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ON o-S-CLOSED CRISP SUBSETS OF A FUZZY
TOPOLOGICAL SPACE

ANJANA BHATTACHARYYA AND M. N. MUKHERJEE

Abstract. In this paper, we introduce a new type of covering
property in a fuzzy topological space X, called the property of a-
s-closedness of subsets of X. We characterize a-s-closed subsets in
many ways, e.g. by means of ordinary nets and power-set filterbases.

1. INTRODUCTION AND PRELIMINARIES

It is well known from literature that in 1987 Di Maio and Noiri [4]
proposed a certain type of covering axiom in topological spaces and
named them s-closed spaces. Afterwards, many mathematicians have
endeavoured to study the said property from many directions. In this
connection the papers [5, 6] by Ganguly and Basu need be mentioned.
Gantner et al. [7] paved a new direction towards the study of covering
property in fuzzy setting in terms of a novel concept viz. a-shading.
We resort to the same concept here to define the proposed idea of a-s-
closedness in a fuzzy topological space (henceforth to be abbreviated
as fts).

In this paper, our aim is to study a-s-closedness of crisp subsets
(i.e., ordinary subsets) of an fts. We then characterize it via different
ways which are also true in a-s-closedness of X if one puts A = X.
In the next section such characterizations are done while in the latter
section we investigate a class of crisp subsets of X which inherit a-s-
closedness of X. In the last section, we introduce a type of functions
keeping a-s-closedness invariant.

Keywords and phrases: a-s-closed space, s-6,-adherent point of
net and filterbase, a-s-interiorly finite intersection property.
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Throughout the paper, by (X, 7) or simply by X we mean an fts in
the sense of Chang [3]. The closure and interior of a fuzzy set A [11]
in X will be denoted by clA and intA respectively. A fuzzy set A in
X is called fuzzy regular open (semiopen) if A = intclA (respectively,
U < A < U, for some fuzzy open set U)[1]. The complement (1 — A)
of a fuzzy regular open (semiopen) set is called fuzzy regular closed
(respectively, semiclosed).

The semiclosure of a fuzzy set A in X, to be denoted by sclA,
is defined by the union of all those fuzzy points x; (where x is the
singleton support and ¢ the value of the fuzzy point z;,, 0 <t < 1)
such that for any fuzzy semiopen set U with U(x)+t > 1, there exists
y € X with U(y) + A(y) > 1 [8]. The semi interior of a fuzzy set A in
X, written as sintA, is defined by sintA =1 — scl(1 — A) [10]. It is
known [10] that a fuzzy set A in X is fuzzy semiclosed (semiopen) iff
A = sclA (respectively, A = sintA).

2. a-s-CLOSEDNESS: CHARACTERIZATIONS

Definition 2.1. [7] Let A be a crisp subset of an fts X. A collection
U of fuzzy sets in X is called an a-shading (where 0 < a < 1) of A
if for each = € A, there is some U, € U such that U,(z) > a. If, in
addition, the members are fuzzy open (semiopen) then U is called a
fuzzy open (resp. semiopen) a-shading of A.

Definition 2.2. Let X be an fts and A be a crisp subsets of X. A
is said to be a-s-closed if for every semiopen a-shading (0 < o < 1)
U of A, there is a finite semiproximate a-subshading of A, i.e., there
is a finite subcollection Uy of U such that {sclU : U € Uy} is again an
a-shading of A. If A = X in addition, then X is called an a-s-closed
space.

Mashhour et al. [9] defined a fuzzy set A in an fts X to be fuzzy
regular semiopen if there is a fuzzy regular open set U such that U <
A < clU, and they proved that a fuzzy regular semiopen set is fuzzy
semiopen but not conversely.

Theorem 2.3. A subset A of X is a-s-closed iff every a-shading
of A by fuzzy regular semiopen sets in X has a finite proximate a-
subshading.

Proof. The proof follows from the definition of a-s-closedness and
the fact that whenever {V; : i € A} is a fuzzy semiopen a-shading of
A, then {(intclV;)|JV; : i € A} is an a-shading of A by fuzzy regular

semiopen sets.
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Theorem 2.4. Let X be an fts. A crisp subset A of X is a-s-closed
iff every family of fuzzy semiopen sets, the semi-interiors of whose
semi-closures form an a-shading of A, contains a finite subfamily, the
semi-closures of whose members form an a-shading of A.

Proof. It is sufficient to observe that for a fuzzy semiopen set U,
U < sint(sclU) < scl(sint(sclU))=sclU.

Theorem 2.5. A crisp subset A of an fts X is a-s-closed iff for every
collection { F; : i € A} of fuzzy semiopen sets with the property that for
each finite subset Ag of A, there is # € A such that inf Fi(z) > 1—«

i€Ao
one has 1n£(sclE)( y) > 1 — a, for some y € A.
i€

Proof. Let A be a-s-closed, and if possible, let for a collection
{F; : i € A} of fuzzy semiopen sets in X with the stated property,

(ﬂ sclFy)(z) < 1— a, for each x € A. Then a < (1 — ﬂ sclF;)(x) =

ieA ieA

[U(l — sclF;)](x), for each € A which shows that {1—sclF; : i € A}

ieA

is a semiopen a-shading of A. By a-s-closedness of A, there is a finite

subset Ay of A such that {scl(1 — sclF;) :i € Ao} = {1 — sint(sclF;) :

i € Ao} is an a-shading of A. Hence a < [U (1 — sint(sclF;))|(x)

ieho

=[1- (ﬂ sint(sclF;))|(x), for each z € A. Then (ﬂ F)(x) <
i€Ag i€Ag

[ﬂ sint(sclF;)|(z) < 1 — a, for each x € A, which contradicts the

i€Ao

stated property of the collection {F; : i € A}.

Conversely, let under the given hypothesis, A be not a-s-closed.
Then there is a semiopen a-shading U = {U; : i € A} of A having no
finite semi-proximate a-subshading, i.e., for every finite subset Ay of A,
{sclU; i € Ao} is not an a-shading of A, i.e., there exists x € A such
that sup(scllU;)(z) < «, i.e., 1 — sup(sclU;)(z) = inf (1 — sclU;)(z) >

i€Ag i€Ao i€M\g
1 — a. Hence {1 — sclU; : i € A} is a family of fuzzy semiopen sets
with the stated property.

Consequently,  there is some y € A such that

ig{[scl(l —scU;)|(y) > 1 — «. Then supU( ) < sup(smtsclU)( )

=1- in{{(l — sintsclU;)(y) = 1 — mf[scl(l — sclU; )](( ) < «a. This
1€

shows that {U; : i € A} fails to be an a-shading of A, a contradiction.
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Let us now introduce the following definition:
Definition 2.6. Let {S,, : n € (D,>)} (where (D, >) is a directed
set) be an ordinary net in X and F be a power-set filterbase on X,
and x € X be any crisp point in X. Then z is called an s-6,-adherent
point of:
(a) the net {S,} if for each fuzzy semiopen set U in X with U(z) > «
and for each m € D, there exists k € D such that £ > m in D and
(sclU)(Sk) > a,
(b) the filterbase F if for each fuzzy semiopen set U with U(x) > «
and for each F' € F, there exists a crisp point zp in F such that
(sclU)(zp) > a.
Theorem 2.7. A crisp subset A of an fts X is a-s-closed iff every net
in A has an s-0,-adherent point in A.
Proof. Let us suppose that A be a-s-closed, but there be a net
{S,:ne€(D,>)}in A ((D,>) being a directed set, as usual) having
no s-0,-adherent point in A. Then for each x € A, there is a fuzzy
semiopen set U, with U,(z) > «, and there is an m, € D such that
(sclU,)(Sn) < a, for all n > m, (n € D). Now, U = {1 — sclU, :
x € X} is a collection of fuzzy semiopen sets such that for any finite
subcollection {1 —sclU,,, ...,1 —sclU,, } (say) of U, there exists m € D
k
with m > my,,..., my, in D such that (U sclUy,)(Sn) < «, for all
i=1

(1 —sclUy,,)(Sy) > 1 —a, for all n > m.

k

n>m (n € D), ie., inf
1<i<k

Hence by Theorem 2.5, there exists some y € A such that irelg [scl(1—
sclUys) ()] > 1= a, ie (| JUa)(y) < [|Jsint(sclU,)](y) = 1—[1 -

x€A €A
(UsmtsclUm)(y)] =1- ing[scl(l —scdU)|(y) < 1-1+a =
TE

€A
We have, in particular, U,(y) < «, contradicting the definition of U,,.

Hence the result is proved.

Conversely, let every net in A have s-6,-adherent point in A and
suppose {F; : i € A} be an arbitrary collection of fuzzy semiopen sets
in X. Let Ay denote the collection of all subsets of A, then (Af, >) is
a directed set, where for p, A € Ay, p > N iff ©p O A\ For each p1 € Ay,
put F, = ({Fi i€ u}.

Let for each i € Ay, there be a point x, € A such that

infFy(z,) >1—a (1).

1EN
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Then by Theorem 2.5 it is enough to show that in{(schi)(z) >1l—-a
1€
for some z € A. If possible, let

in[f;(schi)(z) <l—a, foreachz€ A (2).
S

Now, S= {z, : p € (Ay,>)} is clearly a net of points in A. By

hypothesis, there is an s-,-adherent point z in A of this net. By

(2), in{(schi)(z) < 1 — « implies that there exists iy € A such that
S

(sclFy,)(z) < 1—a,ie., 1 —sclF;(z) > a. Since z is an s-0,-adherent

point of S, for the index {ip} € Ay, there is po € Ay with po > {io}

(i.e., ig € po) such that scl(1—sclF;,)(x,,) > «, i.e., sintsclF (x,,) <

1 — a. Since iy € o, ieani(ﬂfuo) < Fio(x,,) < sintsclF(v,,) < 1—a,
i€ o

which contradicts (1). This completes the proof.

Theorem 2.8. A crisp subset A of an fts X is a-s-closed iff every
filterbase F on A has an s-0,-adherent point in A.

Proof. Let A be a-s-closed and let there exist, if possible, a filterbase
F on A having no s-0,-adherent point in A. Then for each x € A,
there exist a fuzzy semiopen set U, with U,(x) > «, and an F, € F
such that (sclU,)(y) < «, for each y € F,. Then U = {U, : x € A}
is a fuzzy semiopen a-shading of A. Thus there exist finitely many
points 1,%s,..., T, in A such that Uy = {sclU,, : i =1,2,...,n} is an
a-shading of A. Choose F' € F such that F' < F, () Fp (). () Fan-
Then (sclU,,)(y) < a, for all y € F and for ¢ = 1,2,...,n. Thus U
fails to be an a-shading of A, a contradiction.

Conversely, let the condition hold and suppose, if possible, {y, :

n € (D,>)} be a net in A having no s-0,-adherent point in A. Then
for © € A, there are a fuzzy semiopen set U, with U,(x) > « and an
m, € D such that (sclU,)(y,) < «, for all n > m, (n € D). Thus
F =A{F, :z € A}, where F, = {y, : n > m,} generates a filterbase
F* on A. By hypothesis, F* has an s-0,-adherent point z (say) in
A. But there are a fuzzy semiopen set U, with U,(z) > « and an
m, € D such that (sclU,)(y,) < «, for all n > m,, i.e., for all p € F,
(e F C F*), (sclU,)(p) < a. Hence z cannot be an s-,-adherent
point of the filterbase F*, a contradiction. Hence by Theorem 2.7, A
is a-s-closed.
Definition 2.9. A family {F; : i € A} of fuzzy sets in an fts X is said
to have a-s-interiorly finite intersection property or simply a-s-IFIP
in a subset A of X if for each finite subset A of A, there exists x € A
such that [ﬂ sintF|(z) > 1 — a.

i€ANg
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Theorem 2.10. A crisp subset A of an fts X is a-s-closed iff for every
family F = {F; : i € A} of fuzzy semiclosed sets in X with a-s-IFIP
in A, there exists x € A such that 111/{FZ(x) >1—a.

1€

Proof. Assuming A (C X) to be a-s-closed, let F = {F; : i € A} be
a family of fuzzy semiclosed sets with a-s-IFIP in A. If possible, let
for each z € A, mZ{Fl(x) <1—a,ie, (ﬂﬂ)(x) < 1 — a and hence
1€
ieA

[U(l — F)|(z) > a. ThusU = {1 — F, : i € A} is a fuzzy semiopen
ieA

a-shading of A. By a-s-closedness of A, there is a finite subset Ay of
A such that [U scl(1— F)](z) > a, e, 1 —( ﬂ sintF;)(x) > a, i.e.,

i€\ 1€Ag

( m sintF;)(x) < 1 — «, for each o € A, which shows that F does not
ieA

havg a-s-IFIP in A, a contradiction.

Conversely, let U = {U; : i € A} be a fuzzy semiopen a-shading of
A. Then F = {1 —U; : i € A} is a family of fuzzy semiclosed sets
with in{(l —U;)(z) < 1—a, for each € A, so that F does have a-

1€

s-IFIP. Hence for some finite subset Ay of A, we have for each z € A,
[ﬂ sint(1 — U;)](x) < 1 — « imples that 1 — (U sclUs)(x) < 1 — a,

i€Ao i€Ag

for each © € A so that ( U sclU;)(x) > a, for each x € A. Hence A is
i€Ng

a-s-closed.

Putting A = X in the characterization theorems so far, of a-s-closed
crisp subset A, we obtain as follows:
Theorem 2.11. For an fts (X, 7), the following are equivalent:
(a) X is a-s-closed.
(b) Every a-shading of X by fuzzy regular semiopen sets has a finite
proximate a-subshading.
(c) Every family of fuzzy semiopen sets, the semi-interiors of whose
semi-closures form an a-shading of X, contains a finite subfamily, the
semi-closures of whose members form an a-shading of X.
(d) For every collection {F; : i € A} of fuzzy semiopen sets with the
property that for each finite subset Ay of A, there is x € X such that
Zler}\f;)FZ(x) > 1 — «, one has 32{{(30[1@)(3/) > 1 — «, for some y € X.

(e) Every net in X has an s-6,-adherent point in X.
(f) Every filterbase on X has an s-6,-adherent point in X.
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(g) For every family F = {F; : i € A} of fuzzy semiclosed sets in X
with a-s-IFIP in X, there exists x € X such that mZ{Fl(x) >1—a.
1€

3. 0%.-CLOSED SET, 0%-CONTINUITY AND
a-s-CLOSEDNESS

In this section we introduce a class of crisp subsets of an fts X,
which inherit a-s-closedness of X, and also we try to ascertain a class
of a-s-closed fts’s for which the former class of subsets is precisely the
family of subsets inheriting the a-s-closedness of the spaces concerned.
Finally, we search for a type of function under which a-s-closedness
remains invariant.

Definition 3.1. Let (X, 7) be an fts and A C X. A point z € X is
said to be a #%.-limit point of A if for every fuzzy semiopen set U in
X with U(x) > a, there exists y € A\ {x} such that (sclU)(y) > «a.
The set of all §%-limit points of A will be denoted by [A]S..

The 62 -closure of A, to be denoted by 6%.-clA, is defined by 0%-clA=
AU [A]%.

Definition 3.2. A crisp subset A of an fts X is said to be 0¢-closed if
it contains all its 6¢.-limit points. Any subset B of X is called 6¢.-open
if X'\ B is 6%-closed.

Remark 3.3. For any A C X it is clear that A C §%-clA, and 6%.-clA
= A iff [A]% C A. Then in view of Definition 3.1, it follows that A
is 0%-closed iff 0%-clA = A. It is also clear that A C B C X implies
that [A]% C [B]%.
Theorem 3.4. A 6¢.-closed subset A of an a-s-closed space X is
a-s-closed.

Proof. Let A (C X ) be 6%-closed in X. Then for any x ¢ A, there
is a fuzzy semiopen set U, such that U,(x) > «, and (sclU,)(y) < «
for every y € A. Consider the collection U = {U, : = ¢ A}. Now to
prove that A is a-s-closed, consider a fuzzy semiopen a-shading V' of
A. Clearly U U V is a fuzzy semiopen a-shading of X. Since X is a-s-
closed, there exists a finite subcollection {V;, V4, ..., V,,} of U U V such
that for every ¢ € X, there exists V; (1 < i < n) with sclV;(t) > a.
For every member U, of U, sclU,(y) < « for every y € A. So if this
subcollection contains any member of U/, we omit it and hence we get
the result.

To achieve the converse of Theorem 3.4, we define the following:
Definition 3.5. An fts (X, 7) is said to be ags-Urysohn if for any
two distinct points z, y of X, there exist U, V € 7 with U(z) > «,
V(y) > a and min(sclU(z), sclV (z)) < « for each z € X.
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Theorem 3.6. An a-s-closed set in an a,-Urysohn space X is 0%-
closed.

Proof. Let A be a-s-closed and z € X \ A. Then for each y € A, z #
y. By a,-Urysohn property of X, there exist fuzzy open sets U, and V,
such that Uy(x) > «a, V,(y) > a and min((sclU,)(z), (sclV,)(z)) < a,
forall ze X (1).

Then U = {V, : y € A} is a fuzzy open and hence fuzzy semiopen
a-shading of the a-s-closed set A. Then by a-s-closedness of A,
there are finitely many points y1, o, ..., ¥y, in A such that U
= {sclV,,,sclV,,,...,sclV, } is again an a-shading ofA. Now, U
=U,, N...NU,, is a fuzzy open set and hence a fuzzy semiopen set
such that U(z) > «. In order to show that A to be 0%-closed, it
now suffices to show that (sclU)(y) < « for each y € A. In fact, if
for some z € A, we assume (sclU)(z) > « then as z € A, we have
(sclVy, )(2)) > « for some k (1 < k < n). Also, (sclU,,)(z) > «a.
Hence min[(sclUy, )(z), (sclV,, )(2)] > «, contradicting (1).

Corollary 3.7. In an a-s-closed, a-Urysohn space X, a subset A of
X is a-s-closed iff it is 0¢-closed.

Theorem 3.8. In an a-s-closed space X, every cover of X by 6%.-open
sets has a finite subcover.

Proof. Let U = {U; : i € A} be a cover of X by 6%-open sets. Then
for each x € X, there exists U, € U such that = € U,. Now, as X \ U,
is 0% -closed, there exists a fuzzy semiopen set V, in X such that

Ve(x) > v, and (sclV,)(y) < a for each y € X \ U, (1)

Then {V, : € X} forms a fuzzy semiopen a-shading of the a-s-
closed space X. Thus there exists a finite subset {x1, 29, ...,2,} of X
such that

{sclV,, :i=1,2,...,n} is an a-shading of X (2)

We claim that {U,,,U,,,...,U,,} is a finite subcover of Y. If not,
then there exists y € X \ U U, = NI (X \ Uy,). Then by (1),
sclV,. (y) < a for i = 1,2, ...,n. Therefore, (U ;sclVy,)(y) < a, con-
tradicting (2).

Theorem 3.9. Let (X,7) be an fts. If X is a-s-closed then every
collection of #¢.-closed sets in X with finite intersection property has
nonempty intersection.

Proof. Let F = {F; : i € A} be a collection of #%-closed sets in
X having finite intersection property. If possible, let ﬂﬂ = ¢.

ieA
Then X \ sz = X implies that U(X \ F;)= X which shows that
ieA €A
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U={X\F i€ A}isan 6%-open cover of X. Then by Theorem

3.8, there is a finite subset Ay of A such that U (X \ F;) = X so that
ieNo

m F; = ¢, a contradiction.

i€Mo

For achieving the converse of the above theorem, we need to intro-
duce the following notation:

Notation 3.10. For any fuzzy set A in an fts X, the subset Xj of X
is defined by A, = {z € X : (sclA)(z) < a}.

Remark 3.11. For any fuzzy semiopen set U in an fts (X, 7), the
set Us= {x € X : (sclU)(z) < a} is O-closed. In fact, if y & U,
then U is a fuzzy semiopen set in X such that (sclU)(y) > «, and
(sclU)(z) < a, for all z € U,. Then V = sclU is a fuzzy semiopen set
such that V(y) > a and (sclV)(z) < a, for all z € U.,.

The next theorem serves as a weak converse of Theorem 3.9.
Theorem 3.12. Let (X, 7) be an fts. Then X is a-s-closed if ev-
ery collection of #¢.-closed sets in X satisfying the finite intersection
property, has nonempty intersection.

Proof. Let U be a fuzzy semiopen a-shading of X. Consider the
collection C = {V; : V € U} where U, stands for the expression given
in Remark 3.11. Then C is a collection of 6¢.-closed sets.

Since U is an a-shading of X, for every x € X there exists V € U
with V(z) > a, so that (sclV)(z) > a. Hence z ¢ V., for some
V € U. Thus N{V, : V € U} = ¢. Then by hypothesis C does
not satisfy the finite intersection property. Hence there exists a finite
subcollection Uy of U such that N{V : V € Uy} = ¢. Thus for every
z € X, there exists V € Uy such that = ¢ V', and hence sclV (z) > a,
proving that U is a finite a-subshading of &/. Thus X is a-s-closed.

Let us now introduce a class of functions under which a-s-closedness
remains invariant.

Definition 3.13. Let X, Y be fts’s. A function f: X — Y is said to
be 6% -continuous if f~(A) is #%-closed in X for every §%-closed set
AinY.

Theorem 3.14. Let (X, 7) and (Y, 1) be fts’s and let f: X — Y be
a 0%-continuous function. If A (C X) is a-s-closed in X, then so is
f(A)inY.

Proof. Consider a fuzzy semiopen a-shading V of f(A) in Y. For
every x € A, f(z) € f(A) and hence there exists U, =~ € V such that

U,.,(f(x)) > a. Clearly (sclU, )"0, ] is §%-closed in Y. For, z ¢
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(sclU,, )70, a] implies that U, . € SO(Y) (where SO(Y') denotes

@) @)
the set of all fuzzy semiopen sets in Y) and (sclU, )(2) > «, and

(sclU, ) )(y) < a for every y € (sclU, )70, qal.

Clearly, z ¢ f~*((sclU,,,)~"[0,a]). Thus z is not a #g-limit point

of f~Y((sclU,, )710,a]) (since (sclU,, )70, a] is §%-closed and f is

f(@) f@)

02.-continuous imply that f~'((sclU,,)7'[0,a]) is 6%-closed). Then
there is a fuzzy semiopen set V,, with V,.(z) > «, but (sclV;)(z) < «
for every z € f~1((sclU, )" '[0,0]). ThenU = {V, : v € A} is a fuzzy
semiopen a-shading of A.

As A is a-s-closed, there exist finitely many members V,,, ..., V, of
U such that for every t € A, [sclV,,|(t) > « for some i (i =1,2,...,n).

It suffices to prove that {sclUf(wi) :i=1,2,...,n} is an a-shading of
£(4).

Indeed, let s € f(A). Then there exists ¢ € A such that
f(t) = s. Then sclV,,(t) > a for some j (1 < j < n). Thus
t ¢ f‘l((sclUf(zj>)_1[O,a]) implies that f(t) ¢ (sclUf(zj))_l[O,a] S0
that sclUf(Ij)(f(t)) > «. Consequently, sclUﬂzj)(s) > «. Hence the
theorem.

In [2], 2-limit point of a crisp subset A in an fts X is defined as
follows:

Definition 3.15. Let (X, 7) be an fts and A C X. A point z € X is
said to be a #¢-limit point of A if for every fuzzy semiopen set U in
X with U(x) > a, there exists y € A\ {z} such that (clU)(y) > a.

It is clear from Definition 3.1 and Definition 3.15 that ¢-limit point

of a crisp subset A of an fts X is a 6¢-limit point of A. But the converse
may not be true as seen from the following example.
Example 3.16. Let X = {a,b}, A = {b}, 7 = {Ox, 1x, B} where
B(a) = 0.5, B(b) = 0.4. Then (X, 7) is an fts. Now fuzzy semiopen
sets in X are Ox, 1x and U where U(a) = 0.5, 0.4 < U(b) < 0.6. We
claim that a is a 6<-limit point of A but not a #%.-limit point of A.

Now consider the fuzzy semiopen set V' given by V(a) = 0.5, V(b) =
0.4. Let o = 0.47. Then V(a) = 0.5 > « but (sclV)(b) = V(b) =
0.4 # « (as V is fuzzy semiclosed set in X also). Therefore, a is not a
6%.-limit point of A.

But for any fuzzy semiopen set U in X other than 1x with U(a) > «,
(clU)(b) = (1x \ B)(b) = 0.6 > « and so a is a §%-limit point of A.
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