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SOME PROPERTIES OF UPPER/LOWER
ω-CONTINUOUS MULTIFUNCTIONS

C. CARPINTERO, N. RAJESH, E. ROSAS AND S. SARANYASRI

Abstract. The aim of this paper is to introduce and study up-
per and lower almost ω-continuous multifunctions as a generalization
of upper and lower ω-continuous multifunctions, respectively due to
Zorlutuna [21].

1. Introduction

It is well known that various types of functions play a significant
role in the theory of classical point set topology. A great number
of papers dealing with such functions have appeared, and a good
number of them have been extended to the setting of multifunctions
[1,6,13,14,16,17,19]. This implies that both, functions and multifunc-
tions are important tools for studying other properties of spaces and for
constructing new spaces from previously existing ones. Several char-
acterizations and properties of ω-closed sets were provided in [7],[8]
and [1]. Recently, Zorlutuna [21] introduced and studied the concept
of ω-continuous multifunctions in topological spaces. Also in [14], the
theory of almost continuity for multifunctions is unified using certain
minimal conditions. In this paper, we introduce and study upper
(lower) almost-ω continuous multifunctions and obtain several char-
acterizations of upper (lower) almost ω-continuous multifunctions and
basic properties of such functions.
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2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) al-
ways mean topological spaces in which no separation axioms are as-
sumed unless explicitly stated. Let A be a subset of a space X. For
a subset A of (X, τ), Cl(A) and Int(A) denote the closure of A with
respect to τ and the interior of A with respect to τ , respectively. Re-
cently, as generalization of closed sets, the notion of ω-closed sets were
introduced and studied by Hdeib [8]. A point x ∈ X is called a con-
densation (resp. θ-cluster) point of A, if U ∩ A is uncountable (resp.
Cl(U) ∩ A 6= ∅) for each U ∈ τ with x ∈ U . The set of all θ-cluster
points of A is denoted by Clθ(A). If A = Clθ(A), then A is said to be
θ-closed [20]. The complement of a θ-closed set is said to be θ-open. A
is said to be ω-closed [8] if it contains all its condensation points. The
complement of an ω-closed set is said to be an ω-open set. It is well
known that a subsetW of a space (X, τ) is ω-open if and only if for each
x ∈ W , there exists U ∈ τ such that x ∈ U and U\W is countable. The
family of all ω-open subsets of a topological space (X, τ) forms a topol-
ogy on X finer than τ . The ω-closure and the ω-interior, that can be
defined in the same way as Cl(A) and Int(A), respectively, will be de-
noted by ωCl(A) and ω Int(A), respectively. The family of all ω-open
subsets of a topological space (X, τ), denoted by τω. τω forms a topol-
ogy on X finer than τ . We set ωO(X, x) = {A : A ∈ τω and x ∈ A}.
A subset A is said to be regular open [19] (resp. semiopen [11], pre-
open [12], semi-preopen [3]) if A = Int(Cl(A)) (resp. A ⊂ Cl(Int(A)),
A ⊂ Int(Cl(A)), A ⊂ Cl(Int(Cl(A)))). The complement of regu-
lar open (resp. semiopen, semi-preopen) set is called regular closed
(resp. semiclosed, α-closed, semi pre-closed) set. The intersection
(resp. union) of all semiclosed (resp. semiopen) set containing (resp.
contained in) A ⊂ X is called the semiclosure (resp. semiinterior) of
A and is denoted by sCl(A) (resp. s Int(A)). The family of all reg-
ular open (resp. regular closed, semiopen, semiclosed, preopen, semi-
preopen, semi-preclosed) sets of (X, τ) is denoted by RO(X) (resp.
RC(X), SO(X), SC(X), PO(X), SPO(X), SPC(X)). By a mul-
tifunction F : (X, τ) → (Y, σ), we shall denote the upper and lower
inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X : F (x) ⊂ B} and F−(B) = {x ∈ X : F (x)∩B 6= ∅}.
In particular, F−(y) = {x ∈ X : y ∈ F (x)} for each point y ∈ Y
and for each A ⊂ X, F (A) =

⋃
x∈A F (x). Then F is said to be sur-

jection if F (X) = Y . A multifunction F : (X, τ) → (Y, σ) is said to
be lower ω-continuous [21] (resp. upper ω-continuous) multifunction
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if F−(V ) ∈ ωO(X, τ) (resp. F+(V ) ∈ ωO(X, τ)) for every V ∈ σ. A
subset N of a topological space (X, τ) is said to be ω-neighborhood of
a point x ∈ X, if there exists an ω-open set V such that x ∈ V ⊂ N .

Lemma 2.1. The following statements are true:

(1) Let A be a subset of a space (X, τ). Then A ∈ PO(X) if and
only if sCl(A) = Int(Cl(A)) [9].

(2) A subset A of a space (X, τ) is semi-preopen if and only if
Cl(A) is regular closed [3].

Definition 2.2. [6] A multifunction F : (X, τ)→ (Y, σ) is said to be:

(1) lower weakly ω-continuous, if for each x ∈ X and each open
set V of Y such that x ∈ F−(V ), there exists U ∈ ωO(X, x)
such that U ⊂ F−(Cl(V )),

(2) upper weakly ω-continuous, if for each x ∈ X and each open
set V of Y such that x ∈ F+(V ), there exists U ∈ ωO(X, x)
such that U ⊂ F+(Cl(V )),

(3) weakly ω-continuous, if it is both upper weakly ω-continuous
and lower weakly ω-continuous.

3. On upper and lower almost ω-continuous
multifunctions

Definition 3.1. A multifunction F : (X, τ)→ (Y, σ) is said to be:

(1) lower almost ω-continuous, if for each x ∈ X and each open
set V of Y such that x ∈ F−(V ), there exists U ∈ ωO(X, x)
such that U ⊂ F−(Int(Cl(V ))),

(2) upper almost ω-continuous, if for each x ∈ X and each open
set V of Y such that x ∈ F+(V ), there exists U ∈ ωO(X, x)
such that U ⊂ F+(Int(Cl(V ))),

(3) almost ω-continuous, if it is both upper almost ω-continuous
and lower almost ω-continuous.

Remark 3.2. Observe that the above Definition is a particular case
of Definition 3.4 of [14].

It is clear that every upper (lower) ω-continuous function is upper
(lower) almost ω-continuous. But the converse is not true as shown
by the following example.

Example 3.3. Let X = R with topologies τ = {∅,R,R − Q} and
Y = {a, b} with topology σ = {∅, Y, {a}}. Define F : (R, τ) → (Y, σ)
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as follows:

F (x) =

{
{a}, if x ∈ Q
{b}, if x ∈ R−Q.

It is easy to see that F is upper almost ω-continuous but is not upper
ω-continuous.

Theorem 3.4. (1) A multifunction F : (X, τ) → (Y, σ) is upper
almost ω-continuous if and only if F : (X, τω)→ (Y, σ) is upper
almost continuous.

(2) A multifunction F : (X, τ) → (Y, σ) is lower almost ω-
continuous if and only if F : (X, τω) → (Y, σ) is lower almost
continuous.

Proof. The proof is obvious from the definitions. �

Theorem 3.5. The following statements are equivalent for a multi-
function F : (X, τ)→ (Y, σ):

(1) F is upper almost ω-continuous multifunction,
(2) for each x ∈ X and for each open set V such that F (x) ⊂ V ,

there exists U ∈ ωO(X, x) such that if y ∈ U , then F (y) ⊂
Int(Cl(V )) = sCl(V ),

(3) for each x ∈ X and for each regular open set G of Y such that
F (x) ⊂ G, there exists U ∈ ωO(X, x) such that F (U) ⊂ G,

(4) for each x ∈ X and for each closed set K such that x ∈
F+(Y \K), there exists an ω-closed set H such that x ∈ X\H
and F−(Cl(Int(K))) ⊂ H,

(5) F+(Int(Cl(V ))) ∈ τω for any open set V ⊂ Y ,
(6) F−(Cl(Int(K))) ∈ ωC(X) for any closed set K ⊂ Y ,
(7) F+(G) ∈ τω for any regular open set G of Y ,
(8) F−(K) ∈ ωC(X) for any regular closed set K of Y ,
(9) for each point x of X and each neighborhood V of F (x),

F+(Int(Cl(V ))) is an ω-neighborhood of x,
(10) for each point x of X and each neighborhood V of F (x), there

exists an ω-neighborhood U of x such that F (U) ⊂ Int(Cl(V )).

Proof. (1)⇔(2): The proof follows from Definition 3.1 and lemma 2.1.
(2)⇒(3): Let x ∈ X and G be a regular open set of Y such that
F (x) ⊂ G. By (2), there exists U ∈ ωO(X, x) such that if y ∈ U , then
F (y) ⊂ Int(Cl(G)) = G. We obtain F (U) ⊂ G.
(3)⇒(2): Let x ∈ X and V be an open set of Y such that F (x) ⊂ V .
Then, Int(Cl(V )) ∈ RO(Y ). By (3), there exists U ∈ ωO(X, x) such
that F (U) ⊂ Int(Cl(V )).
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(2)⇒(4): Let x ∈ X and K be a closed set of Y such that
x ∈ F+(Y \K). By (2), there exists U ∈ ωO(X, x) such that
F (U) ⊂ Int(Cl(Y \K)). We have Int(Cl(Y \K)) = Y \Cl(Int(K))
and U ⊂ F+(Y \Cl(Int(K))) = X\F−(Cl(Int(K))). We obtain
F−(Cl(Int(K))) ⊂ X\U . Take H = X\U . Then, x ∈ X\H and
H is ω-closed set.
(4)⇒(2): Let x ∈ X and V be an open set of Y such that F (x) ⊂
V . Then Y \V is closed in Y and x ∈ F+(V ) = F+(Y \(Y \V )).
By (4), there exists an ω-closed set L such that x ∈ X\L and
F−(Cl(Int(Y \V ))) ⊂ L. This implies that X\L ⊆ F+(Int(Cl(V ))).
Put U = X\L. Then U ∈ τω and if y ∈ U , then F (y) ⊂ Int(Cl(V )).
(1)⇒(5): Let V be any open set of Y and x ∈ F+(Int(Cl(V ))). By
(1), there exists Ux ∈ ωO(X, x) such that Ux ⊂ F+(Int(Cl(V ))).
Therefore, we obtain F+(Int(Cl(V ))) =

⋃
x∈F+(Int(Cl(V )))

Ux. Hence,

F+(Int(Cl(V ))) ∈ τω.
(5)⇒(1): Let V be any open set of Y and x ∈ F+(V ). By (5),
F+(Int(Cl(V ))) ∈ τω. Take U = F+(Int(Cl(V ))). Then F (U) ⊂
Int(Cl(V )). Hence, F is upper almost ω-continuous.
(5)⇒(6): Let K be any closed set of Y . Then, Y \K is
an open set of Y . By (5), F+(Int(Cl(Y \K))) ∈ τω. Since
Int(Cl(Y \K)) = Y \Cl(Int(K)), it follows that F+(Int(Cl(Y \K))) =
F+(Y \Cl(Int(K))) = X\F−(Cl(Int(K))). We obtain that
F−(Cl(Int(K))) is ω-closed in X.
(6)⇒(5): It can be obtained similarly as (5)⇒(6).
(5)⇒(7): Let G be any regular open set of Y . By (5),
F+(Int(Cl(G))) = F+(G) ∈ τω.
(7)⇒ (5): Let V be any open set of Y . Then, Int(Cl(V )) ∈ RO(Y ).
By (7), F+(Int(Cl(V ))) ∈ τω.
(6)⇒(8): It can be obtained similarly as (5)⇒(7).
(8)⇒(6): It can be obtained similarly as (7)⇒(5).
(5)⇒(9): Let x ∈ X and V be a neighborhood of F (x). Then there
exists an open set G of Y such that F (x) ⊂ G ⊂ V . Then we have
x ∈ F+(G) ⊂ F+(V ). Since F+(Int(Cl(G))) ∈ τω, F+(Int(Cl(V ))) is
an ω-neighborhood of x.
(9)⇒(10): Let x ∈ X and V be a neighborhood of F (x). By (9),
F+(Int(Cl(V ))) is an ω-neighborhood of x. Take U = F+(Int(Cl(V ))).
Then F (U) ⊂ Int(Cl(V )).
(10)⇒(1): Let x ∈ X and V be any open set of Y such that
F (x) ⊂ V . Then V is a neighborhood of F (x). By (10), there
exists an ω-neighborhood U of x such that F (U) ⊂ Int(Cl(V )).
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Therefore, there exists G ∈ τω such that x ∈ G ⊂ U and hence
F (G) ⊂ F (U) ⊂ Int(Cl(V )). We obtain that F is upper almost ω-
continuous. �

Theorem 3.6. For a multifunction F : (X, τ)→ (Y, σ), the following
statements are equivalent:

(1) F is lower almost ω-continuous multifunction,
(2) for each x ∈ X and for each open set V such that F (x) ∩

V 6= ∅, there exists U ∈ ωO(X, x) such that if y ∈ U , then
F (y) ∩ Int(Cl(V )) 6= ∅,

(3) for each x ∈ X and for each regular open set G of Y such that
F (x) ∩ G 6= ∅, there exists U ∈ ωO(X, x) such that if y ∈ U ,
then F (y) ∩G 6= ∅,

(4) for each x ∈ X and for each closed set K such that x ∈
F−(Y \K), there exists an ω-closed set H such that x ∈ X\H
and F+(Cl(Int(K))) ⊂ H,

(5) F−(Int(Cl(V ))) ∈ τω for any open set V ⊂ Y ,
(6) F+(Cl(Int(K))) ∈ ωC(X) for any closed set K ⊂ Y ,
(7) F−(G) ∈ τω for any regular open set G of Y ,
(8) F+(K) ∈ ωC(X) for any regular closed set K of Y .

Proof. We Prove only (1)⇒(2), (2)⇒(3), (3)⇒(4). The other proofs
can be obtained similarly as Theorem 3.5.
(1)⇒(2): Let x ∈ X and V be an open subset of Y such that
F (x) ∩ V 6= ∅. Since F is lower almost ω-continuous, there exists
U ∈ ωO(X, x) such that U ⊂ F−(Int(Cl(V ))). This implies that if
y ∈ U , then F (y) ∩ Int(Cl(V )) 6= ∅.
(2)⇒(3): Let x ∈ x and G be a regular open subset of Y such that
F (x)∩G 6= ∅. Then G = Int(Cl(G)) is open in Y . By (2), there exists
U ∈ ωO(X, x) such that if y ∈ U , then F (y) ∩ Int(Cl(G)) 6= ∅. That
is, if y ∈ U , then F (y) ∩G 6= ∅.
(3)⇒(4): Let x ∈ X and K be a closed subset of Y such that
x ∈ F−(Y \K). Then Int(Cl(Y \K)) is regular open in Y such that
x ∈ F−(Int(Cl(Y \K))). Thus F (x)∩Int(Cl(Y \K)) 6= ∅. By (3), there
exists U ∈ ωO(X, x) such that if y ∈ U , then F (y)∩Int(Cl(Y \K)) 6= ∅.
Hence U ⊂ F−(Int(Cl(Y \K))), and so U ⊂ X\F+(Cl(Int(K))).
Set L = X\U . Then L is a ω-closed set such that x ∈ X\L and
F+(Cl(Int(K))) ⊂ L.
(4)⇒(1): Let x ∈ x and V be an open subset of Y such that
x ∈ F−(V ). Then Y \V is closed in Y such that x ∈ F−(Y \(Y \V )).
By (4), there exists an ω-closed set L such that x ∈ X\L and
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F+(Cl(Int(Y \V ))) ⊂ L. Set U = X\L. Thus U is ω-open in X
such that x ∈ U and U ⊂ F−(Int(Cl(V ))). Therefore, F is lower
almost ω-continuous. �

Theorem 3.7. The following are equivalent for a multifunction F :
(X, τ)→ (Y, σ):

(1) F is upper almost ω-continuous;
(2) ωCl(F−(V )) ⊂ F−(Cl(V )) for every V ∈ SPO(Y );
(3) ωCl(F−(V )) ⊂ F−(Cl(V )) for every V ∈ SO(Y );
(4) F+(V ) ⊂ ω Int(F+(Int(Cl(V )))) for every V ∈ PO(Y ).

Proof. (1),(2),(3) follow from Theorem 3.7 (1),(2),(3) of [14], and (4)
follows from Theorem 5.1 (4) of [14]. �

Theorem 3.8. The following are equivalent for a multifunction F :
(X, τ)→ (Y, σ):

(1) F is lower almost ω-continuous;
(2) ωCl(F+(V )) ⊂ F+(Cl(V )) for every V ∈ ωO(Y );
(3) ωCl(F+(V )) ⊂ F+(Cl(V )) for every V ∈ SO(Y );
(4) F−(V ) ⊂ ω Int(F−(Int(Cl(V )))) for every V ∈ PO(Y ).

Proof. (1),(2),(3) follow from Theorem 3.7 (1),(2),(3) of [14], and (4)
follows from Theorem 5.1 (4) of [14]. �

Definition 3.9. [21] Let (X, τ) be a topological space and let (xα) be
a net in X. It is said that the net (xα) ω-converges to x, if for each
ω-open set G containing x in X, there exists an index α0 ∈ I such
that xα ∈ G for each α ≥ α0.

Theorem 3.10. If F : (X, τ) → (Y, σ) is a lower (upper) almost
ω-continuous multifunction, then for each x ∈ X and for each net
(xα) which ω-converges to x in X and for each open set V ⊂ Y such
that x ∈ F−(V ) (resp. x ∈ F+(V )), the net (xα) is eventually in
F−(Int(Cl(V ))) (resp. F+(Int(Cl(V )))).

Proof. Let (xα) be a net ω-converges to x in X and let V be any open
set in Y such that x ∈ F−(V ). Since F is lower almost ω-continuous
multifunction, there exists an ω-open set U in X containing x such
that U ⊂ F−(Int(Cl(V ))). Since (xα) ω-converges to x, there exists
an index α0 ∈ J such that xα ∈ U for all α ≥ α0. So we obtain
that xα ∈ U ⊂ F−(Int(Cl(V ))) for all α ≥ α0. Thus, the net (xα) is
eventually in F−(Int(Cl(V ))).
The proof of the upper almost ω-continuity of F is similar to the
above. �
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Definition 3.11. Let (X, τ) be a topological space. The collection of
all regular open sets forms a base for a topology τ ∗. It is called the
semiregularization. In case when τ = τ ∗, the space (X, τ) is called
semiregular [19].

Theorem 3.12. Let F : (X, τ) → (Y, σ) be a multifunction from a
topological space (X, τ) to a semiregular topological space (Y, σ). Then
F is lower almost ω-continuous multifunction if and only if F is lower
ω-continuous.

Proof. Let x ∈ X and let V be an open set such that x ∈ F−(V ). Since
(Y, σ) is a semiregular space, there exist regular open sets Ui for i ∈ I
such that V = ∪

i∈I
Ui. We have F−(V ) = F−( ∪

i∈I
Ui) = ∪

i∈I
F−(Ui).

By Theorem 3.5, F−(Ui) ∈ τω for i ∈ I. We obtain F−(V ) ∈ τω.
Hence, by Theorem 2.3 in [21], F is lower ω-continuous. The converse
is obvious. �

Corollary 3.13. A multifunction F : (X, τ)→ (Y, σ) is lower almost
ω-continuous multifunction if and only if F : (X, τ)→ (Y, σ∗) is lower
ω-continuous.

Suppose that (X, τ), (Y, σ) and (Z, η) are topological spaces. It
is known that if F1 : (X, τ) → (Y, σ) and F2 : (Y, σ) → (Z, η) are
multifunctions, then the composite multifunction F2 ◦ F1 : (X, τ) →
(Z, η) is defined by (F2 ◦ F1)(x) = F2(F1(x)) for each x ∈ X.

Theorem 3.14. If F : (X, τ) → (Y, σ) is an upper (lower) semi-
continuous multifunction and G : (Y, σ) → (Z, η) is an upper (lower)
semicontinuous multifunction, then G◦F : (X, τ)→ (Z, η) is an upper
(lower) almost ω-continuous multifunction.

Proof. Let V ⊂ Z be any regular open set. From the definition of
G ◦ F , we have (G ◦ F )+(V ) = F+(G+(V )) (resp. (G ◦ F )−(V ) =
F−(G−(V ))). Since G is upper (lower) semicontinuous multifunction,
G+(V ) (resp. G−(V )) is an open set. Since F is upper (lower) ω-
continuous multifunction, F+(G+(V )) (resp. F−(G−(V ))) is an ω-
open set. It shows that G ◦ F is an upper (resp. lower) almost ω-
continuous multifunction. �

Theorem 3.15. A multifunction F : (X, τ)→ (Y, σ) is upper almost
ω-continuous if and only if sClF : (X, τ) → (Y, σ) is upper almost
ω-continuous, where sClF (x) = sCl(F (x)) for each point x ∈ X.

Proof. Suppose that F is upper almost ω-continuous. Let V be any
open set of Y such that sClF (x) ⊂ V . Then F (x) ⊂ V and by
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Theorem 3.5, there exists U ∈ ωO(X, x) such that F (U) ⊂ sCl(V ).
For each u ∈ U , F (U) ⊂ sCl(V ) and hence (sClF )+(V ) ⊂
ω Int(sClF )+(sCl(V )). It follows from Theorem 3.5, that sClF is up-
per almost ω-continuous. Conversely, suppose that sClF : (X, τ) →
(Y, σ) is upper almost ω-continuous. Let V be any open set of Y
and x ∈ F+(V ). Then F (x) ⊂ V and sClF (x) ⊂ sCl(V ). There
exists U ∈ ωO(X, x) such that sClF (U) ⊂ sCl(V ). Therefore, we
have U ⊂ (sClF )+(sCl(V )) ⊂ F+(sCl(V )) and hence x ∈ U ⊂
ω Int(F+(sCl(V ))). Thus, we obtain F+(V ) ⊂ ω Int(F+(sCl(V )))
and by Theorem 3.5, F is upper almost ω-continuous. �

Theorem 3.16. A multifunction F : (X, τ)→ (Y, σ) is lower almost
ω-continuous if and only if sClF : (X, τ) → (Y, σ) is lower almost
ω-continuous.

Proof. The proof follows from Theorem 3.10 of [14]. �

Definition 3.17. A subset A of a topological space (X, τ) is said to
be:

(1) α-regular [10], if for each a ∈ A and any open set U containing
a, there exists an open set G of X such that a ∈ G ⊂ Cl(G) ⊂
U ;

(2) α-paracompact [10], if every X-open cover A has an X-open
refinement which covers A and is locally finite for each point
of X.

Lemma 3.18. [10] If A is an α-paracompact and α-regular set of a
topological space (X, τ) and U an open neighborhood of A, then there
exists an open set G of X such that A ⊂ G ⊂ Cl(G) ⊂ U .

Lemma 3.19. If F : (X, τ) → (Y, σ) is a multifunction such that
F (x) is α-paracompact and α-regular for each x ∈ X, then we have
the following

(1) G+(V ) = F+(V ) for each open set V of Y ,
(2) G−(V ) = F−(V ) for each closed set V of Y , where G denotes

ClF or ωClF .

Proof. The proof follows from Lemma 3.6 of [14] and Lemma 3.18. �

Theorem 3.20. Let F : (X, τ) → (Y, σ) be a multifunction such
that F (x) is α-paracompact and α-regular for each x ∈ X. Then the
following statements are equivalent:

(1) F is upper almost ω-continuous;
(2) ωClF is upper almost ω-continuous;
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(3) ClF is upper almost ω-continuous.

Proof. The proof follows from Theorem 3.9 of [14]. �

Theorem 3.21. Let F : (X, τ) → (Y, σ) be a multifunction such
that F (x) is α-paracompact and α-regular for each x ∈ X. Then the
following statements are equivalent:

(1) F is lower almost ω-continuous;
(2) ωClF is lower almost ω-continuous;
(3) ClF is lower almost ω-continuous.

Proof. The proof follows from Theorem 3.10 of [14]. �

Theorem 3.22. For a multifunction F : (X, τ) → (Y, σ) such that
F (x) is an α-regular and α-paracompact set for each x ∈ X, the fol-
lowing are equivalent:

(1) F is upper weakly ω-continuous,
(2) F is upper almost ω-continuous,
(3) F is upper ω-continuous.

Proof. The proof follows from Theorem 7.1 of [15] and Lemma 3.18..
�

Corollary 3.23. Let F : (X, τ)→ (Y, σ) be a multifunction such that
F (x) is compact for each x ∈ X and Y is regular. Then, the following
are equivalent:

(1) F is upper weakly ω-continuous;
(2) F is upper almost ω-continuous;
(3) F is upper ω-continuous.

Proof. The proof follows from Corollary 7.1 of [15]. �

Lemma 3.24. [17] If A is an α-regular set of X, then for every open
set G which intersects A, there exists an open set D such that A∩D 6= ∅
and Cl(D) ⊂ G.

Theorem 3.25. For a multifunction F : (X, τ) → (Y, σ) such that
F (x) is an α-regular set of Y for each x ∈ X, the following are equiv-
alent:

(1) F is lower weakly ω-continuous,
(2) F is lower almost ω-continuous,
(3) F is lower ω-continuous.

Proof. The proof follows from Theorem 7.2 of [15] and Lemma 3.24..
�
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Theorem 3.26. Let F : (X, τ)→ (Y, σ) be a multifunction such that
F (x) is closed in Y for each x ∈ X and Y is normal. Then the
following are equivalent:

(1) F is upper weakly ω-continuous,
(2) F is upper almost ω-continuous,
(3) F is upper ω-continuous.

Proof. The proof follows from Theorem 7.3 of [15]. �

Definition 3.27. A space (X, τ) is said to be rimcompact, if each
point of X has a base of neighborhoods with compact frontiers.

Theorem 3.28. If (Y, σ) is a rimcompact space and F : (X, τ) →
(Y, σ) is a compact valued multifunction with the closed graph, then
the following are equivalent:

(1) F is upper weakly α-continuous;
(2) F is upper almost α-continuous;
(3) F is upper α-continuous.

Proof. Suppose that F is upper weakly α-continuous. Let x ∈ X and
V be any open set of Y containing F (x). Since Y is rimcompact, for
each z ∈ F (x). Since Y is rimcompact, for each z ∈ F (x) there exists
an open set W (z) such that z ∈ W (z) ⊂ V and the frontier Fr(W (z))
is compact. The family {W (z) : z ∈ F (x)} is a cover of F (x) by
open sets of Y . Since F (x) is compact, there exists a finite number of
points, say, z1, z2, ..zn in F (x) such that F (x) ⊂ ∪{W (zj) : 1 ≤ j ≤ n}.
Let W = ∪{W (zj) : 1 ≤ j ≤ n}, then we have Fr(W ) is compact,
F (x) ⊂ W ⊂ V and F (x) ∩ Fr(W ) = F (x) ∩ Cl(W ) ∩ Cl(Y \W ) ⊂
F (x) ∩ Y \W = ∅. For each y ∈ Fr(W ), (x, y) ∈ X × Y \G(F ).
Since G(F ) is closed, there exist open sets U(y) ⊂ X and V (y) ⊂ Y
containing x and y, respectively, such that F (U(y)) ∩ V (y) = ∅. The
family {V (y) : y ∈ Fr(W )} is a cover of Fr(W ) by open sets of
Y . Since Fr(W ) is compact, there exists a finite subset K of Fr(W )
such that Fr(W ) ⊂ ∪{V (y) : y ∈ K}. Since F is upper weakly ω-
continuous, there exists U0 ∈ ωO(X, x) such that F (U0) ⊂ Cl(W ).
Put U = U0 ∩ (∩{U(y) : y ∈ K}). Then we obtain U ∈ ωO(X, x),
F (U) ⊂ Cl(W ) and F (U)∩Fr(W ) = ∅. Therefore, we obtain F (U) ⊂
W ⊂ V . This shows that F is upper ω-continuous. �

Corollary 3.29. If (Y, σ) is a rimcompact space and f : (X, τ) →
(Y, σ) is an almost ω-continuous function with closed graph, then f is
ω-continuous.
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Theorem 3.30. If (Y, σ) is a rimcompact Hausdorff space, then for
a multifunction F : (X, τ)→ (Y, σ) the following are equivalent:

(1) F is lower weakly ω-continuous;
(2) F is lower almost ω-continuous;
(3) F is lower ω-continuous.

Proof. Suppose that F is lower weakly ω-continuous. It follows from
Theorem 3.4, that F : (X, τω) → (Y, σ) is lower weakly continuous.
Since (Y, σ) is a rimcompact, it is regular and hence by Theorem 2
of [18], that F : (X, τω) → (Y, σ) is lower continuous. Therefore,
F : (X, τ)→ (Y, σ) is lower ω-continuous by Theorem 3.4. �

For a multifunction F : (X, τ) → (Y, σ), the graph multifunction
GF : X ⇒ X × Y is defined as follows: GF (x) = {x}×F (x) for every
x ∈ X.

Lemma 3.31. For a multifunction F : (X, τ)→ (Y, σ) , the following
hold:

(1) G+
F (A×B) = A ∩ F+(B),

(2) G−F (A×B) = A ∩ F−(B)

for any subsets A ⊂ X and B ⊂ Y [13].

Theorem 3.32. Let F : (X, τ)→ (Y, σ) be a multifunction such that
F (x) is compact for each x ∈ X. Then F is upper almost ω-continuous
if and only if GF : X → X × Y is upper almost ω-continuous.

Proof. Suppose that GF : X → X × Y is upper almost ω-continuous.
Let x ∈ X and V be any open set of Y containing F (x). Since X × V
is open in X × Y and GF (x) ⊂ X × V , there exists U ∈ ωO(X, x)
such that GF (U) ⊂ Int(Cl(X × V )) = X × Int(Cl(V )). By Lemma
3.31, we have U ⊂ G+

F (X × Int(Cl(V ))) = F+(Int(Cl(V ))) and
F (U) ⊂ Int(Cl(V )). This shows that F is upper almost ω-continuous.
Conversely, suppose that F : (X, τ) → (Y, σ) is upper almost ω-
continuous. Let x ∈ X and W be any open set of X × Y contain-
ing GF (x). For each y ∈ F (x), there exist open sets U(y) ⊂ X
and V (y) ⊂ Y such that (x, y) ∈ U(y) × V (y) ⊂ W . The fam-
ily of {V (y) : y ∈ F (x)} is an open cover of F (x). Since F (x) is
compact, it follows that there exists a finite number of points, say
y1, y2, y3, ..., yn in F (x) such that F (x) ⊂ ∪{V (yi) : i = 1, 2, ..., n}.
Take U = ∩{U(yi) : i = 1, 2, ...., n} and V = ∪{V (yi) : i =
1, 2, ..., n}. Then U and V are open sets in X and Y , respectively,
and {x}×F (x) ⊂ U×V ⊂ W . Since F is upper almost ω-continuous,
there exists U0 ∈ ωO(X, x) such that F (U0) ⊂ Int(Cl(V )). By Lemma
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3.31, we have U ∩U0 ⊂ U ∩ F+(Int(Cl(V ))) = G+
F (U × Int(Cl(V ))) ⊂

G+
F (Int(Cl(U×V ))) ⊂ G+

F (Int(Cl(W ))). Therefore, we obtain U∩U0 ∈
ωO(X, x) and GF (U∩U0) ⊂ Int(Cl(W )). This shows that GF is upper
almost ω-continuous. �

Theorem 3.33. A multifunction F : (X, τ)→ (Y, σ) is lower almost
ω-continuous if and only if GF : X → X × Y is lower almost ω-
continuous.

Proof. Suppose that F is lower almost ω-continuous. Let x ∈ X and
W be any open set of X × Y such that x ∈ G−F (W ). Since W ∩
({x} × F (x)) 6= ∅, there exists y ∈ F (x) such that (x, y) ∈ W and
hence (x, y) ∈ U × V ⊂ W for some open sets U and V of X and Y ,
respectively. Since F (x)∩V 6= ∅, there exists G ∈ ωO(X, x) such that
G ⊂ F−(Int(Cl(V ))). By Lemma 3.31, U∩G ⊂ U∩F−(Int(Cl(V ))) =
G−F (U× Int(Cl(V ))) ⊂ G−F (Int(Cl(W ))). Furthermore, x ∈ U ∩G ∈ τω
and hence GF is lower almost ω-continuous. Conversely, suppose that
GF is lower almost ω-continuous. Let x ∈ X and V be any open set of
Y such that x ∈ F−(V ). Then X × V is open in X × Y and GF (x) ∩
(X×V ) = ({x}×F (x))∩ (X×V ) = {x}× (F (x)∩V ) 6= ∅. Since GF

is lower almost ω-continuous, there exists an ω-open set U containing
x such that U ⊂ G−F (Int(Cl(X × V ))). Since G−F (Int(Cl(X × V ))) =
G−F (X × Int(Cl(V ))), by Lemma 3.31, we have U ⊂ F−(Int(Cl(V ))).
This shows that F is lower almost ω-continuous. �

Corollary 3.34. [16] Let f : (X, τ) → (Y, σ) be a function and g :
X → X × Y the graph function defined as follows: g(x) = (x, f(x))
for each x ∈ X. Then f is almost ω-continuous if and only if g is
almost ω-continuous.

Definition 3.35. [21] Let F : (X, τ) → (Y, σ) be a multifunction.
The multigraph G(F ) is said to be ω-closed graph in X × Y , if for
each (x, y) ∈ X × Y \G(F ), there exist ω-open set U and an open set
V containing x and y, respectively, such that (U × V ) ∩G(F ) = ∅.

Theorem 3.36. Let F : (X, τ) → (Y, σ) be an upper almost ω-
continuous and punctually α-paracompact multifunction into a Haus-
dorff space (Y, σ). Then the multigraph G(F ) of F is an ω-closed graph
in X × Y .

Proof. Suppose that (x0, y0) /∈ G(F ). Then y0 /∈ F (x0). Since (Y, σ) is
a Hausdorff space, then for each y ∈ F (x0) there exist open sets V (y)
and W (y) containing y and y0 respectively such that V (y)∩W (y) = ∅.
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The family {V (y) : y ∈ F (x0)} is an open cover of F (x0) which is α-
paracompact. Thus, it has a locally finite open refinement Φ = {Uβ :
β ∈ I} which covers F (x0). Let W0 be an open neighborhood of y0

such that W0 intersects only finitely many members Uβ1 , Uβ2 , ..., Uβn
of Φ. Choose y1, y2, ..., yn in F (x0) such that Uβi ⊂ V (yi) for each

i = 1, 2, ....n and set W = W0 ∩ (
n
∩
i=1

W (yi)). Then W is an open

neighborhood of y0 with W ∩ ( ∪
β∈I

Uβ) = ∅, which implies that W ∩

Int(Cl( ∪
β∈I

Uβ)) = ∅. By the upper almost ω continuity of F , there

exists U ∈ ωO(X, x0) such that F (U) ⊂ Int(Cl( ∪
β∈I

Uβ)). It follows

that (U ×W ) ∩G(F ) = ∅. Therefore, the graph G(F ) is an ω-closed
graph in X × Y . �

Let {Xα : α ∈ O} and {Yα : α ∈ O} be any two families of topolog-
ical spaces with same index set O. For each α ∈ O, let Fα : Xα → Yα
be a multifunction. The product space Π{Xα : α ∈ O} will be denoted
by ΠXα and the product multifunction ΠFα : ΠXα → ΠYα, defined
by F (x) = Π{Fα(xα) : α ∈ O} for each x = {xα} ∈ ΠXα, is simply
denoted by F : ΠXα → Yα.

Theorem 3.37. Let Fα : (X, τ)→ (Y, σ)α be a multifunction for each
α ∈ O and F : X → ΠYα a multifunction defined by F (x) = Π{Fα(x) :
α ∈ O} for each x ∈ X. If F is upper almost ω-continuous (resp.
lower almost ω-continuous), then Fα is upper almost ω-continuous
(resp. lower almost ω-continuous) for each α ∈ O.

Proof. Let x ∈ X, α ∈ O and Vα any regular open set of Yα containing
Fα(x). Then P−1

α (Vα) = Vα × Π{Yβ : β ∈ O and β 6= α} is a regular
open set of ΠYα containing F (x), where Pα is the natural projection of
ΠYα onto Yα. Since F is upper almost ω-continuous, there exists U ∈
ωO(X, x) such that F (U) ⊂ p−1

α (Vα). Therefore, we obtain Fα(U) ⊂
Pα(F (U)) ⊂ Pα(P−1

α (Vα)) = Vα. This shows that Fα : (X, τ) →
(Y, σ)α is upper almost ω-continuous for each α ∈ O. The proof for
lower almost ω-continuous is similar and is thus omitted. �

Theorem 3.38. If (Y, σ) is a Hausdorff space and F,G : (X, τ) →
(Y, σ) are multifunctions such that

(1) F (x) and G(x) are compact for each x ∈ X,
(2) G is upper weakly ω-continuous,
(3) F is upper almost ω-continuous,

then the set A = {x ∈ X : F (x) ∩G(x) 6= ∅} is ω-closed in X.
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Proof. The proof follows from Theorem 8.3 of [15]. �

Theorem 3.39. If F : (X, τ) → (Y, σ) is an upper almost ω-
continuous multifunction such that F (x) is α-nearly paracompact for
each x ∈ X and Y is Hausdorff, then for each (x, y) ∈ X × Y \G(F ),
there exist U ∈ ωO(X, x) and an open set V containing y such that
(U × Cl(V )) ∩G(F ) = ∅.
Proof. Let (x, y) ∈ X × Y \G(F ), then y ∈ Y \F (x). Since Y is
Hausdorff, for each a ∈ F (X) there exist open sets V (a) and W (a)
containing a and y, respectively, such that V (a) ∩W (a) = ∅, hence
Int(Cl(V (a)))∩W (a) = ∅. The family V = {Int(Cl(V (a))) : a ∈ F (x)}
is a cover of F (x) by regular open sets of Y and F (x) is α-nearly para-
compact. There exists a locally finite open refinement H = {Hα :
α ∈ O} of V such that F (x) ⊂ ∪{Hα : α ∈ O} . Since H is locally
finite, there exists an open neighborhood W0 of Y and a finite sub-
set O0 of O such that W0 ∩ Hα = ∅ for every α ∈ O\O0. For each
α ∈ O0, there exists a(α) ∈ F (x) such that Hα ⊂ V (a(α)). Now, put
W = W0 ∩ (∩{W (a(α)) : α ∈ O0}) and H = ∪{Hα : α ∈ O}. Then
W is an open neighborhood of y, H is open in Y and W ∩ H = ∅.
Therefore, we obtain F (x) ⊂ H and Cl(W ) ∩ H = ∅ an hence
F (x) ⊂ Y \Cl(W ). Since W is open, Y \Cl(W ) is regular open in
Y . Since F is upper almost ω-continuous, there exists U ∈ ωO(X, x)
such that F (U) ⊂ Y \Cl(W ), hence F (U)∩Cl(W ) = ∅. Therefore, we
obtain (U × Cl(V )) ∩G(F ) = ∅. �

Corollary 3.40. If F : (X, τ) → (Y, σ) is an upper almost ω-
continuous multifunction such that F (x) is compact for each x ∈ X
and Y is Hausdorff, then for each (x, y) ∈ X × Y \G(F ), there
exist U ∈ ωO(X, x) and an open set V containing y such that
(U × Cl(V )) ∩G(F ) = ∅.
Corollary 3.41. If f : (X, τ) → (Y, σ) is an ω-continuous function
into a Hausdorff space Y , then G(f) is ω-closed.

Theorem 3.42. Suppose that (X, τ) and (Xα, τα) are topological
spaces, where α ∈ J . Let F : X → Π

α∈J
Xα be a multifunction from

X to the product space Π
α∈J

Xα and let Pα : Π
α∈J

Xα → Xα be the pro-

jection for each α ∈ J . If F is upper (lower) almost ω-continuous
multifunction, then Pα ◦F is upper (resp. lower) almost ω-continuous
multifunction for each α ∈ J .

Proof. Take any α0 ∈ J . Let Vα0 be an open set in
(Xα0 , τα0). Then (Pα0 ◦ F )+(Int(Cl(Vα0))) = F+(P+

α0
(Int(Cl(Vα0)))) =
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F+(Int(Cl(Vα0))) × Π
α 6=α0

Xα (resp. (Pα0 ◦ F )−(Int(Cl(Vα0))) =

F−(P−α0
(Int(Cl(Vα0)))) = F−(Int(Cl(Vα0)) × Π

α 6=α0

Xα)). Since F

is upper (resp. lower) almost ω-continuous multifunction and
since Int(Cl(Vα0)) × Π

α 6=α0

Xα is a regular open set, it follows that

F+(Int(Cl(Vα0)) × Π
α 6=α0

Xα) (resp. F−(Int(Cl(Vα0)) × Π
α 6=α0

Xα)) is ω-

open in (X, τ). It shows that Pα0 ◦ F is upper (lower) almost ω-
continuous multifunction. Hence, we obtain that Pα ◦ F is upper
(lower) almost ω-continuous multifunction for each α ∈ J . �

Theorem 3.43. Suppose that for each α ∈ J , (Xα, τα), (Yα, σα) are
topological spaces. Let Fα : Xα → Yα be a multifunction for each
α ∈ J and let F : Π

α∈J
Xα → Π

α∈J
Yα be defined by F ((xα)) = Π

α∈J
Fα(xα)

from the product space Π
α∈J

Xα to the product space Π
α∈J

Yα. If F is up-

per (lower) almost ω-continuous multifunction, then each Fα is upper
(resp. lower) almost ω-continuous multifunction for each α ∈ J .

Proof. Let Vα ⊆ Yα be an open set. Then Int(Cl(Vα)) × Π
α 6=β

Yβ is a

regular open set. Since F is upper (lower) almost ω-continuous multi-
function, it follows that F+(Int(Cl(Vα))× Π

α 6=β
Yβ) = F+

α (Int(Cl(Vα)))×

Π
α 6=β

Xβ (resp. F−(Int(Cl(Vα))× Π
α 6=β

Yβ) = F−α (Int(Cl(Vα)))× Π
α 6=β

Xβ)

is an ω-open set. Consequently, we obtain that F+
α (Int(Cl(Vα))) (resp.

F−α (Int(Cl(Vα)))) is an ω-open set. Thus, we show that Fα is upper
(resp. lower) almost ω-continuous multifunction. �

Theorem 3.44. Suppose that (X, τ), (Y, σ), (Z, η) are topological
spaces and F1 : (X, τ) → (Y, σ), F2 : (X, τ) → (Z, η) are multi-
functions. Let F1 × F2 : (X, τ)→ (Y, σ)× Z be a multifunction which
is defined by (F1×F2)(x) = F1(x)×F2(x) for each x ∈ X. If F1×F2

is upper (lower) almost ω-continuous multifunction, then F1 and F2

are upper (resp. lower) almost ω-continuous multifunctions.

Proof. Let x ∈ X and let K ⊂ Y , H ⊂ Z be open sets such that
x ∈ F+

1 (K) and x ∈ F+
2 (H). Then we obtain that F1(x) ⊂ K and

F2(x) ⊂ H and so F1(x) × F2(x) = (F1 × F2)(x) ⊂ K ×H. We have
x ∈ (F1 × F2)+(K × H).Since F1 × F2 is upper almost ω-continuous
multifunction, there exists an ω-open set U containing x such that
U ⊂ (F1×F2)+(Int(Cl(K×H))). We obtain that U ⊂ F+

1 (Int(Cl(K)))
and U ⊂ F+

2 (Int(Cl(H))). Thus, we obtain that F1 and F2 are upper
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almost ω-continuous multifunctions. The proof of the lower almost ω
continuity of F1 and F2 is similar to the above. �

Lemma 3.45. [1] Let A and B be subsets of a topological space (X, τ).
Then

(1) If A ∈ ωO(X) and B ∈ τ , then A ∩B ∈ ωO(B);
(2) If A ∈ ωO(B) and B ∈ τω, then A ∈ τω.

Lemma 3.46. If F : (X, τ)→ (Y, σ) is an upper almost ω-continuous
(lower almost ω-continuous) multifunction and U ∈ τ , then F|U :
(U, τU) ⇒ (Y, σ) is upper almost ω-continuous (lower almost ω-
continuous).

Proof. Suppose that V is an open subset of Y . Let x ∈ U and let
x ∈ (F|U)−(V ). Since F is lower almost ω-continuous multifunction,
there exists an ω-open set G such that x ∈ G ⊂ F−(Int(Cl(V ))).
By Lemma 3.45, we obtain that x ∈ G ∩ U ∈ ωO(U) and G ∩ U ⊂
(F|U)−(Int(Cl(V ))). Hence F|U is lower almost ω-continuous. The
proof of the upper almost ω-continuity of F|U is similar to the above.

�

Theorem 3.47. Let {Uα : α ∈ Λ} be an open cover of a space (X, τ).
Then a multifunction F : (X, τ)→ (Y, σ) is upper almost ω-continuous
(resp. lower almost ω-continuous) if and only if the restriction F|Uα :
(Uα, τα) ⇒ (Y, σ) is upper almost ω-continuous (resp. lower almost
ω-continuous) for each α ∈ Λ.

Proof. We prove only the case for F upper almost ω-continuous,
the proof for F lower almost ω-continuous being analogous. Let
α ∈ Λ and V be any open set of Y . Since F is upper almost
ω-continuous, F+(Int(Cl(V ))) is ω-open in X. By Lemma 3.45,
(F|Uα)+(Int(Cl(V ))) = F+(Int(Cl(V )))∩Uα is ω-open in Uα and hence
F|Uα is upper almost ω-continuous. Conversely, let V be any open
set of Y . Since F|Uα is upper almost ω-continuous for each α ∈ Λ,
(F|Uα)+(Int(Cl(V ))) = F+(Int(Cl(V ))) ∩ Uα is ω-open in Uλ. By
Lemma 3.45, (F|Uα)+(Int(Cl(V ))) is ω-open in X for each α ∈ Λ.
We obtain that F+(Int(Cl(V ))) = ∪

α∈Λ
(F|Uα)+(Int(Cl(V ))) is ω-open

in X. Hence F is upper almost ω-continuous. �

Recall that a multifunction F : (X, τ) → (Y, σ) is said to be punc-
tually connected if for each x ∈ X, F (x) is connected.

Definition 3.48. A topological space (X, τ) is called ω-connected [2]
provided that X is not the union of two nonempty disjoint ω-open
sets.
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Theorem 3.49. Let F be a multifunction from an ω-connected topo-
logical space (X, τ) onto a topological space (Y, σ) such that F is punc-
tually connected. If F is an upper almost ω-continuous multifunction,
then Y is a connected space.

Proof. The proof follows from Theorem 9.1 of [15]. �

Recall that a multifunction F : (X, τ) → (Y, σ) is said to be punc-
tually closed if for each x ∈ X,F (x) is closed.

Theorem 3.50. Let F be an upper almost ω-continuous punctually
closed multifunction and G be an upper almost continuous punctually
closed multifunction from a space (X, τ) to a normal space (Y, σ).
Then the set K = {x ∈ X : F (x) ∩G(x) 6= ∅} is ω-closed in X.

Proof. Let x ∈ X\K. Then F (x) ∩ G(x) = ∅. Since F and
G are punctually closed multifunctions and Y is a normal space,
there exists disjoint open sets U and V containing F (x) and G(x),
respectively. Since F and G are upper almost ω-continuous and
upper almost continuous, respectively the sets F+(Int(Cl(U))) and
G+(Int(Cl(V ))) are ω-open and open sets, respectively containing x.
Let H = F+(Int(Cl(U))) ∩G+(Int(Cl(V ))). Then H is an ω-open set
containing x and H ∩K = ∅. Hence, K is ω closed in X. �

Definition 3.51. A topological space (X, τ) is said to be ω-T2 [2],
if for each pair of distinct points x and y in X, there exist disjoint
ω-open sets U and V in X such that x ∈ U and y ∈ V .

Theorem 3.52. Let F : (X, τ) → (Y, σ) be an upper almost ω-
continuous multifunction and punctually closed from a topological
space (X, τ) to a normal topological space (Y, σ) and let F (x)∩F (y) =
∅ for each distinct pair x, y ∈ X. Then X is an ω-T2 space.

Proof. Let x and y be any two distinct points in X. Then we have
F (x) ∩ F (y) = ∅. Since (Y, σ) is a normal space, it follows that there
exist disjoints open sets U and V containing F (x) and F (y), respec-
tively. Thus F+(Int(Cl(U))) and F+(Int(Cl(V ))) are disjoint ω-open
sets containing x and y, respectively. Thus, it is obtained that (X, τ)
is ω-T2. �

Definition 3.53. [2] The ω-frontier of a subset A of a space (X, τ),
denoted by ωFr(A), is defined by ωFr(A) = ωCl(A) ∩ ωCl(X\A) =
ωCl(A)\ω Int(A).

Theorem 3.54. The set all points of X at which a multifunction
F : (X, τ) → (Y, σ) is not upper almost ω-continuous (lower almost
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ω-continuous) is identical with the union of the ω-frontier of the upper
(lower) inverse images of regular open sets containing (meeting) F (x).

Proof. The proof follows from Theorem 3.11 of [14].
In case F is lower almost ω-continuous, the proof is similar. �

In the following (D,>) is a directed set, (Fλ) is a net of multifunction
Fλ : (X, τ)→ (Y, σ) for every λ ∈ D and F is a multifunction from X
into Y .

Definition 3.55. Let (Fλ)λ∈D be a net of multifunctions from X to
Y . A multifunction F ? : (X, τ)→ (Y, σ) is defined as follows: for each
x ∈ X, F ?(x) = {y ∈ Y : for each open neighborhood V of y and each
µ ∈ D, there exists λ ∈ D such that λ > µ and V ∩ Fλ(x) 6= ∅} is
called the upper topological limit of the net (Fλ)λ∈D [4].

Definition 3.56. A net (Fλ)λ∈D is said to be equally upper almost ω-
continuous at x0 ∈ X, if for every open set V containing Fλ(x0), there
exists an ω-open set U containing x0 such that Fλ(U) ⊂ Int(Cl(Vλ))
for all λ ∈ D.

Theorem 3.57. Let (Fλ)λ∈D be a net of multifunctions from a topo-
logical space (X, τ) into a compact space (Y, σ). If the following are
satisfied:

(1) ∪{Fµ(x) : µ > λ} is closed in Y for each λ ∈ D and each
x ∈ X;

(2) (Fλ)λ∈D is equally upper almost ω-continuous on X, then F ?

is upper almost ω-continuous on X, then F ? is upper almost
ω-continuous on X.

Proof. We have F ?(x) = ∩{(∪{Fµ(x) : µ > λ}) : λ ∈ D}. Since
the net (∪{Fµ(x) : µ > λ})λ∈D is a family of closed sets having the
finite intersection property and Y is compact, F ?(x) 6= ∅ for each
x ∈ X. Now, let x0 ∈ X and let V be a proper open subset of
Y such that F ?(x0) ⊂ V .Since F ?(x0) ∩ (Y \V ) = ∅, F ?(x0) 6= ∅
and Y \V 6= ∅, ∩{(∪{Fµ(x0) : µ > λ}) : λ ∈ D} ∩ (Y \V ) = ∅ and
hence ∩{(∪{Fµ(x0) ∩ (Y \V ) : µ > λ}) : λ ∈ D} = ∅. Since Y is
compact and the family {(∪{Fµ(x0) ∩ (Y \V ) : µ > λ}) : λ ∈ D} is a
family of closed sets with the empty intersection, there exists λ ∈ D
such that Fµ(x0) ∩ (Y \V ) = ∅ for each µ ∈ D with µ > λ. Since
the net (Fλ)λ∈D is equally upper almost ω-continuous on X, there
exists an ω-open set U containing x0 such that Fµ(U) ⊂ Int(Cl(V ))
for each µ > λ, that is, Fµ(x) ∩ (Y \ Int(Cl(V ))) = ∅ for each x ∈ U .
Then we have ∪{Fµ(x) ∩ (Y \ Int(Cl(V ))) : µ > λ} = ∅ and hence



54 C. CARPINTERO, N. RAJESH, E. ROSAS AND S. SARANYASRI

∩{∪{Fµ(x) : µ > λ} : λ ∈ D} ∩ (Y \ Int(Cl(V ))) = ∅. This implies
that F ∗(U) ⊂ Int(Cl(V )). If V = Y , then it is clear that for each
ω-open set U containing x0 we have F ?(U) ⊂ Int(Cl(V )). Hence F ?

is upper almost ω-continuous at x0. Since x0 is arbitrary, the proof
completes. �
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(1983), 59–64.

[5] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass
1996.

[6] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, On upper and lower
weakly ω-continuous multifunctions (submitted).

[7] H.Z. Hdeib, ω-continuous functions, Dirasat J. 16(2)(1989),136–153.
[8] H.Z. Hdeib, ω-closed mappings, Rev. Colomb. Mat. 16(1982),65–78.
[9] D. S. Jankovic, A note onmappings of extremally disconnected spaces,

Acta Math. Hungar. 46(1985), 83–92.
[10] I. Kovacevic, Subsets and paracompactness, Zb. Rad., Prir.-Mat. Fak.,

Univ. Novom Sadu, Ser. Mat. 14(1984), 79–87.
[11] N. Levine, Semi-open sets and semi-continuity in topological spaces,

Am. Math. Mon. 70(1963), 36–41.
[12] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous

and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53
(1982), 47–53.

[13] T. Noiri and V. Popa, Almost weakly continuous multifunctions,
Demonstr. Math. 26 (1993), 363–380.

[14] T. Noiri and V. Popa, A unified theory of almost continuity for mul-
tifunctions, Sci. Stud. Res., Ser. Math. Inform. 20(1)(2010),185–214.

[15] T. Noiri and V. Popa, A unified theory of weak continuity for multi-
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