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ON CERTAIN GENERALIZATION OF
SUPERCONTINUITY /6-CONTINUITY

D. SINGH AND J. K. KOHLI

Abstract. Two generalizations of supercontinuous functions (In-
dian J. Pure Appl. Maths. 13(1982), 229-236) and d-continuous func-
tions (J. Korean Math. Soc. 16(1980), 161-166) are introduced. Sev-
eral properties of these generalizations and their relationships with
other variants of continuity in the literature are investigated. These
new variants of supercontinuity / d-continuity also generalize certain
forms of (almost) strong #-continuity (J. Korean Math. Soc. 18(1981),
21-28; Indian J. Pure Appl. Maths. 15(1) (1984), 1-8).

1. INTRODUCTION

Supercontinuous functions were introduced by Munshi and Bassan
[30] and é-continuous functions were defined by Noiri [31]. In this pa-
per we introduce two generalizations of supercontinuous/d-continuous
functions called ’quasi supercontinuous’ and ’pseudo supercontinu-
ous’ functions. The class of quasi (pseudo) supercontinuous func-
tions besides strictly containing the classes of supercontinuous and
0-continuous functions also properly contains each of the classes of
(1) (almost) strongly 6 - continuous functions and ([34] [27] [31])
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(2) quasi f-continuous functions [35] and so contains all the functions
which lie above strong #-continuity in the hierarchy of variants of conti-
nuity (see Diagram 2). Organization of the paper is as follows: Section
2 is devoted to preliminaries and basic definitions. In Section 3 we de-
fine 'quasi supercontinuous’ and ’pseudo supercontinuous’ functions
and reflect upon their interrelations and interconnections with other
variants of continuity that already exist in the mathematical literature
and are related to the theme of the present paper. Herein examples are
included and observations are made to reflect upon the distinctiveness
of the notions so introduced from the existing ones. In Section 4 we
study the properties of 'quasi supercontinuous’ functions and Section
5 is devoted to the study of 'pseudo supercontinuous’ functions.

2. PRELIMINARIES AND BASIC DEFINITIONS

A subset A of a space X is called a regular Gs-set [29] if A is
an intersection of a sequence of closed sets whose interiors contain A,

ie,if A= () F, = () F?, where each F, is a closed subset of X
n=1

n=1 =

(here F¢ denote the interior of F,,). The complement of a regular G-
set is called a regular F,-set. Any union of regular F,-set is called
ds-open [15].The complement of a ds-open set is referred to as a ds-
closed set. A point z € X is called a §-adherent point [47] of A C
X if every closed neigbourhood of x intersects A. Let cly A denote the
set of all @-adherent points of A. The set A is called 0-closed [47] if
A = clyA. The complement of a f-closed set is referred to as a 0-open
set. A subset A of a space X is said to be regular open if it is the
interior of its closure, i.e., A = A°. The complement of a regular open
set is referred to as a regular closed set. A union of regular open
sets is called §-open [47]. The complement of a §-open set is referred
to as a d-closed set.

Now we give the definitions of strong and weak variants of continuity
related to our discussion in the paper.

2.1. Definitions. A function f : X — Y from a topological space X
into a topological space Y is said to be

(a) supercontinuous [31] if for each v € X and for each open set V
containing f(x), there exists a regular open set U containing = such
that f(U) C V.

(b) strongly 6-continuous ([27][31]) if for each x € X and for each
open set V containing f(x), there exists an open set U containing x
such that f(U) C V.
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(c) Ds-continuous [16] (respectively z-continuous [41]) if for
each point x € X and each regular Fj-set (respectively cozero set)
V containing f(x), there is an open set U containing x such that
fu)cVv.

(d) almost continuous [42] (respectively faintly continuous
[28]) if for each point x € X and each regular open set (respectively
f-open set) V containing f(x), there is an open set U containing x
such that f(U) C V.

(e) 0-continuous|7] if for each x € X and each open set V containing
f(x), there exists an open set U containing x such that f(U) C V.

(f) weakly continuous [26] if for each x € X and each open set
V containing f(x), there exists an open set U containing © such that
f(U)cV.

(g)quasi 0-continuous [35] if for each x € X and each 0-open set
V' containing f(x), there exists a 0-open set U containing = such that
flu)ycv.

(h) slightly continuous' [11] if f~Y(V) is open in X for every
clopen set V C Y.

(i) ds-map [17] if for each reqular F,-set Uin Y, f~1(U) is a reqular
F,-set in X.

In the following we give definitions of those variants of continuity
which are independent of continuity and are related to the contents of
the paper.

2.2. Definitions. A function f : X — Y from a topological space X
into a topological space Y is said to be

(a) almost strongly 6-continuous [34] if for each x € X and for
each regular open set V containing f(z), there exists an open set U
containing x such that f(U) C V.

(b) quasi perfectly continuous [24] (pseudo perfectly contin-
wous [22]) if f~H(V) is clopen in X for every 0-open set (regular F,
-set ) Vin Y.

(c) quasi z-supercontinuous [23](quasi cl-supercontinuos [13])
if for each x € X and each 0-open set V containing f(x), there exists
a cozero (clopen) set U containing x such that f(U) C V.

(d) pseudo z-supercontinuous [23] (pseudo cl-supercontinuos
[21]) if for each z € X and each regular F,-set V containing f(x), there
exists a cozero (clopen) set U containing x such that f(U) C V.

1Slightly continuous functions have been referred to as cl-continuous in ([16]).
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(e) 6-continuous [31] if for each x € X and for each regular open set
V containing f(x), there exists a reqular open set U containing © such

that f(U) C V.

2.3. Definitions. A space X is said to be

(i) Ds-Hausdorff [16] (0-Hausdorff [5] [44]) if every pair of dis-
tinct points in X are contained in disjoint reqular F,- sets (8-open
sets).

(ii) weakly Hausdorff [45]if every singleton is the intersection of
reqular closed sets containing it.

(111) DsTy-space [22] if for each pair of distinct points z, y in X, there
1s a reqular F,-set U containing one of the points x and y but not the
other.

(iii) Ds-compact [17] (respectively mearly compact [}0], respec-
tively 0-compact [12] [10F) if every cover of X by reqular F,-sets
(respectively regular open, respectively 0-open) sets has a finite sub-
cover.

(iv) 6-completely regular space ([16]) (respectively almost com-
pletely regular ([39]), respectively 6-completely regular [44]) if
for each regqular G- set (respectively regqularly closed set, respectively
0-closed set) F and a point x € F, there exists a continuous function
f:X —[0,1] such that f (z) = 0 and f (F) = 1.

(vi) Ds-completely regular [16] if it has a base of reqular F,-sets.
(vii) almost regular [38] if for each regular closed set A and each
point x ¢ A, there exist disjoint open sets U and V such that x € U,
A C V. (viii) extremally disconnected [8] if the closure of every
open set is open in X.

(iz) almost zero dimensional [18] at © € X if for every regular
open set V containing x there exists a clopen set U containing = such
that U C V. The space X is said to be almost zero dimensional if it is
almost zero dimensional at each © € X.

2.4. Definition. A space X is said to be endowed with a d-partition
topology [19] if every §-open set in X is closed.

2.5. Definition. A subset S of a space X is said to be regu-
lar Gs-embedded [2] (respectively 6-embedded [12], respectively §-
embedded [18]) in X if every reqular Gs-set (respectively 0-closed set,
respectively regular closed set) in S is the intersection of a regular
Gs-set ( respectively 0-closed set, respectively reqular closed set) in X

29-sets have been called -compact by Jafari [10]. For an example of a 6-set
which is not #-compact see [12,Remark 2.2]
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with S; or equivalently every regqular F,-set (respectively 0-open set,
respectively reqular open) in S is the intersection of a reqular F,-set
(respectively 6-open set, respectively reqular open set) in X with S.

2.6. Definition. filter F is said to 0-converge [}7] (respectively
ds-converge [15], respectively 6-converge [}7]) to a point z, wril-

ten as F -2 2 (respectively F G, x, respectivelyF LN x) if any
closed neighbourhood (respectively regqular F,-set, respectively reqular
open set) of x contains a member of F.

2.7. Definition. A net (x,) in a topological space is said to 0-

converge [/7] to x, written as (z,) N x, if for each open set V
containing x it 1s eventually in V.

2.8. Definition. A net (z,) in a topological space is said to ds-

converge [15] (0-converge [19]) to x, written as(z,) RN (z4) N
x ),if for each regular F,-set (regular open set) V' containing x the net
(xo) is eventually in V.

2.9. Change of Topology. Let (X,7) be a topological space.

i) Let By, denote the collection of all regular Fi,-sets in X. Since the
intersection of two regular F,-sets is a regular F,-set, the collection
By, is a base for a topology 74, on X such that 74, C 7. The topology
745 has been used in ([15] [16]).

ii) Let By denote the collection of f-open sets of the space (X,7). Since
arbitrary unions and finite intersections of # -open sets are #-open, the
collection By is indeed a topology on X. We shall denote this topology
by 79. The topology 7y has been extensively referred to in the literature
(see [28] [47]).

iii) Let Bs denote the collection of all regular open subsets of the space
(X,7). Since the intersection of two regular open sets is regular open,
the collection Bj constitutes a base for a topology 75 on X and is called
the semiregular topology associated with 7. The space (X,75) is often
called the semiregularization of the space and has been extensively
used in the topological literature (see [3, Exercise 20, p.138]).

3. QUASI SUPERCONTINUOUS AND PSEUDO SUPERCONTINUOUS
FUNCTIONS

We call a function f : X — Y from a topological space X into
a topological space Y quasi (pseudo) supercontinuous at r € X
if for each #-open set (regular F,-set) V' containing f(z) there exists
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an open set U containing x such that f (UO) C V. The function f is
quasi (pseudo) supercontinuous if f is quasi (pseudo) supercontinuous
at each x € X.

The following diagram well reflects upon the interrelations and inter-
connections that exist between quasi (pseudo) supercontinuous func-
tions and other variants of continuity that already exist in the litera-
ture and are related to the contents of the present paper. The impli-
cations in the following diagram are either immediate from definitions
or easily verified.

strongly O-continuous
almost strong ly O-continuous supercont ineouns —e conitinuous
S-continuous ——e almost continuous

quasi -continuous —e guasi supercontinuous O-continuous — ™ weakly conti nuous

l ‘\quar.i B-continuous

pseudo strongly O-continuous—e pseudo supercontinuous faintl v continuous

/

slightly continuou s €+—— z-continuou s+.+——— D —continuous

Figure 1.

However, none of the above implications is reversible as is shown
by the following examples or examples/observations in ([16] [21] [30]
31)).

3.1 Example:Let X={a,b,c,d} with topologies 71={0, X} and r={0,
X {a},{b,c},{a,b,c}}. Let f: X — Y be the identity function. Then
f is quasi supercontinuous but not d-continuous.

3.2 Example: Let X = {a,b,c,d} with topology 7={0, X, {a},
{b,c}, {a,b,c}} and let Y be the skyline space due to Heldermann [9]
which is a Tj-regular space. Let f: X — Y be defined as f(a) = f(b)
= f(c) = p~, f(d) = p*. Then f is pseudo supercontinuous, since Y is
the only regular F,-set containing both p~ and p* but it is not quasi
supercontinuous as V(c) = {(x,y) : ¢ < 2} U {pT} is a f-open set
containing p* and its inverse image is not even open.

3.3 Example: Let N* be the set of positive integers. Define a
topology 7 on N* by taking every singleton consisting of an odd
integer to be open and a set UC N* is open if for every even integer
p € U, the predecessor and successor of p are also in U. Let Y
denote the one point compactification of the space (N*, 7). Let X
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denote the same set Y endowed with the topology 71 = {0, N*, X}.
Then identity map f : X — Y is faintly continuous but not pseudo
supercontinuous.

3.4 Example: Let Y = N* U {oo} be the one point compactification
of the space N*, where N* is endowed with the topology defined in
Example 3.3 and let X = {a, b, ¢, d} be equipped with the topology
7 =10, X, {a}, {b,c}, {a,b,c}}. Then f : X — Y defined as f(a)
= f(b) = f(c) = 2, f(d) = oo is quasi supercontinuous but not quasi
f-continuous.

3.5 Proposition: If f : X — Y is quasi supercontinuous and X is
an almost reqular space, then f is quasi 0-continuous. Proof: In an
almost regular space every d-open set is f-open. 3.6 Proposition: If
f: X =Y is quast supercontinuous and Y is an almost reqular space,
then f is 0-continuous.

3.7 Proposition: Let f: X — Y be a quasi (pseudo) supercontinuous
function. The following statements are true. (a) If X is endowed with
a d-partition topology, then fis quasi (pseudo) perfectly continuous.
(b) If X is an almost zero dimensional space, then fis quasi (pseudo)
cl-supercontinuous.

(c) If X is an extremally disconnected space, then fis quasi (pseudo)
cl-supercontinuous.

3.8 Proposition: For a semiregular space X the following statements
are true.

(a) If f : X = Y is faintly continuous, then fis quasi supercontinuous.
(b) If f : X = Y is Ds-continuous, then f is pseudo supercontinuous.

The following diagram well exhibits the classes of functions which

are properly contained in the classes of quasi (pseudo) supercontinuous
functions.

strongly continuous [25] — perfectly continuous [32] — completely continuous [1]

Z-supercontinuous [14]4— cl-supercontinuous [43] almost completely continuous [20]
{ = clopen continuous [36]) { =R map) [4]
Ds-supercontinuous [ 15] — strongly O-continuous l

supercontinuons ——— - d-continuous

Figure 2.
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4. BASIC PROPERTIES OF QUASI SUPERCONTINUOUS FUNCTIONS

4.1 Theorem: For a function [ : (X,7) — (Y,v) the following
statements are equivalent.
(a) fis quasi supercontinuous
(b) for each O-open set V containing f(x) there exists a regular open
set U containing = such that f (U)CV.
(c) fY(V) is 6-open in X for every O-open set VCY
(d) f~1(V) is §-closed in X for every O-closed set VCY
(e) The function f: (X, 15) — (Y, vg) is continuous
(f) The function f: (X, 7) = (Y, vg) is supercontinuous
(9) The function f: (X, 75) — (Y, v) is faintly continuous
(h) For every net (z,) in X with z, N x,f(xy) N f(z)

(i) For every filter F with F N z,f(F) N f(z).

4.2 Theorem: If f : X — Y is a quasi supercontinuous function and
g:Y — Z is quasi 0-continuous, then gof is quasi supercontinuous.
Proof: Let W be a f-open set in Z. Then in view of quasi
O-continuity of the function g, ¢g~*(W) is a f-open in Y and so
f~Hg™"(W)) is d-open in X. Since f~(g~"(W)) = (gof) (W), gof
is quasi supercontinuous.

4.3 Corollary: If f : X — Y is a quasi supercontinuous function,
g :Y — Z is either (1) continuous or (2) almost continuous or (3)
0-continuous, then the composition gof is quasi supercontinuous.

4.4 Theorem: If f : X — Y is a quasi supercontinuous function
and A is a d-open subset of X, then the restriction fla : A = Y is
quasi supercontinuous. In addition, if f (A) is 0-embedded in Y, then
fla:A— f(A) is quasi supercontinuous.

The following result gives a sufficient condition for the preservation
of quasi supercontinuity under the shrinking of range.

4.5 Theorem: If f : X — Y is a quasi supercontinuous function and f
(X) is 0-embedded in Y, then f: X — f(X) is quasi supercontinuous.
In contrast, quasi supercontinuity is preserved under the expansion of
range as shown by the following result.

4.6 Theorem: If f: X — Y is a quasi supercontinuous function and
Y is a subspace of Z, then g : X — Z defined by g (z) = f (x) for all
r € X s quast supercontinuous.

4.7 Theorem: Let f : X — Y be a surjection which maps 6-open sets
i X to d-open sets in Y and g : Y — Z is any function. If gof is
quast supercontinuous, then g is quasi supercontinuous.

Proof: Let W be a f-open set in Z. Then (gof) ' (W) =
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f~Y (g (W)) is a d-open set in X. In view of the hypothesis on f, it
follows that f(f~'(g7"(W))) = g (W) is a d-open set in Y and so g
is quasi supercontinuous.

4.8 Theorem: Let f : X — Y be a function. The following
statements are true. (a) Let U, : o € A be a §-open cover of X such
that each U, is d-embedded in X. If for each o, fo = flu, is quasi
supercontinuous, then fis quasi supercontinuous.

(b) Let {F; : i =1,....n} be a cover of X by 0-closed sets such that
each F; is 0-embedded in X. If for each i = 1,....,n, f; = f|r is quasi
supercontinuous, then f is quasi supercontinuous.

Proof: (a) Let V be a f-open set of Y. Then f~1(V) = U{f;(V):
a € A} and in view of quasi supercontinuity of f,, each f,'(V)
is d-open in U,. Suppose that f, (V) = UzV,s, where each V4
is a regular open set in U,. Since U, is d-embedded in X, there
exists a regular open set Vj; in X such that V,5 = V3 N U,. Now,
' (V) = UgVas = Us(Vis N UL) = (UVJ) NUa. Since arbitrary
unions and finite intersections of d-open sets is d-open, f; (V) is
d-open set in X and hence so is f~1(V).

(b) Let F be any #-closed subset of Y. Then f~'(F) = UL, f; ' (F).
Since each f; (i = 1,...,n), is quasi supercontinuous, each f; '(F) is
a o0-closed set in F;. Again, since each F; is J-embedded in X, it is
easily shown that each f;*(F) is a d-closed set in X. Now, since
every finite union of d-closed sets is d-closed, f~!(F) is d-closed in X
and so f is quasi supercontinuous.

4.9 Lemma: Let {X, : o € A} be a family of spaces and let
X = [loen Xa be the product space. If v = (x,) € X and V is a
f-open set containing x, then there exists a basic 0-open set [ [, Va
such that x € HaeA Vi, CV, where V, is a 0-open set in X, for each
a € N and V, = X, for all except finitely many o, ...,a, € A.

4.10 Theorem: Let {f,: X — X, : a € A} be a family of functions
and let f + X — [l.ea Xao be defined by f(x) = (fa(x)) for each
x € X. Then fis quasi supercontinuous if and only if each f, is quasi
supercontinuous.

Proof: Suppose f is quasi supercontinuous. Then for each «,
fo = maof, where 7, denotes the projection map 7, : HaeA X — X,.
So in view of Corollary 4.3 each f, is quasi supercontinuous.
Conversely, suppose that each f, : X — X, is quasi supercontinuous.
To prove that f is quasi supercontinuous, it suffices to prove that
f7HU) is d-open for each f-open set U in the product space [], ., Xa-
Since arbitrary unions and finite intersections of d-open sets is d-open,
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in view of Lemma 4.9 it is sufficient to prove that f~*(S) is d-open
for every subbasic f-open set S in the product space [[,cn Xa-
Let Uz x [[,en Xo be a subbasic 90pen set in [[,cn Xao-Then
F7HUs X [aps Xa) = fH g "(Ug)) = f5'(Up) is d-open in X and
so f is quasi Supercontlnuous.

4.11 Theorem: Let {f, : Xo — Yo : a € A} be a family of functions
and let f: [Toea Xa = [loen Yo be defined by f((24)) = (fa(za)) for
each (o) € [[,cn Xa- Then fis quasi supercontinuous if and only if
each f, is quasi supercontinuous.

Proof: Suppose that f is quasi supercontinuous and let Vz be
a f-open set in Ys. Then Vj x ([[,.5Ya) is a f-open set in the
product space [[,cn Yo In view of quasi supercontinuity of f,
S Ve x ([apgs Ya)) = f71(Vs) X (I 15 Xa) is a d-open set in [] X,
Consequently, f~'(V3) is a d-open set in Xz and hence fz is quasi
supercontinuous for each § € A.

Conversely, suppose that each f, is quasi supercontinuous. To show
that f is quasi supercontinuous it suffices to prove that f—1 ( ) is
6-open for each f-open set V' in the product space [[,cp Yo In
view of Lemma 4.9, V is expressible as a union of basic #-open
sets of the form HaeA V., where each V, is a f-open set in X,
and V, = X, for all but finitely many o«y,...,a,, € A. Thus
FUVY = A UTTen Ve) = U [aen Vo) = V(O£ (Vi)
Since each f, is quasi supercontinuous and since finite intersections
of d-open sets is d-open, each N, f1(V,,) is d-open and so f~1(V)
being a union of d-open sets is d-open.

4.12 Corollary: Let f : X — Y be a function and g : X — X XY,
defined by g(z) = (z, f(z)) for each v € X, be the graph function.
Then g is quasi supercontinuous if and only if f is quasi supercontinu-
ous.

Proof: Let f; = 1x be the identity map defined on X and let fo = f.
Then g(x) = (f1(x), fo(a)).

4.13 Theorem: Let f,g: X — Y be quasi supercontinuous functions
from a space X into a O-Hausdorff space Y. Then the equalizer
E=A{x: f(zx)=g(x)} of fand g is §-closed in X.

Proof: Let x € (X — E). Then f(z) # g(x), and so by hypothesis
on Y, there are disjoint f-open sets U and V' containing f(x) and
g(x), respectively. Since f and g are quasi supercontinuous, the
sets f~1(U) and ¢g~'(V) are §-open and contain the point x. Let
G = fFYU)Nng (V). Then G is a d-open set containing x and
GNE =(. Thus E is é-closed in X.
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4.14 Corollary: Let X be a 0-Hausdorff space and let f : X — X be
a quasi supercontinuous function. Then the set of fixed points of f is
0-closed in X.

4.15 Theorem: Let f : X — Y be a quasi supercontinuous function.
If X is almost completely regular, then fis quasi z-supercontinuous.
Proof: Let x € X and let V be a #-open set containing f(x). Since f
is quasi supercontinuous, there exists a regular open set U containing
x such that f(U) C V. In view of almost complete regularity of X
there exists a continuous function h : X — [0, 1] such that h(x) = 0
and h(X-U) = 1. Then W = h™'[0,1) is a cozero set containing x and
contained in U and Thus f is quasi z-supercontinuous.

4.16 Definition: Let f : X — Y be a function from a topological
space X into a topological space Y. The graph G(f) of a f is said to be
d0-closed with respect to X X Y if for each (x,y) & G(f) there exists
a reqular open set U containing x and a 6 -open set V containing vy
such that (U x V)N G(f) = 0.

4.17 Theorem: Let f : X — Y be a quasi supercontinuous function
from a space X into a 0-Hausdorff space Y. Then G(f), the graph of f
18 00-closed with respect to X xX Y.

Proof: Let (x,y) ¢ G(f). Then y # f(x). Since Y is 6-Hausdorff,
there exist disjoint f-open sets V' and W containing f(x) and y,
respectively. In view of quasi supercontinuity of f, there exists a
regular open set U containing x such that f(U) Cc V C (Y — W).
Consequently, (U x W) N G(f) = 0 and so G(f) is df-closed with
respect to X x Y.

4.18 Theorem: Let f: X — Y be a quasi supercontinuous injection
which maps open sets in X to B-open sets in Y. Then X is a semi
reqular space. Further, if X is almost regular, then X is a reqular
space.

Proof: To prove that X is a semiregular space it suffices to prove
that every open set in X is d-open. To this end, let U be an open
set in X containing x. Then f(U) is a f-open set containing f(z).
By quasi supercontinuity of f there exists a regular open set U,
containing x such that f(U,) C f(U). Since f is an injection,
U, C [7Yf(U,)) C f7Y(f(U)) C U. Thus U being a union of regular
open sets is d-open and hence X is a semiregular space. The last
assertion is immediate, since a semiregular space is regular if and only
if it is almost regular [38].

4.19 Theorem: Let f : X — Y be a quasi supercontinuous open
closed surjection. If X is an almost completely reqular space, then Y is
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0-completely reqular. Moreover, if Y is reqular, then Y is completely
reqular.

Proof: Let K C Y be a f-closed set and let z ¢ K. Since f
is quasi supercontinuous, f~!(K) is d-closed. Let o € f~1(2).
Then 7o ¢ f~'(K) and so there exists a regular closed set B
containing f~'(K) and zy ¢ B. Since X is almost completely
regular, there exists a continuous function ¢ : X — [0,1] such
that ¢(xg) = 0 and ¢(B) = 1. Define ¢ : Y — [0,1] by taking
o(y) = sup{o(z) : = € f~1(y)} for each y € Y. Then ¢(z) = 0,
¢(K) = 1 and by [6, Exercise 16] ¢ is continuous. Hence Y is a
f-completely regular space. The last assertion is immediate in view of
the fact that every regular, #-completely regular space is completely
regular.

4.20 Theorem: Let f : X — Y be a quasi supercontinuous surjection
from a nearly compact space X onto a space Y. Then Y is 0 -compact.
Proof: Let Q2 = {U, : @ € A} be a cover of Y by f-open sets. Since f
is quasi supercontinuous, the collection 3 = {f~Y(U,) : a € A}
is a d-open cover of X. Since X is nearly compact, let
{f*(Us), .., f'(U,,)} be a finite subcollection of B which
covers X. Then {U,,,...,U,,} is a finite subcollection of € which
covers Y. Hence Y is #-compact.

4.21 Theorem: Let f: X — Y be a quasi supercontinuous injection.
The following statements are true.

(a) If Y is Hausdorff, then X is weakly Hausdorff.

(b) If Y is 0-Hausdorff, then X is Hausdorff.

Proof: (a). Let x € X. Since Y is Hausdorff and since every
compact set in a Hausdorff space is 6-closed, the singleton {f(x)} is
a O-closed subset of Y and so {z} = f~1(f(x)) is d-closed in X. Thus
X is weakly Hausdorff.

(b). Let x1, 29 € X, x1 # 5. Then Since Y is §-Hausdorff, there exist
disjoint f-open sets V; and V5 containing f(x1) and f(xs) respectively.
Since f is quasi supercontinuous f~!'(V;) and f~!(V;) are disjoint
d-open sets containing x; and s, respectively and so X is Hausdorff.
4.22 Definitions: A space X is said to be nearly paracompact
[37] (respectively O-paracompact, respectively Ds-paracompact) if
every cover by regqular open sets (respectively 0-open sets, respectively
reqular F,-sets) has a locally finite open refinement.

Following implications are immediate from definitions.
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paracompact — nearly paracompact —  {-paracompact — Dz-paracompact

4.23 Theorem: Let f : X — Y be a closed, quasi supercontinuous

almost open surjection such that f~'(y) is compact for each y € Y.
If X is a nearly paracompact space, then Y is a 0-paracompact space.
Moreover, if Y is reqular, then Y is paracompact.
Proof: Let B = {U, : @ € A} be a #-open cover of Y. Since f is
quasi supercontinuous, ¥ = {f~}(U,) : @ € A} is a §-open cover of
X. Let E = {Vj: g € I'} be the natural regular open refinement of
X. Since X is nearly paracompact, there exists a locally finite open
refinement w = {W; : § € Q} of E which covers X. Since each Vj is
regular open, it is easily verified that each W3 may be chosen to be
regular open. Since f is almost open, A = {f(Wjs) : 6 € Q}is an open
refinement of B which covers Y. Again, since f is a closed function
such that f~!(y) is compact for each y € YA = {f(Ws): 6 € Q} is a
locally finite open cover of Y. To complete the proof it suffices to show
that the collection A is locally finite. To this end, let y € Y. For each
x € f~(y), there exists an open set U, containing x which intersects
at most finitely many members of w. Then H = {U, : x € f~!(y)} is
an open cover of the compact set f~!(y) and so there exists a finite
subcollection {U,,, ..., U,,} which covers f~!(y). Let U = U,U,,.
Then U is an open set containing f~!(y) and intersects at most finitely
many members of w. Since f is a closed function, Y — f(X —U) is an
open set containing y which intersects at most finitely many members
of A and so A is locally finite. Thus Y is f-paracompact. The last
assertion is immediate in view of the fact that a regular -paracompact
space is paracompact.

5. PROPERTIES AND CHARACTERIZATIONS OF PSEUDO
SUPERCONTINUOUS FUNCTIONS

5.1 Theorem: Let be a function from a topological space X into a
topological space Y. The following statements are equivalent.
(a) The function fis pseudo supercontinuous.
(b) for each regqular F,-set V containing f(x) there ezists a reqular open
set U containing x such that f(U) C V.
(c) f~Y(V) is 6-open in X for every regular F,-set V C Y.
(d) f~Y(V) is §-open in X for every ds-open set V C Y.
(e) f~1(B) is d-closed in X for every reqular Gs-set B C Y.
(f) fY(B) is d-closed in X for every ds-closed set B CY.
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(9) The function f: (X, 75) = (Y, V4,) is continuous.
(h) The function f: (X, 1) — (Y,4;) is supercontinuous.
(i) The function f: (X, 7s5) — (Y,9) is Ds-continuous.

(j) For every net (x,) in X with x, 2 x,f(xa) s f(z).

(k) For every filter F with F N z,f(F) s f(z).

5.2 Theorem: If f : X — Y is a quasi supercontinuous function and
g:Y — Z is ds-map, then gof is a pseudo supercontinuous.

5.3 Corollary: If f : X — Y s pseudo supercontinuous and
g Y — Z s continuous, then the composition gof is pseudo su-
percontinuous.

54 Theorem: If f : X — Y is pseudo supercontinuous and A is
a 0-open subset of X, then the restriction fla : A — Y is pseudo
supercontinuous, further, if f(A) is reqular Gs-embedded in Y, then
fla:A— f(A) is pseudo supercontinuous.

5.5 Theorem: If f : X — Y is pseudo supercontinuous and Y is a
subspace of Z, then g : X — Z defined by g(x) = f(x) for all x € X
18 pseudo supercontinuous.

5.6 Theorem: If f : X — Y is pseudo supercontinuous and f (X) is
reqular Gg-embedded in Y, then f: X — f(X) is pseudo supercontin-
uous.

5.7 Theorem: Let f: X — Y be a surjection which maps 6-open sets
in X to d-open sets in Y and g : Y — Z is any function. If gof is
pseudo supercontinuous, then g is pseudo supercontinuous.

5.8 Theorem: Let f : X — Y be a function. Then the following
statements are true.

(a) Let {U, : « € A} be a §-open cover of X such that each U, is
d-embedded in X. If for each o, fo = flua is pseudo supercontinuous,
then fis pseudo supercontinuous.

(b) Let {F; : i = 1,....n} be a cover of X by 0-closed sets such that
each F; is §-embedded in X. If for each i = 1,....,n, f; = f|r, is pseudo
supercontinuous, then f is pseudo supercontinuous.

5.9 Lemma: Let {X, : a € A} be a family of spaces and let
X = J[,ea Xa be the product space. If x = (x,) € X and V is a ds-
open set containing x, then there exists a basic reqular Fy- set [], ., Va
such that x € HaeA V, C V., where V, is a reqular F,- set in X, for
each o € A and V, = X, for all except finitely many o, ..., o, € A.
5.10 Theorem: Let {f, : X — X, : a € A} be a family of func-
tions and let f: X — [],cp Xa be defined by f(x) = (fo(z)) for each
x € X. Then fis pseudo supercontinuous if and only if each f, is
pseudo supercontinuous.
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Proof is similar to that of Theorem 4.10 and makes use of Lemma 5.9
instead of Lemma 4.9.

5.11 Theorem: Let {f, : X, — Yo : a € A} be a family of functions
and let f: [],cpn Xa = [laen Yo be defined by f((24)) = (fa(za)) for
each (o) € [[ en Xa- Then fis pseudo supercontinuous if and only
if each f, is pseudo supercontinuous.

Proof is similar to that of Theorem 4.11 and makes use of Lemma 5.9
instead of Lemma 4.9.

5.12 Corollary: Let f : X — Y be a function and g : X — X x Y,
defined by g(x) = (x, f(z)) for each x € X, be the graph function.
Then g is pseudo supercontinuous if and only if f is pseudo supercon-
tinuous.

5.13 Theorem: Let f,g : X — Y be pseudo supercontinuous func-
tions from a space X into a Ds-Hausdorff space Y. Then the equalizer
E={xz:f(x)=g(x)} of fand g is §-closed in X.

5.14 Corollary: Let f : X — X be a pseudo supercontinuous function
defined on a Ds-Hausdorff space X. Then the set of fized points of f is
d-closed.

5.15 Theorem: Let f : X — Y be a pseudo supercontinuous function.
If X 1s almost completely reqular, then f is quasi z-supercontinuous.
5.16 Definition: Let f : X — Y be a function from a topological
space X into a topological space Y. The graph G(f) of f is said to be
JA-closed with respect to X x Y if for each (x,y) ¢ G(f) there exists
a reqular open set U containing x and a reqular F,-set V containing y
such that (U x V)N G(f) = 0.

5.17 Theorem: Let f: X — Y be a pseudo supercontinuous function
from a space X into a Ds-Hausdorff space Y. Then G(f), the graph of
fis 6A-closed with respect to X x Y.

5.18 Theorem: Let f : X — Y be a pseudo supercontinuous injection
which maps open sets in X to ds-open sets in Y. Then X is a semi reg-
ular space. Further, if X is almost reqular, then X is a reqular space.
5.19 Theorem: Let f : X — Y be a pseudo supercontinuous open,
closed surjection. If X is an almost completely reqular space, then Y
s 0-completely regular.

5.20 Theorem: Let f : X — Y be a pseudo supercontinuous surjec-
tion from a space X onto a space Y. If X is a nearly compact space,
then Y is Dg-compact.

5.21 Theorem: Let f : X — Y be a pseudo supercontinuous injection.
Then the following statements are true.

(a) If Y is DsTy-space, then X is weakly Hausdorff.
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(b) If Y is Ds-Hausdorff, then X is Hausdorff.

Proof: (a). Let zy,20 € X, 1 # x9. Then f(x;) # f(x3). Since
Y is DgTy-space, there exists a regular F,-set V containing one of
the points f(z;) and f(x2) but not both. To be precise assume that
f(z1) € V. Since f is pseudo supercontinuous, f~(V) is a d-open set
containing x; but not z5. So there is a regular open set containing x
but not xo. So {x;} is the intersection of regular open sets containing
x1. Hence X is a weakly Hausdorff space.

We omit proof of part (b).

5.22 Theorem: Let f : X — Y be a closed, almost open, pseudo su-
percontinuous surjection such that f~'(y) is compact for each y € Y.
If X 1s a nearly paracompact space, then Y is a Dg-paracompact space.
Moreover, if Y is Ds completely reqular, then Y is paracompact.
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