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ON α-S-CLOSED CRISP SUBSETS OF A FUZZY
TOPOLOGICAL SPACE

ANJANA BHATTACHARYYA AND M. N. MUKHERJEE

Abstract. In this paper, we introduce a new type of covering
property in a fuzzy topological space X, called the property of α-
s-closedness of subsets of X. We characterize α-s-closed subsets in
many ways, e.g. by means of ordinary nets and power-set filterbases.

1. Introduction and preliminaries

It is well known from literature that in 1987 Di Maio and Noiri [4]
proposed a certain type of covering axiom in topological spaces and
named them s-closed spaces. Afterwards, many mathematicians have
endeavoured to study the said property from many directions. In this
connection the papers [5, 6] by Ganguly and Basu need be mentioned.
Gantner et al. [7] paved a new direction towards the study of covering
property in fuzzy setting in terms of a novel concept viz. α-shading.
We resort to the same concept here to define the proposed idea of α-s-
closedness in a fuzzy topological space (henceforth to be abbreviated
as fts).

In this paper, our aim is to study α-s-closedness of crisp subsets
(i.e., ordinary subsets) of an fts. We then characterize it via different
ways which are also true in α-s-closedness of X if one puts A = X.
In the next section such characterizations are done while in the latter
section we investigate a class of crisp subsets of X which inherit α-s-
closedness of X. In the last section, we introduce a type of functions
keeping α-s-closedness invariant.
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Throughout the paper, by (X, τ) or simply by X we mean an fts in
the sense of Chang [3]. The closure and interior of a fuzzy set A [11]
in X will be denoted by clA and intA respectively. A fuzzy set A in
X is called fuzzy regular open (semiopen) if A = intclA (respectively,
U ≤ A ≤ clU , for some fuzzy open set U)[1]. The complement (1−A)
of a fuzzy regular open (semiopen) set is called fuzzy regular closed
(respectively, semiclosed).

The semiclosure of a fuzzy set A in X, to be denoted by sclA,
is defined by the union of all those fuzzy points xt (where x is the
singleton support and t the value of the fuzzy point xt, 0 < t ≤ 1 )
such that for any fuzzy semiopen set U with U(x) + t > 1, there exists
y ∈ X with U(y) +A(y) > 1 [8]. The semi interior of a fuzzy set A in
X, written as sintA, is defined by sintA = 1 − scl(1 − A) [10]. It is
known [10] that a fuzzy set A in X is fuzzy semiclosed (semiopen) iff
A = sclA (respectively, A = sintA).

2. α-s-CLOSEDNESS: CHARACTERIZATIONS

Definition 2.1. [7] Let A be a crisp subset of an fts X. A collection
U of fuzzy sets in X is called an α-shading (where 0 < α < 1) of A
if for each x ∈ A, there is some Ux ∈ U such that Ux(x) > α. If, in
addition, the members are fuzzy open (semiopen) then U is called a
fuzzy open (resp. semiopen) α-shading of A.
Definition 2.2. Let X be an fts and A be a crisp subsets of X. A
is said to be α-s-closed if for every semiopen α-shading (0 < α < 1)
U of A, there is a finite semiproximate α-subshading of A, i.e., there
is a finite subcollection U0 of U such that {sclU : U ∈ U0} is again an
α-shading of A. If A = X in addition, then X is called an α-s-closed
space.

Mashhour et al. [9] defined a fuzzy set A in an fts X to be fuzzy
regular semiopen if there is a fuzzy regular open set U such that U ≤
A ≤ clU , and they proved that a fuzzy regular semiopen set is fuzzy
semiopen but not conversely.
Theorem 2.3. A subset A of X is α-s-closed iff every α-shading
of A by fuzzy regular semiopen sets in X has a finite proximate α-
subshading.
Proof. The proof follows from the definition of α-s-closedness and
the fact that whenever {Vi : i ∈ Λ} is a fuzzy semiopen α-shading of
A, then {(intclVi)

⋃
Vi : i ∈ Λ} is an α-shading of A by fuzzy regular

semiopen sets.
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Theorem 2.4. Let X be an fts. A crisp subset A of X is α-s-closed
iff every family of fuzzy semiopen sets, the semi-interiors of whose
semi-closures form an α-shading of A, contains a finite subfamily, the
semi-closures of whose members form an α-shading of A.
Proof. It is sufficient to observe that for a fuzzy semiopen set U ,
U ≤ sint(sclU) ≤ scl(sint(sclU))=sclU .
Theorem 2.5. A crisp subset A of an fts X is α-s-closed iff for every
collection {Fi : i ∈ Λ} of fuzzy semiopen sets with the property that for
each finite subset Λ0 of Λ, there is x ∈ A such that inf

i∈Λ0

Fi(x) ≥ 1−α,

one has inf
i∈Λ

(sclFi)(y) ≥ 1− α, for some y ∈ A.

Proof. Let A be α-s-closed, and if possible, let for a collection
{Fi : i ∈ Λ} of fuzzy semiopen sets in X with the stated property,

(
⋂
i∈Λ

sclFi)(x) < 1− α, for each x ∈ A. Then α < (1−
⋂
i∈Λ

sclFi)(x) =

[
⋃
i∈Λ

(1− sclFi)](x), for each x ∈ A which shows that {1−sclFi : i ∈ Λ}

is a semiopen α-shading of A. By α-s-closedness of A, there is a finite
subset Λ0 of Λ such that {scl(1− sclFi) : i ∈ Λ0} = {1− sint(sclFi) :

i ∈ Λ0} is an α-shading of A. Hence α < [
⋃
i∈Λ0

(1− sint(sclFi))](x)

= [1 − (
⋂
i∈Λ0

sint(sclFi))](x), for each x ∈ A. Then (
⋂
i∈Λ0

Fi)(x) ≤

[
⋂
i∈Λ0

sint(sclFi)](x) < 1 − α, for each x ∈ A, which contradicts the

stated property of the collection {Fi : i ∈ Λ}.
Conversely, let under the given hypothesis, A be not α-s-closed.

Then there is a semiopen α-shading U = {Ui : i ∈ Λ} of A having no
finite semi-proximate α-subshading, i.e., for every finite subset Λ0 of Λ,
{sclUi : i ∈ Λ0} is not an α-shading of A, i.e., there exists x ∈ A such
that sup

i∈Λ0

(sclUi)(x) ≤ α, i.e., 1− sup
i∈Λ0

(sclUi)(x) = inf
i∈Λ0

(1− sclUi)(x) ≥

1 − α. Hence {1 − sclUi : i ∈ Λ} is a family of fuzzy semiopen sets
with the stated property.

Consequently, there is some y ∈ A such that
inf
i∈Λ

[scl(1− sclUi)](y) ≥ 1 − α. Then sup
i∈Λ

Ui(y) ≤ sup
i∈Λ

(sintsclUi)(y)

= 1 − inf
i∈Λ

(1− sintsclUi)(y) = 1 − inf
i∈Λ

[scl(1− sclUi)]((y) ≤ α. This

shows that {Ui : i ∈ Λ} fails to be an α-shading of A, a contradiction.
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Let us now introduce the following definition:
Definition 2.6. Let {Sn : n ∈ (D,≥)} (where (D,≥) is a directed
set) be an ordinary net in X and F be a power-set filterbase on X,
and x ∈ X be any crisp point in X. Then x is called an s-θα-adherent
point of:
(a) the net {Sn} if for each fuzzy semiopen set U in X with U(x) > α
and for each m ∈ D, there exists k ∈ D such that k ≥ m in D and
(sclU)(Sk) > α,
(b) the filterbase F if for each fuzzy semiopen set U with U(x) > α
and for each F ∈ F , there exists a crisp point xF in F such that
(sclU)(xF ) > α.
Theorem 2.7. A crisp subset A of an fts X is α-s-closed iff every net
in A has an s-θα-adherent point in A.
Proof. Let us suppose that A be α-s-closed, but there be a net
{Sn : n ∈ (D,≥)} in A ((D,≥) being a directed set, as usual) having
no s-θα-adherent point in A. Then for each x ∈ A, there is a fuzzy
semiopen set Ux with Ux(x) > α, and there is an mx ∈ D such that
(sclUx)(Sn) ≤ α, for all n ≥ mx (n ∈ D). Now, U = {1 − sclUx :
x ∈ X} is a collection of fuzzy semiopen sets such that for any finite
subcollection {1−sclUx1 , ..., 1−sclUxk} (say) of U , there exists m ∈ D

with m ≥ mx1 ,..., mxk in D such that (
k⋃
i=1

sclUxi)(Sn) ≤ α, for all

n ≥ m (n ∈ D), i.e., inf
1≤i≤k

(1− sclUxi)(Sn) ≥ 1− α, for all n ≥ m.

Hence by Theorem 2.5, there exists some y ∈ A such that inf
x∈A

[scl(1−

sclUx)(y)] ≥ 1 − α, i.e.,(
⋃
x∈A

Ux)(y) ≤ [
⋃
x∈A

sint(sclUx)](y) = 1 − [1 −

(
⋃
x∈A

sintsclUx)(y)] = 1 − inf
x∈A

[scl(1 − sclUx)](y) ≤ 1 − 1 + α = α.

We have, in particular, Uy(y) ≤ α, contradicting the definition of Uy.
Hence the result is proved.

Conversely, let every net in A have s-θα-adherent point in A and
suppose {Fi : i ∈ Λ} be an arbitrary collection of fuzzy semiopen sets
in X. Let Λf denote the collection of all subsets of Λ, then (Λf ,≥) is
a directed set, where for µ, λ ∈ Λf , µ ≥ λ iff µ ⊇ λ. For each µ ∈ Λf ,
put Fµ =

⋂
{Fi : i ∈ µ}.

Let for each µ ∈ Λf , there be a point xµ ∈ A such that

inf
i∈µ
Fi(xµ) ≥ 1− α (1).
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Then by Theorem 2.5 it is enough to show that inf
i∈Λ

(sclFi)(z) ≥ 1− α
for some z ∈ A. If possible, let

inf
i∈Λ

(sclFi)(z) < 1− α, for each z ∈ A (2).

Now, S= {xµ : µ ∈ (Λf ,≥)} is clearly a net of points in A. By
hypothesis, there is an s-θα-adherent point z in A of this net. By
(2), inf

i∈Λ
(sclFi)(z) < 1 − α implies that there exists i0 ∈ Λ such that

(sclFi0)(z) < 1−α, i.e., 1− sclFi0(z) > α. Since z is an s-θα-adherent
point of S, for the index {i0} ∈ Λf , there is µ0 ∈ Λf with µ0 ≥ {i0}
(i.e., i0 ∈ µ0) such that scl(1−sclFi0)(xµ0) > α, i.e., sintsclFi0(xµ0) <
1−α. Since i0 ∈ µ0, inf

i∈µ0
Fi(xµ0) ≤ Fi0(xµ0) ≤ sintsclFi0(xµ0) < 1−α,

which contradicts (1). This completes the proof.
Theorem 2.8. A crisp subset A of an fts X is α-s-closed iff every
filterbase F on A has an s-θα-adherent point in A.
Proof. Let A be α-s-closed and let there exist, if possible, a filterbase
F on A having no s-θα-adherent point in A. Then for each x ∈ A,
there exist a fuzzy semiopen set Ux with Ux(x) > α, and an Fx ∈ F
such that (sclUx)(y) ≤ α, for each y ∈ Fx. Then U = {Ux : x ∈ A}
is a fuzzy semiopen α-shading of A. Thus there exist finitely many
points x1,x2,..., xn in A such that U0 = {sclUxi : i = 1, 2, ..., n} is an
α-shading of A. Choose F ∈ F such that F ≤ Fx1

⋂
Fx2

⋂
...
⋂
Fxn .

Then (sclUxi)(y) ≤ α, for all y ∈ F and for i = 1, 2, ..., n. Thus U0

fails to be an α-shading of A, a contradiction.
Conversely, let the condition hold and suppose, if possible, {yn :

n ∈ (D,≥)} be a net in A having no s-θα-adherent point in A. Then
for x ∈ A, there are a fuzzy semiopen set Ux with Ux(x) > α and an
mx ∈ D such that (sclUx)(yn) ≤ α, for all n ≥ mx (n ∈ D). Thus
F = {Fx : x ∈ A}, where Fx = {yn : n ≥ mx} generates a filterbase
F∗ on A. By hypothesis, F∗ has an s-θα-adherent point z (say) in
A. But there are a fuzzy semiopen set Uz with Uz(z) > α and an
mz ∈ D such that (sclUz)(yn) ≤ α, for all n ≥ mz, i.e., for all p ∈ Fz
(∈ F ⊆ F∗), (sclUz)(p) ≤ α. Hence z cannot be an s-θα-adherent
point of the filterbase F∗, a contradiction. Hence by Theorem 2.7, A
is α-s-closed.
Definition 2.9. A family {Fi : i ∈ Λ} of fuzzy sets in an fts X is said
to have α-s-interiorly finite intersection property or simply α-s-IFIP
in a subset A of X, if for each finite subset Λ0 of Λ, there exists x ∈ A
such that [

⋂
i∈Λ0

sintFi](x) ≥ 1− α.
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Theorem 2.10. A crisp subset A of an fts X is α-s-closed iff for every
family F = {Fi : i ∈ Λ} of fuzzy semiclosed sets in X with α-s-IFIP
in A, there exists x ∈ A such that inf

i∈Λ
Fi(x) ≥ 1− α.

Proof. Assuming A (⊆ X) to be α-s-closed, let F = {Fi : i ∈ Λ} be
a family of fuzzy semiclosed sets with α-s-IFIP in A. If possible, let

for each x ∈ A, inf
i∈Λ
Fi(x) < 1 − α, i.e., (

⋂
i∈Λ

Fi)(x) < 1 − α and hence

[
⋃
i∈Λ

(1 − Fi)](x) > α. Thus U = {1 − Fi : i ∈ Λ} is a fuzzy semiopen

α-shading of A. By α-s-closedness of A, there is a finite subset Λ0 of

Λ such that [
⋃
i∈Λ0

scl(1− Fi)](x) > α, i.e., 1− (
⋂
i∈Λ0

sintFi)(x) > α, i.e.,

(
⋂
i∈Λ0

sintFi)(x) < 1− α, for each x ∈ A, which shows that F does not

have α-s-IFIP in A, a contradiction.
Conversely, let U = {Ui : i ∈ Λ} be a fuzzy semiopen α-shading of

A. Then F = {1 − Ui : i ∈ Λ} is a family of fuzzy semiclosed sets
with inf

i∈Λ
(1 − Ui)(x) < 1 − α, for each x ∈ A, so that F does have α-

s-IFIP. Hence for some finite subset Λ0 of Λ, we have for each x ∈ A,

[
⋂
i∈Λ0

sint(1 − Ui)](x) < 1 − α imples that 1 − (
⋃
i∈Λ0

sclUi)(x) < 1 − α,

for each x ∈ A so that (
⋃
i∈Λ0

sclUi)(x) > α, for each x ∈ A. Hence A is

α-s-closed.
Putting A = X in the characterization theorems so far, of α-s-closed

crisp subset A, we obtain as follows:
Theorem 2.11. For an fts (X, τ), the following are equivalent:
(a) X is α-s-closed.
(b) Every α-shading of X by fuzzy regular semiopen sets has a finite
proximate α-subshading.
(c) Every family of fuzzy semiopen sets, the semi-interiors of whose
semi-closures form an α-shading of X, contains a finite subfamily, the
semi-closures of whose members form an α-shading of X.
(d) For every collection {Fi : i ∈ Λ} of fuzzy semiopen sets with the
property that for each finite subset Λ0 of Λ, there is x ∈ X such that
inf
i∈Λ0

Fi(x) ≥ 1− α, one has inf
i∈Λ

(sclFi)(y) ≥ 1− α, for some y ∈ X.

(e) Every net in X has an s-θα-adherent point in X.
(f) Every filterbase on X has an s-θα-adherent point in X.
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(g) For every family F = {Fi : i ∈ Λ} of fuzzy semiclosed sets in X
with α-s-IFIP in X, there exists x ∈ X such that inf

i∈Λ
Fi(x) ≥ 1− α.

3. θαs∗-CLOSED SET, θαs∗-CONTINUITY AND
α-s-CLOSEDNESS

In this section we introduce a class of crisp subsets of an fts X,
which inherit α-s-closedness of X, and also we try to ascertain a class
of α-s-closed fts’s for which the former class of subsets is precisely the
family of subsets inheriting the α-s-closedness of the spaces concerned.
Finally, we search for a type of function under which α-s-closedness
remains invariant.
Definition 3.1. Let (X, τ) be an fts and A ⊆ X. A point x ∈ X is
said to be a θαs∗-limit point of A if for every fuzzy semiopen set U in
X with U(x) > α, there exists y ∈ A \ {x} such that (sclU)(y) > α.
The set of all θαs∗-limit points of A will be denoted by [A]αs∗ .
The θαs∗-closure of A, to be denoted by θαs∗-clA, is defined by θαs∗-clA=
A ∪ [A]αs∗ .
Definition 3.2. A crisp subset A of an fts X is said to be θαs∗-closed if
it contains all its θαs∗-limit points. Any subset B of X is called θαs∗-open
if X \B is θαs∗-closed.
Remark 3.3. For any A ⊆ X it is clear that A ⊆ θαs∗-clA, and θαs∗-clA
= A iff [A]αs∗ ⊆ A. Then in view of Definition 3.1, it follows that A
is θαs∗-closed iff θαs∗-clA = A. It is also clear that A ⊆ B ⊆ X implies
that [A]αs∗ ⊆ [B]αs∗ .
Theorem 3.4. A θαs∗-closed subset A of an α-s-closed space X is
α-s-closed.
Proof. Let A (⊆ X ) be θαs∗-closed in X. Then for any x 6∈ A, there
is a fuzzy semiopen set Ux such that Ux(x) > α, and (sclUx)(y) ≤ α
for every y ∈ A. Consider the collection U = {Ux : x 6∈ A}. Now to
prove that A is α-s-closed, consider a fuzzy semiopen α-shading V of
A. Clearly U ∪ V is a fuzzy semiopen α-shading of X. Since X is α-s-
closed, there exists a finite subcollection {V1, V2, ..., Vn} of U ∪ V such
that for every t ∈ X, there exists Vi (1 ≤ i ≤ n) with sclVi(t) > α.
For every member Ux of U , sclUx(y) ≤ α for every y ∈ A. So if this
subcollection contains any member of U , we omit it and hence we get
the result.

To achieve the converse of Theorem 3.4, we define the following:
Definition 3.5. An fts (X, τ) is said to be αs-Urysohn if for any
two distinct points x, y of X, there exist U , V ∈ τ with U(x) > α,
V (y) > α and min(sclU(z), sclV (z)) ≤ α for each z ∈ X.
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Theorem 3.6. An α-s-closed set in an αs-Urysohn space X is θαs∗-
closed.
Proof. Let A be α-s-closed and x ∈ X \A. Then for each y ∈ A, x 6=
y. By αs-Urysohn property of X, there exist fuzzy open sets Uy and Vy
such that Uy(x) > α, Vy(y) > α and min((sclUy)(z), (sclVy)(z)) ≤ α,
for all z ∈ X (1).

Then U = {Vy : y ∈ A} is a fuzzy open and hence fuzzy semiopen
α-shading of the α-s-closed set A. Then by α-s-closedness of A,
there are finitely many points y1, y2, ..., yn in A such that U0

= {sclVy1 , sclVy2 , ..., sclVyn} is again an α-shading ofA. Now, U
=Uy1 ∩ ... ∩ Uyn is a fuzzy open set and hence a fuzzy semiopen set
such that U(x) > α. In order to show that A to be θαs∗-closed, it
now suffices to show that (sclU)(y) ≤ α for each y ∈ A. In fact, if
for some z ∈ A, we assume (sclU)(z) > α then as z ∈ A, we have
(sclVyk)(z)) > α for some k (1 ≤ k ≤ n). Also, (sclUyk)(z) > α.
Hence min[(sclUyk)(z), (sclVyk)(z)] > α, contradicting (1).
Corollary 3.7. In an α-s-closed, αs-Urysohn space X, a subset A of
X is α-s-closed iff it is θαs∗-closed.
Theorem 3.8. In an α-s-closed space X, every cover of X by θαs∗-open
sets has a finite subcover.
Proof. Let U = {Ui : i ∈ Λ} be a cover of X by θαs∗-open sets. Then
for each x ∈ X, there exists Ux ∈ U such that x ∈ Ux. Now, as X \Ux
is θαs∗-closed, there exists a fuzzy semiopen set Vx in X such that
Vx(x) > α, and (sclVx)(y) ≤ α for each y ∈ X \ Ux (1)
Then {Vx : x ∈ X} forms a fuzzy semiopen α-shading of the α-s-

closed space X. Thus there exists a finite subset {x1, x2, ..., xn} of X
such that
{sclVxi : i = 1, 2, ..., n} is an α-shading of X (2)
We claim that {Ux1 , Ux2 , ..., Uxn} is a finite subcover of U . If not,

then there exists y ∈ X \ ∪ni=1Uxi = ∩ni=1(X \ Uxi). Then by (1),
sclVxi(y) ≤ α for i = 1, 2, ..., n. Therefore, (∪ni=1sclVxi)(y) ≤ α, con-
tradicting (2).
Theorem 3.9. Let (X, τ) be an fts. If X is α-s-closed then every
collection of θαs∗-closed sets in X with finite intersection property has
nonempty intersection.
Proof. Let F = {Fi : i ∈ Λ} be a collection of θαs∗-closed sets in

X having finite intersection property. If possible, let
⋂
i∈Λ

Fi = φ.

Then X \
⋂
i∈Λ

Fi = X implies that
⋃
i∈Λ

(X \ Fi)= X which shows that
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U = {X \ Fi : i ∈ Λ} is an θαs∗-open cover of X. Then by Theorem

3.8, there is a finite subset Λ0 of Λ such that
⋃
i∈Λ0

(X \Fi) = X so that⋂
i∈Λ0

Fi = φ, a contradiction.

For achieving the converse of the above theorem, we need to intro-
duce the following notation:
Notation 3.10. For any fuzzy set A in an fts X, the subset A

α

s of X
is defined by A

α

s = {x ∈ X : (sclA)(x) ≤ α}.
Remark 3.11. For any fuzzy semiopen set U in an fts (X, τ), the
set U

α

s= {x ∈ X : (sclU)(x) ≤ α} is θ
α

s∗-closed. In fact, if y 6∈ U
α

s ,
then U is a fuzzy semiopen set in X such that (sclU)(y) > α, and
(sclU)(z) ≤ α, for all z ∈ Uα

s . Then V = sclU is a fuzzy semiopen set
such that V (y) > α and (sclV )(z) ≤ α, for all z ∈ Uα

s .
The next theorem serves as a weak converse of Theorem 3.9.

Theorem 3.12. Let (X, τ) be an fts. Then X is α-s-closed if ev-
ery collection of θαs∗-closed sets in X satisfying the finite intersection
property, has nonempty intersection.
Proof. Let U be a fuzzy semiopen α-shading of X. Consider the
collection C = {V α

s : V ∈ U} where U
α

s stands for the expression given
in Remark 3.11. Then C is a collection of θαs∗-closed sets.

Since U is an α-shading of X, for every x ∈ X there exists V ∈ U
with V (x) > α, so that (sclV )(x) > α. Hence x 6∈ V

α

s , for some
V ∈ U . Thus ∩{V α

s : V ∈ U} = φ. Then by hypothesis C does
not satisfy the finite intersection property. Hence there exists a finite
subcollection U0 of U such that ∩{V α

s : V ∈ U0} = φ. Thus for every
x ∈ X, there exists V ∈ U0 such that x 6∈ V α

s and hence sclV (x) > α,
proving that U0 is a finite α-subshading of U . Thus X is α-s-closed.

Let us now introduce a class of functions under which α-s-closedness
remains invariant.
Definition 3.13. Let X, Y be fts’s. A function f : X → Y is said to
be θαs∗-continuous if f−1(A) is θαs∗-closed in X for every θαs∗-closed set
A in Y .
Theorem 3.14. Let (X, τ) and (Y, τ1) be fts’s and let f : X → Y be
a θαs∗-continuous function. If A (⊆ X) is α-s-closed in X, then so is
f(A) in Y .
Proof. Consider a fuzzy semiopen α-shading V of f(A) in Y . For
every x ∈ A, f(x) ∈ f(A) and hence there exists U

f(x)
∈ V such that

U
f(x)

(f(x)) > α. Clearly (sclU
f(x)

)−1[0, α] is θαs∗-closed in Y . For, z 6∈
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(sclU
f(x)

)−1[0, α] implies that U
f(x)
∈ SO(Y ) (where SO(Y ) denotes

the set of all fuzzy semiopen sets in Y ) and (sclU
f(x)

)(z) > α, and

(sclU
f(x)

)(y) ≤ α for every y ∈ (sclU
f(x)

)−1[0, α].

Clearly, x 6∈ f−1((sclU
f(x)

)−1[0, α]). Thus x is not a θαs∗-limit point

of f−1((sclU
f(x)

)−1[0, α]) (since (sclU
f(x)

)−1[0, α] is θαs∗-closed and f is

θαs∗-continuous imply that f−1((sclU
f(x)

)−1[0, α]) is θαs∗-closed). Then

there is a fuzzy semiopen set Vx with Vx(x) > α, but (sclVx)(z) ≤ α
for every z ∈ f−1((sclU

f(x)
)−1[0, α]). Then U = {Vx : x ∈ A} is a fuzzy

semiopen α-shading of A.
As A is α-s-closed, there exist finitely many members Vx1 , ..., Vxn of
U such that for every t ∈ A, [sclVxi ](t) > α for some i (i = 1, 2, ..., n).

It suffices to prove that {sclU
f(xi)

: i = 1, 2, ..., n} is an α-shading of

f(A).
Indeed, let s ∈ f(A). Then there exists t ∈ A such that

f(t) = s. Then sclVxj(t) > α for some j (1 ≤ j ≤ n). Thus
t 6∈ f−1((sclU

f(xj)
)−1[0, α]) implies that f(t) 6∈ (sclU

f(xj)
)−1[0, α] so

that sclU
f(xj)

(f(t)) > α. Consequently, sclU
f(xj)

(s) > α. Hence the

theorem.
In [2], θαs -limit point of a crisp subset A in an fts X is defined as

follows:
Definition 3.15. Let (X, τ) be an fts and A ⊆ X. A point x ∈ X is
said to be a θαs -limit point of A if for every fuzzy semiopen set U in
X with U(x) > α, there exists y ∈ A \ {x} such that (clU)(y) > α.

It is clear from Definition 3.1 and Definition 3.15 that θαs∗-limit point
of a crisp subset A of an fts X is a θαs -limit point of A. But the converse
may not be true as seen from the following example.
Example 3.16. Let X = {a, b}, A = {b}, τ = {0X , 1X , B} where
B(a) = 0.5, B(b) = 0.4. Then (X, τ) is an fts. Now fuzzy semiopen
sets in X are 0X , 1X and U where U(a) = 0.5, 0.4 ≤ U(b) ≤ 0.6. We
claim that a is a θαs -limit point of A but not a θαs∗-limit point of A.

Now consider the fuzzy semiopen set V given by V (a) = 0.5, V (b) =
0.4. Let α = 0.47. Then V (a) = 0.5 > α but (sclV )(b) = V (b) =
0.4 6> α (as V is fuzzy semiclosed set in X also). Therefore, a is not a
θαs∗-limit point of A.

But for any fuzzy semiopen set U in X other than 1X with U(a) > α,
(clU)(b) = (1X \B)(b) = 0.6 > α and so a is a θαs -limit point of A.
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