"Vasile Alecsandri" University of Bacău
 Faculty of Sciences
 Scientific Studies and Research
 Series Mathematics and Informatics
 Vol. 22 (2012), No. 2, 113-118

A NOTE ON KLAMKIN'S INEQUALITY

YILUN SHANG

Abstract

In this note, we generalize a one variable inequality of Klamkin to the case of two variables.

1. Introduction

In 1974 M. Klamkin [3] proposed the following problem:
Let x be a nonnegative real number, and m, n be integers with $m \geq$ $n \geq 1$. Prove that

$$
\begin{equation*}
(m+n)\left(1+x^{m}\right) \geq 2 n \frac{1-x^{m+n}}{1-x^{n}} . \tag{1}
\end{equation*}
$$

Later, M. Klamkin [2] himself solved the problem even in a more general case, assuming that m and n are real numbers. Note that for $x=1$, the right-hand side of (1) is understood as its limit for $x \rightarrow 1$.

This intriguing inequality has some arithmetical applications and has been investigated by several researchers; see e.g. $[1,5,6,7]$. In this note, we move a further step beyond the case of single variable x by considering two variables x and y. Our main results are shown in the following section.

We remark that there is another famous inequality, which is also called Klamkin's inequality, in the literature of triangle geometry [4], and these two inequalities should not be confused.

2. Generalizations of Klamkin's Inequality

Let \mathbb{R} be the set of real numbers. For $a, b \in \mathbb{R}$, we denote the maximum and minimum of them by $a \vee b$ and $a \wedge b$, respectively. We establish the following inequality.

Keywords and phrases: Klamkin's inequality, arithmetic function. (2010)Mathematics Subject Classification: 26D05, 11A25

Theorem 1. Let $m \geq k \geq n \geq 1, x \geq 0,(1 / x) \wedge x \leq y \leq(1 / x) \vee x$ and $2 k \geq m+n$. Then

$$
\begin{equation*}
(m+k+n)\left(1+x^{m}\right)\left(1+y^{k}\right) \geq 3 n \frac{1-x^{m+n} y^{k}}{1-x^{n}} \tag{2}
\end{equation*}
$$

When $x=0$, we interpret $1 / x$ as ∞. Therefore, y can be any nonnegative-valued member of $\mathbb{R} \cup\{\infty\}$ when $x=0$. By convention, for $x=1$ the right-hand side of (2) is understood as taking limit $x \rightarrow 1$.
Proof. We shall divide the proof into four cases: (i) $x=1$, (ii) $x=0$, (iii) $x>1$, and (iv) $0<x<1$.

For (i), we have $x=y=1$. Hence, the left-hand side of (2) is $4(m+k+n)$, while the right-hand side of (2) is $3(m+n)$ by using the L'Hôspital rule. The inequality (2) clearly holds.

For (ii), it suffices to show that

$$
m+k+n \geq 3 n
$$

which, in turn, is true by our assumptions.
For (iii), the assertion (2) is tantamount to the following form

$$
\begin{equation*}
(m+k+n)\left(x^{m}+1\right)\left(y^{k}+1\right)\left(x^{n}-1\right) \geq 3 n\left(x^{m+n} y^{k}-1\right) . \tag{3}
\end{equation*}
$$

By using Klamkin's inequality (1) and noting that $x>1$, we obtain

$$
\begin{aligned}
E_{1}:= & (m+k+n)\left(x^{m}+1\right)\left(y^{k}+1\right)\left(x^{n}-1\right)-3 n\left(x^{m+n} y^{k}-1\right) \\
= & \frac{m+k+n}{m+n}(m+n)\left(x^{m}+1\right)\left(x^{n}-1\right)\left(y^{k}+1\right)-3 n\left(x^{m+n} y^{k}-1\right) \\
\geq & \frac{m+k+n}{m+n} \cdot 2 n\left(x^{m+n}-1\right)\left(y^{k}+1\right)-3 n\left(x^{m+n} y^{k}-1\right) \\
= & \frac{n}{m+n}\left[2(m+k+n)\left(x^{m+n} y^{k}+x^{m+n}-y^{k}-1\right)\right. \\
& \left.-3(m+n)\left(x^{m+n} y^{k}-1\right)\right] \\
= & \frac{n}{m+n}\left[(2 k-m-n)\left(x^{m+n} y^{k}-1\right)\right. \\
& \left.+2(m+k+n)\left(x^{m+n}-y^{k}\right)\right] .
\end{aligned}
$$

Since $x^{m+n} \geq x^{k} \geq y^{k}$, we get

$$
E_{1} \geq \frac{n}{m+n}(2 k-m-n)\left(x^{m+n} y^{k}-1\right) .
$$

Since $2 k \geq m+n, x>1, y \geq(1 / x)$ and $m+n-k \geq 0$, this yields

$$
E_{1} \geq 0,
$$

which proves (3).
For (iv), the assertion (2) is equivalent to the form

$$
\begin{equation*}
(m+k+n)\left(1+x^{m}\right)\left(1+y^{k}\right)\left(1-x^{n}\right) \geq 3 n\left(1-x^{m+n} y^{k}\right) \tag{4}
\end{equation*}
$$

Utilizing Klamkin's inequality (1) and noting that $0<x<1$, we obtain

$$
\begin{aligned}
E_{2}:= & (m+k+n)\left(1+x^{m}\right)\left(1+y^{k}\right)\left(1-x^{n}\right)-3 n\left(1-x^{m+n} y^{k}\right) \\
= & \frac{m+k+n}{m+n}(m+n)\left(1+x^{m}\right)\left(1-x^{n}\right)\left(1+y^{k}\right)-3 n\left(1-x^{m+n} y^{k}\right) \\
\geq & \frac{m+k+n}{m+n} \cdot 2 n\left(1-x^{m+n}\right)\left(1+y^{k}\right)-3 n\left(1-x^{m+n} y^{k}\right) \\
= & \frac{n}{m+n}\left[2(m+k+n)\left(1-x^{m+n} y^{k}-x^{m+n}+y^{k}\right)\right. \\
& \left.-3(m+n)\left(1-x^{m+n} y^{k}\right)\right] \\
= & \frac{n}{m+n}\left[(2 k-m-n)\left(1-x^{m+n} y^{k}\right)\right. \\
& \left.+2(m+k+n)\left(y^{k}-x^{m+n}\right)\right] .
\end{aligned}
$$

Since $x^{m+n} \leq x^{k} \leq y^{k}$, we get

$$
E_{2} \geq \frac{n}{m+n}(2 k-m-n)\left(1-x^{m+n} y^{k}\right)
$$

Since $2 k \geq m+n, x<1, y \leq(1 / x)$ and $m+n-k \geq 0$, this gives

$$
E_{2} \geq 0
$$

which implies (4). Thus the proof of Theorem 1 is complete.
The following result can be proved analogously.
Theorem 2. Let $m \geq k \geq n \geq 1, x \geq 0,(1 / x) \wedge x \leq y \leq(1 / x) \vee x$ and $k+n \geq m$. Then

$$
\begin{equation*}
(m+k+n)\left(1+x^{k}\right)\left(1+y^{m}\right) \geq 3 n \frac{1-x^{k+n} y^{m}}{1-x^{n}} \tag{5}
\end{equation*}
$$

Proof. As above, we separate the proof into four cases: (i) $x=1$, (ii) $x=0$, (iii) $x>1$, and (iv) $0<x<1$.

For (i), we have $x=y=1$. Hence, the left-hand side of (5) is $4(m+k+n)$, while the right-hand side of (5) is $3(k+n)$ by using the L'Hôspital rule. The inequality (5) holds.

For (ii), we note that

$$
m+k+n \geq 3 n
$$

holds by our assumptions.

For (iii), the assertion (5) is equivalent to the following form

$$
\begin{equation*}
(m+k+n)\left(x^{k}+1\right)\left(y^{m}+1\right)\left(x^{n}-1\right) \geq 3 n\left(x^{k+n} y^{m}-1\right) . \tag{6}
\end{equation*}
$$

By using Klamkin's inequality (1) and the fact $x>1$, we have

$$
\begin{aligned}
E_{3}:= & (m+k+n)\left(x^{k}+1\right)\left(y^{m}+1\right)\left(x^{n}-1\right)-3 n\left(x^{k+n} y^{m}-1\right) \\
= & \frac{m+k+n}{k+n}(k+n)\left(x^{k}+1\right)\left(x^{n}-1\right)\left(y^{m}+1\right)-3 n\left(x^{k+n} y^{m}-1\right) \\
\geq & \frac{m+k+n}{k+n} \cdot 2 n\left(x^{k+n}-1\right)\left(y^{m}+1\right)-3 n\left(x^{k+n} y^{m}-1\right) \\
= & \frac{n}{k+n}\left[2(m+k+n)\left(x^{k+n} y^{m}+x^{k+n}-y^{m}-1\right)\right. \\
& \left.-3(k+n)\left(x^{k+n} y^{m}-1\right)\right] \\
= & \frac{n}{k+n}\left[(2 m-k-n)\left(x^{k+n} y^{m}-1\right)\right. \\
& \left.+2(m+k+n)\left(x^{k+n}-y^{m}\right)\right] .
\end{aligned}
$$

Since $x^{k+n} \geq x^{m} \geq y^{m}$, we get

$$
E_{3} \geq \frac{n}{k+n}(2 m-k-n)\left(x^{k+n} y^{m}-1\right) .
$$

Since $m \geq k \geq n, x>1, y \geq(1 / x)$ and $k+n-m \geq 0$, this yields

$$
E_{3} \geq 0,
$$

which proves (6).
For (iv), the assertion (5) is equivalent to the form

$$
\begin{equation*}
(m+k+n)\left(1+x^{k}\right)\left(1+y^{m}\right)\left(1-x^{n}\right) \geq 3 n\left(1-x^{k+n} y^{m}\right) \tag{7}
\end{equation*}
$$

Using Klamkin's inequality (1) and noting that $0<x<1$, we have

$$
\begin{aligned}
E_{4}: & (m+k+n)\left(1+x^{k}\right)\left(1+y^{m}\right)\left(1-x^{n}\right)-3 n\left(1-x^{k+n} y^{m}\right) \\
= & \frac{m+k+n}{k+n}(k+n)\left(1+x^{k}\right)\left(1-x^{n}\right)\left(1+y^{m}\right)-3 n\left(1-x^{k+n} y^{m}\right) \\
\geq & \frac{m+k+n}{k+n} \cdot 2 n\left(1-x^{k+n}\right)\left(1+y^{m}\right)-3 n\left(1-x^{k+n} y^{m}\right) \\
= & \frac{n}{k+n}\left[2(m+k+n)\left(1-x^{k+n} y^{m}-x^{k+n}+y^{m}\right)\right. \\
& \left.-3(k+n)\left(1-x^{k+n} y^{m}\right)\right] \\
= & \frac{n}{k+n}\left[(2 m-k-n)\left(1-x^{k+n} y^{m}\right)\right. \\
& \left.+2(m+k+n)\left(y^{m}-x^{k+n}\right)\right] .
\end{aligned}
$$

Since $x^{k+n} \leq x^{m} \leq y^{m}$, we get

$$
E_{4} \geq \frac{n}{k+n}(2 m-k-n)\left(1-x^{k+n} y^{m}\right) .
$$

Since $2 m \geq k+n, x<1, y \leq(1 / x)$ and $k+n-m \geq 0$, this yields

$$
E_{4} \geq 0
$$

which implies (7) and then concludes the proof of Theorem 2.
We remark that one possible application of this type of inequalities is in probabilistic combinatorics (see e.g. [8]), where $0 \leq x \leq y \leq 1$ may represent normalized probabilities of some appropriate events.

References

[1] K. Atanassov, Two modifications of Klamkin's inequality, Notes Number Theory Discrete Math., 17 2011, 1-3.
[2] J.M. Brown, M.S. Klamkin, B. Lepson, R.K. Meany, A. Stenger, P. Zwier, Solutions to Problem E2483, Amer. Math. Monthly, 82 1975, 758-760.
[3] M. Klamkin, Problem E2483, Amer. Math. Monthly, 81 1974, 660.
[4] M. Klamkin, Geometric inequalities via the polar moment of inertia, Math. Mag., 48 1975, 44-46.
[5] D.S. Mitrinović, Analytic Inequalities, Springer-Verlag, New York, 1970.
[6] J. Sándor, On an inequality of Klamkin, Proc. Jangjeon Math. Soc., 13 2010, 49-54.
[7] J. Sándor, On an inequality of Klamkin with arithmetical applications, Int. J. Math. E. Sci. Techn., 25 1994, 157-158.
[8] Y. Shang, Multi-type directed scale-free percolation, Commun. Theor. Phys., 57 2012, 701-716.

Yilun Shang

Institute for Cyber Security, University of Texas at San Antonio, San
Antonio, Texas 78249, USA, e-mail: shylmath@hotmail.com

