ is a quasi - metric space.
In the following we denote by

$$
D(A, B)=\inf \{Q(a, b): a, b \in X\}, \text { where } A, B \in 2^{X} .
$$

The study of fixed points for mappings satisfying an implicit relation is initiated by Popa in [24], [25].

In this paper a general fixed point theorem for two pairs of occasionally weakly compatible hybrid pairs in quasi - metric spaces satisfying an implicit relation is proved.

As an application we reduce the study of fixed points for occasionally weakly compatible pairs in G - metric spaces to the study of fixed points of occasionally weakly compatible pairs in quasi - metric spaces.

3. Implicit relations

Definition 3.1. Let \mathcal{F}_{a} be the set of all functions $\phi\left(t_{1}, \ldots, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow$ \mathbb{R} satisfying the following conditions:
$\left(\phi_{1}\right): \quad \phi$ is nonincreasing in variables t_{2}, t_{5}, t_{6},
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)>0, \forall t>0$.

Example 3.2. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, \ldots, t_{6}\right\}$, where $k \in(0,1)$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-k)>0, \forall t>0$.
Example 3.3. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-h \max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2}\left(t_{5}+t_{6}\right)\right\}$, where $h \in(0,1)$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-h)>0, \forall t>0$.
Example 3.4. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in(0,1)$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-k)>0, \forall t>0$.
Example 3.5. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b \max \left\{t_{3}, t_{4}\right\}-c \max \left\{t_{2}, t_{5}, t_{6}\right\}$, where $a, b, c \geq 0$ and $a+c<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-(a+c))>0, \forall t>0$.
Example 3.6. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b\left(t_{3}+t_{4}\right)-c \min \left\{t_{5}, t_{6}\right\}$, where $a, b, c \geq 0$ and $a+c<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-(a+c))>0, \forall t>0$.
Example 3.7. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b\left(t_{3}+t_{4}\right)-c \sqrt{t_{5} t_{6}}$, where $a, b, c \geq 0$ and $a+c<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-(a+c))>0, \forall t>0$.
Example 3.8. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-(1-\alpha)\left(a t_{5}+b t_{6}\right)$, where $0<\alpha<1, a, b \geq 0$ and $a+b<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-\alpha)(1-(a+b))>0, \forall t>0$.
Example 3.9. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-a t_{2}^{2}-b \frac{\min \left\{t_{5}, t_{6}\right\}}{1+t_{3}+t_{4}}$, where $a, b \geq 0$ and $a+b<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t^{2}(1-(a+b))>0, \forall t>0$.

Example 3.10. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b \frac{t_{5}+t_{6}}{1+t_{3}+t_{4}}$, where $a, b \geq 0$ and $a+2 b<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-(a+2 b))>0, \forall t>0$.
Example 3.11. $\phi\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{c t_{2}, c t_{3}, c t_{4}, a t_{5}+b t_{6}\right\}$, where $0<c<1, a, b \geq 0$ and $\max \{c, a+b\}<1$.
$\left(\phi_{1}\right): \quad$ Obviously.
$\left(\phi_{2}\right): \quad \phi(t, t, 0,0, t, t)=t(1-\max \{c, a+b\})>0, \forall t>0$.

4. Main Results

Theorem 4.1. Let f, h be self mappings of a quasi - metric space and F, H be maps of X into 2^{X} such that the pairs (f, F) and (h, H) are owc. If

$$
\begin{gather*}
\quad \phi(Q(f x, h y), D(F x, H y), D(f x, F x) \\
D(h y, H y), D(f x, H y), D(F x, h y)) \leq 0 \tag{4.1}
\end{gather*}
$$

hold for all $x, y \in X$ for which $f x \neq h y$ and $\phi \in \mathcal{F}_{a}$, then f, h, F and H have a unique common fixed point.

Proof. Because (f, F) and (h, H) are owc, there exist $x, y \in X$ such that $f x \in F x$ and $h y \in H y$ and $f F x \subset F f x$ and $h H y \subset H h y$. First we prove that $f x=h y$. Suppose that $f x \neq h y$. Then $0 \neq Q(f x, h y) \geq$ $D(F x, H y)$. By (4.1) and $\left(\phi_{1}\right)$ we have

$$
\phi(Q(f x, h y), Q(f x, h y), 0,0, Q(f x, h y), Q(f x, h y)) \leq 0
$$

a contradiction of $\left(\phi_{2}\right)$. Hence $f x=h y$. Next we prove that $f x=f^{2} x$. Suppose that $f x \neq f^{2} x$. Then

$$
0 \neq Q\left(f^{2} x, f x\right) \geq D(F f x, f x)=D(F f x, h y) \geq D(F f x, H y)
$$

By (4.1) and $\left(\phi_{1}\right)$ we have successively

$$
\begin{gathered}
\phi\left(Q\left(f^{2} x, h y\right), D(F f x, H y), 0,0, D\left(f^{2} x, H y\right), D(F f x, h y)\right) \leq 0 \\
\quad \phi\left(Q\left(f^{2} x, h y\right), Q\left(f^{2} x, h y\right), 0,0, Q\left(f^{2} x, h y\right), Q\left(f^{2} x, h y\right)\right) \leq 0 \\
\phi\left(Q\left(f^{2} x, f x\right), Q\left(f^{2} x, f x\right), 0,0, Q\left(f^{2} x, f x\right), Q\left(f^{2} x, f x\right)\right) \leq 0
\end{gathered}
$$

a contradiction of $\left(\phi_{2}\right)$. Hence $f x=f^{2} x$ and $f x$ is a fixed point of f. Similarly, $h y=h^{2} y$. Therefore $f x=f^{2} x=h y=h^{2} y=h f x$ and $f x$ is a fixed point of h. On the other hand $f x=f^{2} x \in f F x \subset F f x$, hence $f x$ is a fixed point of F. Similarly, $f x=f^{2} x=h y=h^{2} y \subset$
$h H y \in H h y=H f x$ and $f x$ is a fixed point of H. Hence $w=f x$ is a common fixed point of f, h, F and H.

Suppose that $w^{\prime} \neq w$ is an other common fixed point of f, h, F and H. Then by (4.1) and $\left(\phi_{1}\right)$ we have successively

$$
\begin{gathered}
\phi\left(Q\left(f w, g w^{\prime}\right), D\left(F w, H w^{\prime}\right), D(f w, F w),\right. \\
\left.D\left(h w^{\prime}, H w^{\prime}\right), D\left(f w, H w^{\prime}\right), D\left(F w, h w^{\prime}\right)\right) \leq 0, \\
\phi\left(Q\left(w, w^{\prime}\right), Q\left(w, w^{\prime}\right), 0,0, Q\left(w, w^{\prime}\right), Q\left(w, w^{\prime}\right)\right) \leq 0,
\end{gathered}
$$

a contradiction of $\left(\phi_{2}\right)$. Hence $w=w^{\prime}$ and w is the unique common fixed point of f, h, F and H.

If f, F, h, H are single valued mappings, then by Theorem 4.1 we obtain

Theorem 4.2. Let f, h, F and H be self mappings of a quasi - metric space (X, Q) such that (f, F) and (h, H) are owc. If

$$
\begin{gather*}
\phi(Q(f x, h y), Q(F x, H y), Q(f x, F x), \tag{4.2}\\
Q(h y, H y), Q(f x, H y), Q(F x, h y)) \leq 0,
\end{gather*}
$$

for all $x, y \in X$ for which $f x \neq h y$ and $\phi \in \mathcal{F}_{a}$, then f, h, F and H have a unique common fixed point.

By Theorem 4.1 and Examples 3.2-3.11 we obtain the following theorem

Theorem 4.3. Let f, h be self mappings of a quasi - metric space (X, Q) and F, H be maps of X into 2^{X}. If one of the following inequalities holds for all $x, y \in X$ with $f x \neq$ hy:
1)

$$
\begin{aligned}
Q(f x, h y) \leq & k \max \{D(F x, H y), D(f x, F x), \\
& D(h y, H y), D(f x, H y), D(F x, h y)\},
\end{aligned}
$$

where $k \in(0,1)$,
2)

$$
\begin{aligned}
Q(f x, h y) \leq & h \max \{D(F x, H y), D(f x, F x), D(h y, H y), \\
& \left.\frac{1}{2}[D(f x, H y)+D(F x, h y)]\right\},
\end{aligned}
$$

where $h \in(0,1)$,
3)

$$
\begin{aligned}
Q(f x, h y) \leq & k \max \left\{D(F x, H y), \frac{D(f x, F x)+D(h y, H y)}{2}\right. \\
& \left.\frac{D(f x, H y)+D(F x, h y)}{2}\right\}
\end{aligned}
$$

where $k \in(0,1)$,
4)

$$
\begin{aligned}
Q(f x, h y) \leq & a D(F x, H y)+b \max \{D(f x, F x), D(h y, H y)\}+ \\
& +c \max \{D(F x, H y), D(f x, H y), D(F x, h y)\}
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
5)

$$
\begin{aligned}
Q(f x, h y) \leq & a D(F x, H y)+b(D(f x, F x)+D(h y, H y))+ \\
& +c \min \{D(f x, H y), D(F x, h y)\}
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
6)

$$
\begin{aligned}
Q(f x, h y) \leq & a D(F x, H y)+b(D(f x, F x)+D(h y, H y))+ \\
& +c \sqrt{D(f x, H y) \cdot D(F x, h y)}
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
7)

$$
\begin{aligned}
Q(f x, h y) \leq & \alpha \max \{D(F x, H y), D(f x, F x), D(h y, H y)\}+ \\
& +(1-\alpha)(a D(f x, H y)+b D(F x, h y))
\end{aligned}
$$

where $0<\alpha<1, a, b \geq 0$ and $a+b<1$,
8)

$$
[Q(f x, h y)]^{2} \leq a[D(F x, H y)]^{2}+b \frac{\min \{D(f x, H y), D(F x, h y)\}}{1+D(f x, F x)+D(h y, H y)}
$$

where $a, b \geq 0$ and $a+b<1$,
9)

$$
Q(f x, h y) \leq a D(F x, H y)+b \frac{D(f x, H y)+D(F x, h y)}{1+D(f x, F x)+D(h y, H y)}
$$

where $a, b \geq 0$ and $a+2 b<1$,
10)

$$
\begin{aligned}
Q(f x, h y) \leq & \max \{c D(F x, H y), c D(f x, F x) \\
& c D(h y, H y), a D(f x, H y)+b D(F x, h y)\}
\end{aligned}
$$

where $0<c<1$ and $\max \{c, a+b\}<1$,
and (f, F) and (h, H) are owc, then f, h, F and H have a unique common fixed point.

By Theorem 4.2 and Examples 3.2-3.11 we obtain
Theorem 4.4. Let f, h, F and H be self mappings of a quasi - metric space (X, Q) such that (f, F) and (h, H) are owc. If one of the following inequalities holds for all $x, y \in X$ for which $f x \neq h y$:
1)

$$
\begin{aligned}
Q(f x, h y) \leq & k \max \{Q(F x, H y), Q(f x, F x), \\
& Q(h y, H y), Q(f x, H y), Q(F x, h y)\}
\end{aligned}
$$

where $k \in(0,1)$,
2)

$$
\begin{aligned}
Q(f x, h y) \leq & k \max \{Q(F x, H y), Q(f x, F x), Q(h y, H y), \\
& \left.\frac{1}{2}[Q(f x, H y)+Q(F x, h y)]\right\},
\end{aligned}
$$

where $k \in(0,1)$,
3)

$$
\begin{aligned}
Q(f x, h y) \leq & k \max \left\{Q(F x, H y), \frac{Q(f x, F x)+Q(h y, H y)}{2}\right. \\
& \left.\frac{Q(f x, H y)+Q(F x, h y)}{2}\right\}
\end{aligned}
$$

where $k \in(0,1)$,
4)

$$
\begin{aligned}
Q(f x, h y) \leq & a Q(F x, H y)+b \max \{Q(f x, F x), Q(h y, H y)\}+ \\
& +c \max \{Q(F x, H y), Q(f x, H y), Q(F x, h y)\},
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
5)

$$
\begin{aligned}
Q(f x, h y) \leq & a Q(F x, H y)+b(Q(f x, F x)+Q(h y, H y))+ \\
& +c \min \{Q(f x, H y), Q(F x, h y)\},
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
6)

$$
\begin{aligned}
Q(f x, h y) \leq & a Q(F x, H y)+b(Q(f x, F x)+Q(h y, H y))+ \\
& +c \sqrt{Q(f x, H y) \cdot Q(F x, h y)},
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
7)

$$
\begin{aligned}
Q(f x, h y) \leq & \alpha \max \{Q(F x, H y), Q(f x, F x), Q(h y, H y)\}+ \\
& +(1-\alpha)(a Q(f x, H y)+b Q(F x, h y))
\end{aligned}
$$

where $0<\alpha<1, a, b \geq 0$ and $a+b<1$,
8)

$$
[Q(f x, h y)]^{2} \leq a[Q(F x, H y)]^{2}+b \frac{\min \{Q(f x, H y), Q(F x, h y)\}}{1+Q(f x, F x)+Q(h y, H y)}
$$

where $a, b \geq 0$ and $a+b<1$,
9)

$$
Q(f x, h y) \leq a Q(F x, H y)+b \frac{Q(f x, H y)+Q(F x, h y)}{1+Q(f x, F x)+Q(h y, H y)}
$$

where $a, b \geq 0$ and $a+2 b<1$,
10)

$$
\begin{aligned}
Q(f x, h y) \leq & \max \{c Q(F x, H y), c Q(f x, F x) \\
& c Q(h y, H y), a Q(f x, H y)+b Q(F x, h y)\}
\end{aligned}
$$

where $0<c<1$ and $\max \{c, a+b\}<1$,
then f, h, F and H have a unique common fixed point.

5. Applications

Theorem 5.1. Let f, h, F and H be self mappings of a G - metric space (X, G) such that (f, F) and (h, H) are owc. If

$$
\begin{gather*}
\phi(G(f x, h y, h y), G(F x, H y, H y), G(f x, F x, F x) \tag{5.1}\\
G(h y, H y, H y), G(f x, H y, H y), G(F x, h y, h y)) \leq 0
\end{gather*}
$$

for all $x, y \in X$ for which $f x \neq h y$ and $\phi \in \mathcal{F}_{a}$, then f, h, F and H have a unique common fixed point.

Proof. As in Lemma 2.4, $Q(x, y)=G(x, y, y)$ is a quasi - metric on X. Then

$$
\begin{aligned}
G(f x, h y, h y) & =Q(f x, h y), G(F x, H y, H y)=Q(F x, H y) \\
G(f x, F x, F x) & =Q(f x, F x), G(h y, H y, H y)=Q(h y, H y) \\
G(f x, H y, H y) & =Q(f x, H y), G(F x, h y, h y)=Q(F x, h y)
\end{aligned}
$$

Then in (X, Q) by (5.1) we have

$$
\begin{gather*}
\phi(Q(f x, h y), Q(F x, H y), Q(f x, F x) \\
Q(h y, H y), Q(f x, H y), Q(F x, h y)) \leq 0 \tag{5.2}
\end{gather*}
$$

which is the inequality (4.2), Hence, the conditions of Theorem 4.2 are satisfied and f, h, F and H have a unique common fixed point.

By Theorem 5.1 and Examples 3.2-3.11 we obtain
Theorem 5.2. Let f, h, F and H be self mappings of $a G$ - metric space such that (f, F) and (h, H) are owc. If one of the following inequalities holds for all $x, y \in X$ for which $f x \neq h y$:
1)

$$
\begin{aligned}
G(f x, h y, h y) \leq & k \max \{G(F x, H y, H y), G(f x, F x, F x), \\
& G(h y, H y, H y), G(f x, H y, H y), G(F x, h y, h y)\},
\end{aligned}
$$

where $k \in(0,1)$,
2)

$$
\begin{aligned}
G(f x, h y, h y) \leq & k \max \{G(F x, H y, H y), G(f x, F x, F x), \\
& \left.G(h y, H y, H y), \frac{1}{2}[G(f x, H y, H y)+G(F x, h y, h y)]\right\},
\end{aligned}
$$

where $k \in(0,1)$,
3)

$$
\begin{aligned}
G(f x, h y, h y) \leq & k \max \{G(F x, H y, H y), \\
& \frac{G(f x, F x, F x)+G(h y, H y, H y)}{2}, \\
& \left.\frac{Q(f x, H y, H y)+G(F x, h y, h y)}{2}\right\},
\end{aligned}
$$

where $k \in(0,1)$,
4)

$$
\begin{aligned}
G(f x, h y, h y) \leq & a G(F x, H y, H y)+ \\
& +b \max \{G(f x, F x), G(g y, H y, H y)\}+ \\
& +c \max \{G(F x, H y, H y), G(f x, H y, H y), \\
& G(F x, h y, h y)\},
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
5)

$$
\begin{aligned}
G(f x, h y, h y) \leq & a G(F x, H y, H y)+ \\
& +b(G(f x, F x, F x)+G(h y, H y, H y))+ \\
& +c \min \{G(f x, H y, H y), G(F x, h y, h y)\},
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
6)

$$
\begin{aligned}
G(f x, h y, h y) \leq & a G(F x, H y, H y)+ \\
& +b(G(f x, F x, F x)+G(h y, H y, H y))+ \\
& +c \sqrt{G(f x, H y, H y) \cdot G(F x, h y, h y)}
\end{aligned}
$$

where $a, b, c \geq 0$ and $a+c<1$,
7)

$$
\begin{aligned}
G(f x, h y, h y) \leq & \alpha \max \{G(F x, H y, H y) \\
& G(f x, F x, F x), G(h y, H y, H y)\}+ \\
& +(1-\alpha)(a G(f x, H y, H y)+b G(F x, h y, h y))
\end{aligned}
$$

where $0<\alpha<1, a, b \geq 0$ and $a+b<1$,
8)
$[G(f x, h y, h y)]^{2} \leq a[G(F x, H y, H y)]^{2}+b \frac{\min \{G(f x, H y, H y), G(F x, h y, h y)\}}{1+G(f x, F x, F x)+G(h y, H y, H y)}$, where $a, b \geq 0$ and $a+b<1$,
9)
$G(f x, h y, h y) \leq a G(F x, H y, H y)+b \frac{G(f x, H y, H y)+G(F x, h y, h y)}{1+G(f x, F x, F x)+G(h y, H y, H y)}$, where $a, b \geq 0$ and $a+2 b<1$,
10)

$$
\begin{aligned}
G(f x, h y, h y) \leq & \max \{c G(F x, H y, H y), c G(f x, F x, F x) \\
& c G(h y, H y, H y), a G(f x, H y, H y)+b G(F x, h y, h y)\}
\end{aligned}
$$

where $a, b \geq 0,0<c<1$ and $\max \{c, a+b\}<1$, then f, h, F and H have a unique common fixed point.

Remark 5.3. In the proof of the existence of fixed points in the papers [18] - [21] and in other papers is used " $G(x, y, y)$ "instead " $G(x, y, z)$ ". Hence, the study of fixed points in G - metric spaces can be reduced in this cases at the study of fixed points in quasi - metric spaces.

References

[1] M. Abbas and B. E. Rhoades, Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings, Pan Amer. Math. J. 18(2008), $55-62$.
[2] A. Aliouche and V. Popa, Common fixed points for occasionally weakly compatible mappings via implicit relations, Filomat, 22(2)(2008), 99 107.
[3] A. Aliouche and V. Popa, General fixed point theorems for occasionally weakly compatible hybrid mappings and applications, Novi Sad J. Math. 30, 1(2009), 89-109.
[4] M. A. Al - Thagafi and N. Shahzad, Generalized I-nonexpansive self maps and invariant approximation, Acta Math. Sinica, 24(5)(2008), 867 - 876.
[5] H. Bouhadjera and C. Godet - Thobie, Common fixed point theorems for occasionally weakly compatible mappings, Acta Math. Vietnamica, 36, 1(2011), 1 - 17.
[6] S. H. Cho, Fixed point theorems for set valued maps in quasi - metric spaces, J. Chung Cheong Mat. Soc. 23, 4(2010), 599 - 608.
[7] B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84(1992), $329-336$.
[8] B. C. Dhage, Generalized metric spaces and topological structures I, Anal. St. Univ. Al. I. Cuza, Iasi Ser. Mat. 46, 1(2000), 3 - 24.
[9] T. L. Hicks, Fixed point theorems for quasi - metric spaces, Math. Japonica, 33, 2(1988), 231 - 236.
[10] J. Jachymski, A contribution to fixed point theory in quasi - metric spaces, Publ. Math. Debrecen 43, 3-4(1993), 283-288.
[11] J. Jachymski, Ciric's contributions on quasi - metric spaces, Sci. Bull. Lódz Tech. Univ. Matematyka, 26(1994), 31 - 36.
[12] G. Jungck, Compatible mappings and common fixed points, Intern. J. Math. Math. Sci., 9(1986), 771 - 779.
[13] G. Jungck, Common fixed points for noncontinuous nonself maps on a nonnumeric space, Far. East J. Math. Sci. 4(2)(1996), 199 - 215.
[14] G. Jungck and B. E. Rhoades, Fixed points for occasionally weakly compatible mappings, Fixed Point Theory, 7(2)(2006), 287-296.
[15] A. Latif and S. A. Al - Mezel, Fixed point results in quasi - metric spaces, Fixed Point Theory and Applications Volume 2011, Article 178306, 8 pages.
[16] S. Manro, S. S. Bhatia and S. S. Kumar, Expansion mappings theorems in G - metric spaces, Intern. J. Contemp. Sci. 5(2010), no. 51, 2529 - 2535.
[17] Z. Mustafa and B. Sims, Some remarks concerning D - metric spaces, Intern. Conf. Fixed Point Theory and Applications, Yokohama, 2004, 189 198.
[18] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Analysis, 7(2006), 289 - 296.
[19] Z. Mustafa, H. Obiedat, and F. Awawdeh, Some fixed point theorem for mappings on complete G - metric spaces, Fixed Point Theory and Applications, Volume 2008, Article ID 189870, 12 pages.
[20] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G - metric spaces, Fixed Point Theory and Applications, Volume 2009, Article ID 917175, 10 pages.
[21] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G metric spaces, Cubo A Math. J., 12(2010), 83-93.
[22] R. P. Pant, Common fixed points for non - commuting mappings, J. Math. Anal. Appl. 188(1994), 436 - 440.
[23] R. P. Pant, Common fixed points for four mappings, Bull. Calcutta Math. Soc. 9(1998), 281 - 286.
[24] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. Şt. Ser. Mat. Univ. Bacău, 7(1997), 127 - 133.
[25] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relations, Demonstratio Math. 32 (1999), 157-163.
[26] V. Popa, A general fixed point theorem for several mapping in G metric space, Sci. Stud. Res. Ser. Math. - Inform., Vasile Alecsandri Univ. Bacău, 21, 1(2011), 205-214.
[27] V. Popa and M. Mocanu, Altering distances and common fixed point under implicit relation, Hacettepe J. Math. Statistics, 38 (3) (2009), 329 - 337.
[28] S. Romaguera and E. Checa, Continuity of contractive mappings on complete quasi-metric spaces, Math. Japon., 35 (1990), 137-139.
[29] S. Romaguera, Fixed point theorems for mappings in complete quasi - metric spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, S I-a Mat. f2(1993), 159-164.
[30] W. A. Wilson, On quasi - metric spaces, Amer. J. Math., 53(1931), 675 684.

Valeriu Popa

Department of Mathematics and Informatics, Faculty of Sciences, "Vasile Alecsandri" University of Bacău, Calea Mărăşeşti 157, Bacău 600115, ROMANIA, e-mail: vpopa@ub.ro

Alina-Mihaela Patriciu

Department of Mathematics and Informatics, Faculty of Sciences, "Vasile Alecsandri" University of Bacău, Calea Mărăşeşti 157, Bacău 600115, ROMANIA, e-mail: alina.patriciu@ub.ro

