"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 23 (2013), No. 2, 23 - 33

ON α -S-CLOSED CRISP SUBSETS OF A FUZZY TOPOLOGICAL SPACE

ANJANA BHATTACHARYYA AND M. N. MUKHERJEE

Abstract. In this paper, we introduce a new type of covering property in a fuzzy topological space X, called the property of α -s-closedness of subsets of X. We characterize α -s-closed subsets in many ways, e.g. by means of ordinary nets and power-set filterbases.

1. INTRODUCTION AND PRELIMINARIES

It is well known from literature that in 1987 Di Maio and Noiri [4] proposed a certain type of covering axiom in topological spaces and named them s-closed spaces. Afterwards, many mathematicians have endeavoured to study the said property from many directions. In this connection the papers [5, 6] by Ganguly and Basu need be mentioned. Gantner et al. [7] paved a new direction towards the study of covering property in fuzzy setting in terms of a novel concept viz. α -shading. We resort to the same concept here to define the proposed idea of α -s-closedness in a fuzzy topological space (henceforth to be abbreviated as fts).

In this paper, our aim is to study α -s-closedness of crisp subsets (i.e., ordinary subsets) of an fts. We then characterize it via different ways which are also true in α -s-closedness of X if one puts A = X. In the next section such characterizations are done while in the latter section we investigate a class of crisp subsets of X which inherit α -s-closedness of X. In the last section, we introduce a type of functions keeping α -s-closedness invariant.

Keywords and phrases: α -s-closed space, s- θ_{α} -adherent point of net and filterbase, α -s-interiorly finite intersection property. (2010)Mathematics Subject Classification: 54A40, 54D20

Throughout the paper, by (X, τ) or simply by X we mean an fts in the sense of Chang [3]. The closure and interior of a fuzzy set A [11] in X will be denoted by clA and intA respectively. A fuzzy set A in X is called fuzzy regular open (semiopen) if A = intclA (respectively, $U \leq A \leq clU$, for some fuzzy open set U)[1]. The complement (1 - A)of a fuzzy regular open (semiopen) set is called fuzzy regular closed (respectively, semiclosed).

The semiclosure of a fuzzy set A in X, to be denoted by sclA, is defined by the union of all those fuzzy points x_t (where x is the singleton support and t the value of the fuzzy point x_t , $0 < t \leq 1$) such that for any fuzzy semiopen set U with U(x) + t > 1, there exists $y \in X$ with U(y) + A(y) > 1 [8]. The semi-interior of a fuzzy set A in X, written as sintA, is defined by sintA = 1 - scl(1 - A) [10]. It is known [10] that a fuzzy set A in X is fuzzy semiclosed (semiopen) iff A = sclA (respectively, A = sintA).

2. α -s-CLOSEDNESS: CHARACTERIZATIONS

Definition 2.1. [7] Let A be a crisp subset of an fts X. A collection \mathcal{U} of fuzzy sets in X is called an α -shading (where $0 < \alpha < 1$) of A if for each $x \in A$, there is some $U_x \in \mathcal{U}$ such that $U_x(x) > \alpha$. If, in addition, the members are fuzzy open (semiopen) then \mathcal{U} is called a fuzzy open (resp. semiopen) α -shading of A.

Definition 2.2. Let X be an fts and A be a crisp subsets of X. A is said to be α -s-closed if for every semiopen α -shading $(0 < \alpha < 1)$ \mathcal{U} of A, there is a finite semiproximate α -subshading of A, i.e., there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{sclU : U \in \mathcal{U}_0\}$ is again an α -shading of A. If A = X in addition, then X is called an α -s-closed space.

Mashhour et al. [9] defined a fuzzy set A in an fts X to be fuzzy regular semiopen if there is a fuzzy regular open set U such that $U \leq A \leq clU$, and they proved that a fuzzy regular semiopen set is fuzzy semiopen but not conversely.

Theorem 2.3. A subset A of X is α -s-closed iff every α -shading of A by fuzzy regular semiopen sets in X has a finite proximate α -subshading.

Proof. The proof follows from the definition of α -s-closedness and the fact that whenever $\{V_i : i \in \Lambda\}$ is a fuzzy semiopen α -shading of A, then $\{(intclV_i) \bigcup V_i : i \in \Lambda\}$ is an α -shading of A by fuzzy regular semiopen sets.

Theorem 2.4. Let X be an fts. A crisp subset A of X is α -s-closed iff every family of fuzzy semiopen sets, the semi-interiors of whose semi-closures form an α -shading of A, contains a finite subfamily, the semi-closures of whose members form an α -shading of A.

Proof. It is sufficient to observe that for a fuzzy semiopen set U, $U \leq sint(sclU) \leq scl(sint(sclU)) = sclU$.

Theorem 2.5. A crisp subset A of an fts X is α -s-closed iff for every collection $\{F_i : i \in \Lambda\}$ of fuzzy semiopen sets with the property that for each finite subset Λ_0 of Λ , there is $x \in A$ such that $\inf_{i \in \Lambda_0} F_i(x) \ge 1 - \alpha$, one has $\inf_{i \in \Lambda} (sclF_i)(y) \ge 1 - \alpha$, for some $y \in A$.

Proof. Let A be α -s-closed, and if possible, let for a collection $\{F_i : i \in \Lambda\}$ of fuzzy semiopen sets in X with the stated property, $(\bigcap_{i \in \Lambda} sclF_i)(x) < 1 - \alpha$, for each $x \in A$. Then $\alpha < (1 - \bigcap_{i \in \Lambda} sclF_i)(x) =$

 $\left[\bigcup_{i\in\Lambda}(1-sclF_i)\right](x), \text{ for each } x\in A \text{ which shows that } \{1-sclF_i: i\in\Lambda\}$

is a semiopen α -shading of A. By α -s-closedness of A, there is a finite subset Λ_0 of Λ such that $\{scl(1 - sclF_i) : i \in \Lambda_0\} = \{1 - sint(sclF_i) : i \in \Lambda_0\}$ is an α -shading of A. Hence $\alpha < [\bigcup_{i \in \Lambda_0} (1 - sint(sclF_i))](x)$

$$= [1 - (\bigcap_{i \in \Lambda_0} sint(sclF_i))](x), \text{ for each } x \in A. \text{ Then } (\bigcap_{i \in \Lambda_0} F_i)(x) \leq C_{i}(x) \in \Lambda_0$$

 $\left[\bigcap_{i\in\Lambda_0} sint(sclF_i)\right](x) < 1 - \alpha, \text{ for each } x \in A, \text{ which contradicts the}$

stated property of the collection $\{F_i : i \in \Lambda\}$.

Conversely, let under the given hypothesis, A be not α -s-closed. Then there is a semiopen α -shading $\mathcal{U} = \{U_i : i \in \Lambda\}$ of A having no finite semi-proximate α -subshading, i.e., for every finite subset Λ_0 of Λ , $\{sclU_i : i \in \Lambda_0\}$ is not an α -shading of A, i.e., there exists $x \in A$ such that $\sup_{i \in \Lambda_0} (sclU_i)(x) \leq \alpha$, i.e., $1 - \sup_{i \in \Lambda_0} (sclU_i)(x) = \inf_{i \in \Lambda_0} (1 - sclU_i)(x) \geq 1 - \alpha$. Hence $\{1 - sclU_i : i \in \Lambda\}$ is a family of fuzzy semiopen sets with the stated property.

Consequently, there is some $y \in A$ such that $\inf_{i \in \Lambda} [scl(1 - sclU_i)](y) \ge 1 - \alpha$. Then $\sup_{i \in \Lambda} U_i(y) \le \sup_{i \in \Lambda} (sintsclU_i)(y)$ $= 1 - \inf_{i \in \Lambda} (1 - sintsclU_i)(y) = 1 - \inf_{i \in \Lambda} [scl(1 - sclU_i)]((y) \le \alpha$. This shows that $\{U_i : i \in \Lambda\}$ fails to be an α -shading of A, a contradiction. Let us now introduce the following definition:

Definition 2.6. Let $\{S_n : n \in (D, \geq)\}$ (where (D, \geq) is a directed set) be an ordinary net in X and \mathcal{F} be a power-set filterbase on X, and $x \in X$ be any crisp point in X. Then x is called an s- θ_{α} -adherent point of:

(a) the net $\{S_n\}$ if for each fuzzy semiopen set U in X with $U(x) > \alpha$ and for each $m \in D$, there exists $k \in D$ such that $k \ge m$ in D and $(sclU)(S_k) > \alpha$,

(b) the filterbase \mathcal{F} if for each fuzzy semiopen set U with $U(x) > \alpha$ and for each $F \in \mathcal{F}$, there exists a crisp point x_F in F such that $(sclU)(x_F) > \alpha$.

Theorem 2.7. A crisp subset A of an fts X is α -s-closed iff every net in A has an s- θ_{α} -adherent point in A.

Proof. Let us suppose that A be α -s-closed, but there be a net $\{S_n : n \in (D, \geq)\}$ in $A((D, \geq))$ being a directed set, as usual) having no s- θ_{α} -adherent point in A. Then for each $x \in A$, there is a fuzzy semiopen set U_x with $U_x(x) > \alpha$, and there is an $m_x \in D$ such that $(sclU_x)(S_n) \leq \alpha$, for all $n \geq m_x$ $(n \in D)$. Now, $\mathcal{U} = \{1 - sclU_x : x \in X\}$ is a collection of fuzzy semiopen sets such that for any finite subcollection $\{1 - sclU_{x_1}, ..., 1 - sclU_{x_k}\}$ (say) of \mathcal{U} , there exists $m \in D$

with $m \ge m_{x_1}, \dots, m_{x_k}$ in D such that $(\bigcup_{i=1} sclU_{x_i})(S_n) \le \alpha$, for all

$$n \ge m \ (n \in D)$$
, i.e., $\inf_{1 \le i \le k} (1 - sclU_{x_i})(S_n) \ge 1 - \alpha$, for all $n \ge m$.

Hence by Theorem 2.5, there exists some $y \in A$ such that $\inf_{x \in A} [scl(1 - sclU_x)(y)] \ge 1 - \alpha$, i.e., $(\bigcup_{x \in A} U_x)(y) \le [\bigcup_{x \in A} sint(sclU_x)](y) = 1 - [1 - (\bigcup_{x \in A} sintsclU_x)(y)] = 1 - \inf_{x \in A} [scl(1 - sclU_x)](y) \le 1 - 1 + \alpha = \alpha$. We have, in particular, $U_y(y) \le \alpha$, contradicting the definition of U_y .

Hence the result is proved.

Conversely, let every net in A have $s \cdot \theta_{\alpha}$ -adherent point in A and suppose $\{F_i : i \in \Lambda\}$ be an arbitrary collection of fuzzy semiopen sets in X. Let Λ_f denote the collection of all subsets of Λ , then (Λ_f, \geq) is a directed set, where for $\mu, \lambda \in \Lambda_f, \mu \geq \lambda$ iff $\mu \supseteq \lambda$. For each $\mu \in \Lambda_f$, put $F_{\mu} = \bigcap \{F_i : i \in \mu\}$.

Let for each $\mu \in \Lambda_f$, there be a point $x_{\mu} \in A$ such that

$$\inf_{i \in \mu} F_i(x_\mu) \ge 1 - \alpha \quad (1).$$

Then by Theorem 2.5 it is enough to show that $\inf_{i \in \Lambda} (sclF_i)(z) \ge 1 - \alpha$ for some $z \in A$. If possible, let

$$\inf_{i \in \Lambda} (sclF_i)(z) < 1 - \alpha, \text{ for each } z \in A \quad (2).$$

Now, $S = \{x_{\mu} : \mu \in (\Lambda_{f}, \geq)\}$ is clearly a net of points in A. By hypothesis, there is an $s \cdot \theta_{\alpha}$ -adherent point z in A of this net. By $(2), \inf_{i \in \Lambda} (sclF_i)(z) < 1 - \alpha$ implies that there exists $i_0 \in \Lambda$ such that $(sclF_{i_0})(z) < 1 - \alpha$, i.e., $1 - sclF_{i_0}(z) > \alpha$. Since z is an $s \cdot \theta_{\alpha}$ -adherent point of S, for the index $\{i_0\} \in \Lambda_f$, there is $\mu_0 \in \Lambda_f$ with $\mu_0 \geq \{i_0\}$ (i.e., $i_0 \in \mu_0$) such that $scl(1 - sclF_{i_0})(x_{\mu_0}) > \alpha$, i.e., $sintsclF_{i_0}(x_{\mu_0}) < 1 - \alpha$. Since $i_0 \in \mu_0, \inf_{i \in \mu_0} F_i(x_{\mu_0}) \leq F_{i_0}(x_{\mu_0}) \leq sintsclF_{i_0}(x_{\mu_0}) < 1 - \alpha$, which contradicts (1). This completes the proof

which contradicts (1). This completes the proof.

Theorem 2.8. A crisp subset A of an fts X is α -s-closed iff every filterbase \mathcal{F} on A has an s- θ_{α} -adherent point in A.

Proof. Let A be α -s-closed and let there exist, if possible, a filterbase \mathcal{F} on A having no s- θ_{α} -adherent point in A. Then for each $x \in A$, there exist a fuzzy semiopen set U_x with $U_x(x) > \alpha$, and an $F_x \in \mathcal{F}$ such that $(sclU_x)(y) \leq \alpha$, for each $y \in F_x$. Then $\mathcal{U} = \{U_x : x \in A\}$ is a fuzzy semiopen α -shading of A. Thus there exist finitely many points x_1, x_2, \ldots, x_n in A such that $\mathcal{U}_0 = \{sclU_{x_i} : i = 1, 2, \ldots, n\}$ is an α -shading of A. Choose $F \in \mathcal{F}$ such that $F \leq F_{x_1} \bigcap F_{x_2} \bigcap \ldots \bigcap F_{x_n}$. Then $(sclU_{x_i})(y) \leq \alpha$, for all $y \in F$ and for $i = 1, 2, \ldots, n$. Thus \mathcal{U}_0 fails to be an α -shading of A, a contradiction.

Conversely, let the condition hold and suppose, if possible, $\{y_n : n \in (D, \geq)\}$ be a net in A having no $s \cdot \theta_{\alpha}$ -adherent point in A. Then for $x \in A$, there are a fuzzy semiopen set U_x with $U_x(x) > \alpha$ and an $m_x \in D$ such that $(sclU_x)(y_n) \leq \alpha$, for all $n \geq m_x$ $(n \in D)$. Thus $\mathcal{F} = \{F_x : x \in A\}$, where $F_x = \{y_n : n \geq m_x\}$ generates a filterbase \mathcal{F}^* on A. By hypothesis, \mathcal{F}^* has an $s \cdot \theta_{\alpha}$ -adherent point z (say) in A. But there are a fuzzy semiopen set U_z with $U_z(z) > \alpha$ and an $m_z \in D$ such that $(sclU_z)(y_n) \leq \alpha$, for all $n \geq m_z$, i.e., for all $p \in F_z$ $(\in \mathcal{F} \subseteq \mathcal{F}^*)$, $(sclU_z)(p) \leq \alpha$. Hence z cannot be an $s \cdot \theta_{\alpha}$ -adherent point of the filterbase \mathcal{F}^* , a contradiction. Hence by Theorem 2.7, Ais α -s-closed.

Definition 2.9. A family $\{F_i : i \in \Lambda\}$ of fuzzy sets in an fts X is said to have α -s-interiorly finite intersection property or simply α -s-IFIP in a subset A of X, if for each finite subset Λ_0 of Λ , there exists $x \in A$ such that $[\bigcap_{i \in \Lambda_0} sintF_i](x) \ge 1 - \alpha$. **Theorem 2.10.** A crisp subset A of an fts X is α -s-closed iff for every family $\mathcal{F} = \{F_i : i \in \Lambda\}$ of fuzzy semiclosed sets in X with α -s-IFIP in A, there exists $x \in A$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$.

Proof. Assuming $A (\subseteq X)$ to be α -s-closed, let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a family of fuzzy semiclosed sets with α -s-IFIP in A. If possible, let for each $x \in A$, $\inf_{i \in \Lambda} F_i(x) < 1 - \alpha$, i.e., $(\bigcap_{i \in \Lambda} F_i)(x) < 1 - \alpha$ and hence

 $[\bigcup_{i \in \Lambda} (1 - F_i)](x) > \alpha.$ Thus $\mathcal{U} = \{1 - F_i : i \in \Lambda\}$ is a fuzzy semiopen

 α -shading of A. By α -s-closedness of A, there is a finite subset Λ_0 of Λ such that $[\bigcup_{i\in\Lambda_0} scl(1-F_i)](x) > \alpha$, i.e., $1 - (\bigcap_{i\in\Lambda_0} sintF_i)(x) > \alpha$, i.e.,

 $(\bigcap_{i \in \Lambda_0} sintF_i)(x) < 1 - \alpha$, for each $x \in A$, which shows that \mathcal{F} does not

have α -s-IFIP in A, a contradiction.

Conversely, let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a fuzzy semiopen α -shading of A. Then $\mathcal{F} = \{1 - U_i : i \in \Lambda\}$ is a family of fuzzy semiclosed sets with $\inf_{i \in \Lambda} (1 - U_i)(x) < 1 - \alpha$, for each $x \in A$, so that \mathcal{F} does have α -s-IFIP. Hence for some finite subset Λ_0 of Λ , we have for each $x \in A$, $[\bigcap_{i \in \Lambda_0} sint(1 - U_i)](x) < 1 - \alpha$ imples that $1 - (\bigcup_{i \in \Lambda_0} sclU_i)(x) < 1 - \alpha$,

for each $x \in A$ so that $(\bigcup_{i \in \Lambda_0} sclU_i)(x) > \alpha$, for each $x \in A$. Hence A is

 α -s-closed.

Putting A = X in the characterization theorems so far, of α -s-closed crisp subset A, we obtain as follows:

Theorem 2.11. For an fts (X, τ) , the following are equivalent:

(a) X is α -s-closed.

(b) Every α -shading of X by fuzzy regular semiopen sets has a finite proximate α -subshading.

(c) Every family of fuzzy semiopen sets, the semi-interiors of whose semi-closures form an α -shading of X, contains a finite subfamily, the semi-closures of whose members form an α -shading of X.

(d) For every collection $\{F_i : i \in \Lambda\}$ of fuzzy semiopen sets with the property that for each finite subset Λ_0 of Λ , there is $x \in X$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$, one has $\inf_{i \in \Lambda} (sclF_i)(y) \ge 1 - \alpha$, for some $y \in X$.

(e) Every net in X has an $s - \theta_{\alpha}$ -adherent point in X.

(f) Every filterbase on X has an $s - \theta_{\alpha}$ -adherent point in X.

(g) For every family $\mathcal{F} = \{F_i : i \in \Lambda\}$ of fuzzy semiclosed sets in X with α -s-IFIP in X, there exists $x \in X$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$.

3. $\theta_{s^*}^{\alpha}$ -CLOSED SET, $\theta_{s^*}^{\alpha}$ -CONTINUITY AND α -s-CLOSEDNESS

In this section we introduce a class of crisp subsets of an fts X, which inherit α -s-closedness of X, and also we try to ascertain a class of α -s-closed fts's for which the former class of subsets is precisely the family of subsets inheriting the α -s-closedness of the spaces concerned. Finally, we search for a type of function under which α -s-closedness remains invariant.

Definition 3.1. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be a $\theta_{s^*}^{\alpha}$ -limit point of A if for every fuzzy semiopen set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(sclU)(y) > \alpha$. The set of all $\theta_{s^*}^{\alpha}$ -limit points of A will be denoted by $[A]_{s^*}^{\alpha}$.

The $\theta_{s^*}^{\alpha}$ -closure of A, to be denoted by $\theta_{s^*}^{\alpha}$ -clA, is defined by $\theta_{s^*}^{\alpha}$ -cl $A = A \cup [A]_{s^*}^{\alpha}$.

Definition 3.2. A crisp subset A of an fts X is said to be $\theta_{s^*}^{\alpha}$ -closed if it contains all its $\theta_{s^*}^{\alpha}$ -limit points. Any subset B of X is called $\theta_{s^*}^{\alpha}$ -open if $X \setminus B$ is $\theta_{s^*}^{\alpha}$ -closed.

Remark 3.3. For any $A \subseteq X$ it is clear that $A \subseteq \theta_{s^*}^{\alpha} \cdot clA$, and $\theta_{s^*}^{\alpha} \cdot clA = A$ iff $[A]_{s^*}^{\alpha} \subseteq A$. Then in view of Definition 3.1, it follows that A is $\theta_{s^*}^{\alpha}$ -closed iff $\theta_{s^*}^{\alpha} \cdot clA = A$. It is also clear that $A \subseteq B \subseteq X$ implies that $[A]_{s^*}^{\alpha} \subseteq [B]_{s^*}^{\alpha}$.

Theorem 3.4. A $\theta_{s^*}^{\alpha}$ -closed subset A of an α -s-closed space X is α -s-closed.

Proof. Let $A \ (\subseteq X)$ be $\theta_{s^*}^{\alpha}$ -closed in X. Then for any $x \notin A$, there is a fuzzy semiopen set U_x such that $U_x(x) > \alpha$, and $(sclU_x)(y) \le \alpha$ for every $y \in A$. Consider the collection $\mathcal{U} = \{U_x : x \notin A\}$. Now to prove that A is α -s-closed, consider a fuzzy semiopen α -shading \mathcal{V} of A. Clearly $\mathcal{U} \cup \mathcal{V}$ is a fuzzy semiopen α -shading of X. Since X is α -sclosed, there exists a finite subcollection $\{V_1, V_2, ..., V_n\}$ of $\mathcal{U} \cup \mathcal{V}$ such that for every $t \in X$, there exists V_i $(1 \le i \le n)$ with $sclV_i(t) > \alpha$. For every member U_x of \mathcal{U} , $sclU_x(y) \le \alpha$ for every $y \in A$. So if this subcollection contains any member of \mathcal{U} , we omit it and hence we get the result.

To achieve the converse of Theorem 3.4, we define the following:

Definition 3.5. An fts (X, τ) is said to be α_s -Urysohn if for any two distinct points x, y of X, there exist $U, V \in \tau$ with $U(x) > \alpha$, $V(y) > \alpha$ and $\min(sclU(z), sclV(z)) \leq \alpha$ for each $z \in X$.

Theorem 3.6. An α -s-closed set in an α_s -Urysohn space X is $\theta_{s^*}^{\alpha}$ -closed.

Proof. Let A be α -s-closed and $x \in X \setminus A$. Then for each $y \in A$, $x \neq y$. By α_s -Urysohn property of X, there exist fuzzy open sets U_y and V_y such that $U_y(x) > \alpha$, $V_y(y) > \alpha$ and $\min((sclU_y)(z), (sclV_y)(z)) \leq \alpha$, for all $z \in X$ (1).

Then $\mathcal{U} = \{V_y : y \in A\}$ is a fuzzy open and hence fuzzy semiopen α -shading of the α -s-closed set A. Then by α -s-closedness of A, there are finitely many points $y_1, y_2, ..., y_n$ in A such that $\mathcal{U}_0 = \{sclV_{y_1}, sclV_{y_2}, ..., sclV_{y_n}\}$ is again an α -shading of A. Now, $U = U_{y_1} \cap ... \cap U_{y_n}$ is a fuzzy open set and hence a fuzzy semiopen set such that $U(x) > \alpha$. In order to show that A to be $\theta_{s^*}^{\alpha}$ -closed, it now suffices to show that $(sclU)(y) \leq \alpha$ for each $y \in A$. In fact, if for some $z \in A$, we assume $(sclU)(z) > \alpha$ then as $z \in A$, we have $(sclV_{y_k})(z)) > \alpha$ for some k $(1 \leq k \leq n)$. Also, $(sclU_{y_k})(z) > \alpha$. Hence $\min[(sclU_{y_k})(z), (sclV_{y_k})(z)] > \alpha$, contradicting (1).

Corollary 3.7. In an α -s-closed, α_s -Urysohn space X, a subset A of X is α -s-closed iff it is $\theta_{s^*}^{\alpha}$ -closed.

Theorem 3.8. In an α -s-closed space X, every cover of X by $\theta_{s^*}^{\alpha}$ -open sets has a finite subcover.

Proof. Let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a cover of X by $\theta_{s^*}^{\alpha}$ -open sets. Then for each $x \in X$, there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Now, as $X \setminus U_x$ is $\theta_{s^*}^{\alpha}$ -closed, there exists a fuzzy semiopen set V_x in X such that

 $V_x(x) > \alpha$, and $(sclV_x)(y) \le \alpha$ for each $y \in X \setminus U_x$ (1)

Then $\{V_x : x \in X\}$ forms a fuzzy semiopen α -shading of the α -sclosed space X. Thus there exists a finite subset $\{x_1, x_2, ..., x_n\}$ of X such that

 $\{sclV_{x_i} : i = 1, 2, ..., n\} \text{ is an } \alpha \text{-shading of } X \tag{2}$

We claim that $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of \mathcal{U} . If not, then there exists $y \in X \setminus \bigcup_{i=1}^n U_{x_i} = \bigcap_{i=1}^n (X \setminus U_{x_i})$. Then by (1), $sclV_{x_i}(y) \leq \alpha$ for i = 1, 2, ..., n. Therefore, $(\bigcup_{i=1}^n sclV_{x_i})(y) \leq \alpha$, contradicting (2).

Theorem 3.9. Let (X, τ) be an fts. If X is α -s-closed then every collection of $\theta_{s^*}^{\alpha}$ -closed sets in X with finite intersection property has nonempty intersection.

Proof. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a collection of $\theta_{s^*}^{\alpha}$ -closed sets in X having finite intersection property. If possible, let $\bigcap_{i \in \Lambda} F_i = \phi$.

Then $X \setminus \bigcap_{i \in \Lambda} F_i = X$ implies that $\bigcup_{i \in \Lambda} (X \setminus F_i) = X$ which shows that

 $\mathcal{U} = \{X \setminus F_i : i \in \Lambda\}$ is an $\theta_{s^*}^{\alpha}$ -open cover of X. Then by Theorem 3.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in \Lambda_0} (X \setminus F_i) = X$ so that

 $\bigcap_{i \in \Lambda_0} F_i = \phi, \text{ a contradiction.}$

For achieving the converse of the above theorem, we need to introduce the following notation:

Notation 3.10. For any fuzzy set A in an fts X, the subset \overline{A}_s^{α} of X is defined by $\overline{A}_s^{\alpha} = \{x \in X : (sclA)(x) \leq \alpha\}.$

Remark 3.11. For any fuzzy semiopen set U in an fts (X, τ) , the set $\overline{U}_s^{\alpha} = \{x \in X : (sclU)(x) \leq \alpha\}$ is $\overline{\theta}_{s^*}^{\alpha}$ -closed. In fact, if $y \notin \overline{U}_s^{\alpha}$, then U is a fuzzy semiopen set in X such that $(sclU)(y) > \alpha$, and $(sclU)(z) \leq \alpha$, for all $z \in \overline{U}_s^{\alpha}$. Then V = sclU is a fuzzy semiopen set such that $V(y) > \alpha$ and $(sclV)(z) \leq \alpha$, for all $z \in \overline{U}_s^{\alpha}$.

The next theorem serves as a weak converse of Theorem 3.9.

Theorem 3.12. Let (X, τ) be an fts. Then X is α -s-closed if every collection of $\theta_{s^*}^{\alpha}$ -closed sets in X satisfying the finite intersection property, has nonempty intersection.

Proof. Let \mathcal{U} be a fuzzy semiopen α -shading of X. Consider the collection $\mathcal{C} = \{\overline{V}_s^{\alpha} : V \in \mathcal{U}\}$ where \overline{U}_s^{α} stands for the expression given in Remark 3.11. Then \mathcal{C} is a collection of $\theta_{s^*}^{\alpha}$ -closed sets.

Since \mathcal{U} is an α -shading of X, for every $x \in X$ there exists $V \in \mathcal{U}$ with $V(x) > \alpha$, so that $(sclV)(x) > \alpha$. Hence $x \notin \overline{V}_s^{\alpha}$, for some $V \in \mathcal{U}$. Thus $\cap \{\overline{V}_s^{\alpha} : V \in \mathcal{U}\} = \phi$. Then by hypothesis \mathcal{C} does not satisfy the finite intersection property. Hence there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\cap \{\overline{V}_s^{\alpha} : V \in \mathcal{U}_0\} = \phi$. Thus for every $x \in X$, there exists $V \in \mathcal{U}_0$ such that $x \notin \overline{V}_s^{\alpha}$ and hence $sclV(x) > \alpha$, proving that \mathcal{U}_0 is a finite α -subshading of \mathcal{U} . Thus X is α -s-closed.

Let us now introduce a class of functions under which α -s-closedness remains invariant.

Definition 3.13. Let X, Y be fts's. A function $f: X \to Y$ is said to be $\theta_{s^*}^{\alpha}$ -continuous if $f^{-1}(A)$ is $\theta_{s^*}^{\alpha}$ -closed in X for every $\theta_{s^*}^{\alpha}$ -closed set A in Y.

Theorem 3.14. Let (X, τ) and (Y, τ_1) be fts's and let $f : X \to Y$ be a $\theta_{s^*}^{\alpha}$ -continuous function. If $A \subseteq X$ is α -s-closed in X, then so is f(A) in Y.

Proof. Consider a fuzzy semiopen α -shading \mathcal{V} of f(A) in Y. For every $x \in A$, $f(x) \in f(A)$ and hence there exists $U_{f(x)} \in \mathcal{V}$ such that $U_{f(x)}(f(x)) > \alpha$. Clearly $(sclU_{f(x)})^{-1}[0, \alpha]$ is $\theta_{s^*}^{\alpha}$ -closed in Y. For, $z \notin$ $(sclU_{f(x)})^{-1}[0,\alpha]$ implies that $U_{f(x)} \in SO(Y)$ (where SO(Y) denotes the set of all fuzzy semiopen sets in Y) and $(sclU_{f(x)})(z) > \alpha$, and $(sclU_{f(x)})(y) \leq \alpha$ for every $y \in (sclU_{f(x)})^{-1}[0,\alpha]$.

Clearly, $x \notin f^{-1}((sclU_{f(x)})^{-1}[0,\alpha])$. Thus x is not a $\theta_{s^*}^{\alpha}$ -limit point of $f^{-1}((sclU_{f(x)})^{-1}[0,\alpha])$ (since $(sclU_{f(x)})^{-1}[0,\alpha]$ is $\theta_{s^*}^{\alpha}$ -closed and f is $\theta_{s^*}^{\alpha}$ -continuous imply that $f^{-1}((sclU_{f(x)})^{-1}[0,\alpha])$ is $\theta_{s^*}^{\alpha}$ -closed). Then there is a fuzzy semiopen set V_x with $V_x(x) > \alpha$, but $(sclV_x)(z) \leq \alpha$ for every $z \in f^{-1}((sclU_{f(x)})^{-1}[0,\alpha])$. Then $\mathcal{U} = \{V_x : x \in A\}$ is a fuzzy semiopen α -shading of A.

As A is α -s-closed, there exist finitely many members $V_{x_1}, ..., V_{x_n}$ of \mathcal{U} such that for every $t \in A$, $[sclV_{x_i}](t) > \alpha$ for some i (i = 1, 2, ..., n).

It suffices to prove that $\{sclU_{f(x_i)} : i = 1, 2, ..., n\}$ is an α -shading of f(A).

Indeed, let $s \in f(A)$. Then there exists $t \in A$ such that f(t) = s. Then $sclV_{x_j}(t) > \alpha$ for some j $(1 \leq j \leq n)$. Thus $t \notin f^{-1}((sclU_{f(x_j)})^{-1}[0,\alpha])$ implies that $f(t) \notin (sclU_{f(x_j)})^{-1}[0,\alpha]$ so that $sclU_{f(x_j)}(f(t)) > \alpha$. Consequently, $sclU_{f(x_j)}(s) > \alpha$. Hence the theorem.

In [2], θ_s^{α} -limit point of a crisp subset A in an fts X is defined as follows:

Definition 3.15. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be a θ_s^{α} -limit point of A if for every fuzzy semiopen set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(clU)(y) > \alpha$.

It is clear from Definition 3.1 and Definition 3.15 that $\theta_{s^*}^{\alpha}$ -limit point of a crisp subset A of an fts X is a θ_s^{α} -limit point of A. But the converse may not be true as seen from the following example.

Example 3.16. Let $X = \{a, b\}$, $A = \{b\}$, $\tau = \{0_X, 1_X, B\}$ where B(a) = 0.5, B(b) = 0.4. Then (X, τ) is an fts. Now fuzzy semiopen sets in X are 0_X , 1_X and U where U(a) = 0.5, $0.4 \le U(b) \le 0.6$. We claim that a is a θ_s^{α} -limit point of A but not a $\theta_{s^*}^{\alpha}$ -limit point of A.

Now consider the fuzzy semiopen set V given by V(a) = 0.5, V(b) = 0.4. Let $\alpha = 0.47$. Then $V(a) = 0.5 > \alpha$ but $(sclV)(b) = V(b) = 0.4 \neq \alpha$ (as V is fuzzy semiclosed set in X also). Therefore, a is not a $\theta_{s^*}^{\alpha}$ -limit point of A.

But for any fuzzy semiopen set U in X other than 1_X with $U(a) > \alpha$, $(clU)(b) = (1_X \setminus B)(b) = 0.6 > \alpha$ and so a is a θ_s^{α} -limit point of A.

References

- K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981),14–32.
- [2] Anjana Bhattacharyya and M.N. Mukherjee, On α-S-closed crisp subsets of a fuzzy topological space, J. Pure Math. 18(2001), 17–27.
- [3] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182–190.
- [4] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18(3)(1987), 226–233.
- [5] S. Ganguly and C.K. Basu, More on s-closed spaces, Soochow J. Math. 18(1992), 409–418.
- [6] S. Ganguly and C.K. Basu, Further characterizations of s-closed spaces, Indian J. Pure Appl. Math. 23(1992), 635–641.
- [7] T.E. Gantner, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62(1978), 547–562.
- [8] B. Ghosh, Semi-continuous and semiclosed mappings and semiconnectedness in fuzzy setting, Fuzzy Sets and Syst. 35(1990), 345–355.
- [9] A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, α-separation axioms and α-compactness in fuzzy topological space, Rocky Mt. J. Math. 16(3)(1986), 591–600.
- [10] S.P. Sinha, Study of some fuzzy topological problems, Ph.D. Thesis (1990), Calcutta University.
- [11] L.A. Zadeh, Fuzzy Sets, Inf. Control 8(1965), 338–353.

A. Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78B, A.P.C. Road, Kolkata - 700009, INDIA, e-mail: anjanabhattacharyya@hotmail.com

M. N. Mukherjee

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, INDIA, e-mail: mukherjeemn@ yahoo.co.in