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A NOTE ON KLAMKIN’S INEQUALITY

YILUN SHANG

Abstract. In this note, we generalize a one variable inequality of
Klamkin to the case of two variables.

1. Introduction

In 1974 M. Klamkin [3] proposed the following problem:
Let x be a nonnegative real number, and m,n be integers with m ≥
n ≥ 1. Prove that

(1) (m + n)(1 + xm) ≥ 2n
1− xm+n

1− xn
.

Later, M. Klamkin [2] himself solved the problem even in a more
general case, assuming that m and n are real numbers. Note that
for x = 1, the right-hand side of (1) is understood as its limit for
x→ 1.

This intriguing inequality has some arithmetical applications and
has been investigated by several researchers; see e.g. [1, 5, 6, 7]. In
this note, we move a further step beyond the case of single variable x
by considering two variables x and y. Our main results are shown in
the following section.

We remark that there is another famous inequality, which is also
called Klamkin’s inequality, in the literature of triangle geometry [4],
and these two inequalities should not be confused.

2. Generalizations of Klamkin’s Inequality

Let R be the set of real numbers. For a, b ∈ R, we denote the
maximum and minimum of them by a ∨ b and a ∧ b, respectively. We
establish the following inequality.
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Theorem 1. Let m ≥ k ≥ n ≥ 1, x ≥ 0, (1/x)∧ x ≤ y ≤ (1/x)∨ x
and 2k ≥ m + n. Then

(2) (m + k + n)(1 + xm)(1 + yk) ≥ 3n
1− xm+nyk

1− xn
.

When x = 0, we interpret 1/x as ∞. Therefore, y can be any
nonnegative-valued member of R ∪ {∞} when x = 0. By convention,
for x = 1 the right-hand side of (2) is understood as taking limit
x→ 1.

Proof. We shall divide the proof into four cases: (i) x = 1, (ii) x = 0,
(iii) x > 1, and (iv) 0 < x < 1.

For (i), we have x = y = 1. Hence, the left-hand side of (2) is
4(m+ k+n), while the right-hand side of (2) is 3(m+n) by using the
L’Hôspital rule. The inequality (2) clearly holds.

For (ii), it suffices to show that

m + k + n ≥ 3n,

which, in turn, is true by our assumptions.
For (iii), the assertion (2) is tantamount to the following form

(3) (m + k + n)(xm + 1)(yk + 1)(xn − 1) ≥ 3n(xm+nyk − 1).

By using Klamkin’s inequality (1) and noting that x > 1, we obtain

E1 := (m + k + n)(xm + 1)(yk + 1)(xn − 1)− 3n(xm+nyk − 1)

=
m + k + n

m + n
(m + n)(xm + 1)(xn − 1)(yk + 1)− 3n(xm+nyk − 1)

≥ m + k + n

m + n
· 2n(xm+n − 1)(yk + 1)− 3n(xm+nyk − 1)

=
n

m + n

[
2(m + k + n)(xm+nyk + xm+n − yk − 1)

−3(m + n)(xm+nyk − 1)
]

=
n

m + n

[
(2k −m− n)(xm+nyk − 1)

+2(m + k + n)(xm+n − yk)
]
.

Since xm+n ≥ xk ≥ yk, we get

E1 ≥
n

m + n
(2k −m− n)(xm+nyk − 1).

Since 2k ≥ m + n, x > 1, y ≥ (1/x) and m + n− k ≥ 0, this yields

E1 ≥ 0,
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which proves (3).
For (iv), the assertion (2) is equivalent to the form

(4) (m + k + n)(1 + xm)(1 + yk)(1− xn) ≥ 3n(1− xm+nyk).

Utilizing Klamkin’s inequality (1) and noting that 0 < x < 1, we
obtain

E2 := (m + k + n)(1 + xm)(1 + yk)(1− xn)− 3n(1− xm+nyk)

=
m + k + n

m + n
(m + n)(1 + xm)(1− xn)(1 + yk)− 3n(1− xm+nyk)

≥ m + k + n

m + n
· 2n(1− xm+n)(1 + yk)− 3n(1− xm+nyk)

=
n

m + n

[
2(m + k + n)(1− xm+nyk − xm+n + yk)

−3(m + n)(1− xm+nyk)
]

=
n

m + n

[
(2k −m− n)(1− xm+nyk)

+2(m + k + n)(yk − xm+n)
]
.

Since xm+n ≤ xk ≤ yk, we get

E2 ≥
n

m + n
(2k −m− n)(1− xm+nyk).

Since 2k ≥ m + n, x < 1, y ≤ (1/x) and m + n− k ≥ 0, this gives

E2 ≥ 0,

which implies (4). Thus the proof of Theorem 1 is complete. 2

The following result can be proved analogously.
Theorem 2. Let m ≥ k ≥ n ≥ 1, x ≥ 0, (1/x)∧ x ≤ y ≤ (1/x)∨ x
and k + n ≥ m. Then

(5) (m + k + n)(1 + xk)(1 + ym) ≥ 3n
1− xk+nym

1− xn
.

Proof. As above, we separate the proof into four cases: (i) x = 1, (ii)
x = 0, (iii) x > 1, and (iv) 0 < x < 1.

For (i), we have x = y = 1. Hence, the left-hand side of (5) is
4(m+ k + n), while the right-hand side of (5) is 3(k + n) by using the
L’Hôspital rule. The inequality (5) holds.

For (ii), we note that

m + k + n ≥ 3n,

holds by our assumptions.
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For (iii), the assertion (5) is equivalent to the following form

(6) (m + k + n)(xk + 1)(ym + 1)(xn − 1) ≥ 3n(xk+nym − 1).

By using Klamkin’s inequality (1) and the fact x > 1, we have

E3 := (m + k + n)(xk + 1)(ym + 1)(xn − 1)− 3n(xk+nym − 1)

=
m + k + n

k + n
(k + n)(xk + 1)(xn − 1)(ym + 1)− 3n(xk+nym − 1)

≥ m + k + n

k + n
· 2n(xk+n − 1)(ym + 1)− 3n(xk+nym − 1)

=
n

k + n

[
2(m + k + n)(xk+nym + xk+n − ym − 1)

−3(k + n)(xk+nym − 1)
]

=
n

k + n

[
(2m− k − n)(xk+nym − 1)

+2(m + k + n)(xk+n − ym)
]
.

Since xk+n ≥ xm ≥ ym, we get

E3 ≥
n

k + n
(2m− k − n)(xk+nym − 1).

Since m ≥ k ≥ n, x > 1, y ≥ (1/x) and k + n−m ≥ 0, this yields

E3 ≥ 0,

which proves (6).
For (iv), the assertion (5) is equivalent to the form

(7) (m + k + n)(1 + xk)(1 + ym)(1− xn) ≥ 3n(1− xk+nym).

Using Klamkin’s inequality (1) and noting that 0 < x < 1, we have

E4 := (m + k + n)(1 + xk)(1 + ym)(1− xn)− 3n(1− xk+nym)

=
m + k + n

k + n
(k + n)(1 + xk)(1− xn)(1 + ym)− 3n(1− xk+nym)

≥ m + k + n

k + n
· 2n(1− xk+n)(1 + ym)− 3n(1− xk+nym)

=
n

k + n

[
2(m + k + n)(1− xk+nym − xk+n + ym)

−3(k + n)(1− xk+nym)
]

=
n

k + n

[
(2m− k − n)(1− xk+nym)

+2(m + k + n)(ym − xk+n)
]
.
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Since xk+n ≤ xm ≤ ym, we get

E4 ≥
n

k + n
(2m− k − n)(1− xk+nym).

Since 2m ≥ k + n, x < 1, y ≤ (1/x) and k + n−m ≥ 0, this yields

E4 ≥ 0,

which implies (7) and then concludes the proof of Theorem 2. 2

We remark that one possible application of this type of inequalities
is in probabilistic combinatorics (see e.g. [8]), where 0 ≤ x ≤ y ≤ 1
may represent normalized probabilities of some appropriate events.
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