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FIXED POINT THEOREM FOR CYCLIC
(µ, ψ, φ)-WEAKLY CONTRACTIONS

SUMIT CHANDOK AND VALERIU POPA

Abstract. In this article, we introduce the notion of cyclic (µ, ψ, φ)-
weakly contraction and derive the existence of fixed point for such
mappings in the setup of complete metric spaces. Our result extend
and improve some fixed point theorems in the literature.

1. Introduction and Preliminaries

It is well known that the fixed point theorem of Banach, for contrac-
tion mappings, is one of the pivotal result in analysis. It has been used
in many different fields of mathematics. Fixed point problems involv-
ing different type of contractive type inequalities have been studied by
many authors (see [1]-[17] and references cited therein).

Alber and Guerre-Delabriere [1] introduced the concept of weakly
contractive mappings and proved the existence of fixed points for
single-valued weakly contractive mappings in Hilbert spaces. There-
after, in 2001, Rhoades [17] proved the fixed point theorem which is
one of the generalizations of Banach’s Contraction Mapping Principle,
because the weakly contractions contains contractions as a special case
and he also showed that some results of [1] are true for any Banach
space. In fact, weakly contractive mappings are closely related to the
mappings of Boyd and Wong [2] and of Reich types [16].

In [14], Kirk et al. introduced the following notion of cyclic repre-
sentation and characterized the Banach Contraction Principle in the
context of cyclic mapping.
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Definition 1.1. [14] Let X be a non-empty set and T : X → X an
operator. By definition, X = ∪mi=1Xi is a cyclic representation of X
with respect to T if:

(a) Xi; i = 1, . . . ,m are non-empty sets,
(b) T (X1) ⊂ X2,. . . , T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1.

Pacurar and Rus [15] proved the following main theorem.

Theorem 1.2. Let (X, d) be a complete metric space, m ∈ N, A1, A2,
. . . , Am nonempty closed subsets of X and Y = ∪mi=1Ai. Suppose that
T : Y → Y be an operator such that

(1) ∪mi=1Ai is a cyclic representation of Y with respect to T ;
(2) d(Tx, Ty) ≤ d(x, y)− φ(d(x, y))

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where φ is monotone in-
creasing continuous functions φ : [0,∞) → [0,∞), with φ(t) > 0, if
t > 0; φ(t) = 0 if and only if t = 0, Am+1 = A1. Then, T has a fixed
point z ∈ ∩ni=1Ai.

It is the aim of this paper to introduce the notion of cyclic (µ, ψ, φ)-
weakly contraction mappings, and then derive a fixed point theorem for
such cyclic contractions, in the framework of complete metric spaces.

2. Main Results

To state and prove our main results, we shall introduce our notion
of cyclic (µ, ψ, φ)-weakly contraction mappings in metric space.

Let θ denote the set of all monotone increasing continuous functions
µ : [0,∞) → [0,∞), with µ(t) > 0, if t > 0; µ(t) = 0 if and only if
t = 0 and µ(t1 + t2) ≤ µ(t1) + µ(t2), for all t1, t2 ∈ [0,∞).

Let Φ denote the set of all continuous functions φ : [0,∞)→ [0,∞)
with φ(t) > 0, for t ∈ (0,∞) and φ(0) = 0.

Let Ψ denote the set of all functions ψ : [0,∞)5 → [0,∞) such that
(a) ψ is continuous;
(b) ψ is strictly increasing in all the variables;
(c) for all t ∈ [0,∞)\{0}, ψ(t, t, t, 0, 2t) ≤ t, ψ(t, t, t, 2t, 0) ≤ t,

ψ(0, 0, t, t, 0) ≤ t, ψ(0, t, 0, 0, t) ≤ t, and ψ(t, 0, 0, t, t) ≤ t.

Definition 2.1. Let (X, d) be a metric space, m a natural number,
A1, A2 . . . , Am nonempty subsets of X and Y = ∪mi=1Ai. An operator
T : Y → Y is called a cyclic (µ, ψ, φ)-weakly contraction if

(1) ∪mi=1Ai is a cyclic representation of Y with respect to T ;
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(2)

µ(d(Tx, Ty)) ≤ ψ(µ(d(x, y)), µ(d(x, Tx)), µ(d(y, Ty)),

µ(d(x, Ty)), µ(d(y, Tx)))− φ(M(x, y)),

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, µ ∈ θ,
φ ∈ Φ, ψ ∈ Ψ and M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.
Theorem 2.2. Let (X, d) be a complete metric space, m ∈ N, A1, A2,
. . . , Am nonempty closed subsets of X and Y = ∪mi=1Ai. Suppose that
T is a cyclic (µ, ψ, φ)-weakly contraction. Then, T has a fixed point
z ∈ ∩ni=1Ai.

Proof. Let x0 ∈ X. We can construct a sequence xn+1 = Txn, n =
0, 1, 2, . . ..

If there exists n0 ∈ N such that xn0+1 = xn0 , hence the result.
Indeed, we can see that Txn0 = xn0+1 = xn0 .

Now, we assume that xn+1 6= xn for any n = 0, 1, 2, . . .. As X =
∪mi=1Ai, for any n > 0, there exists in ∈ {1, 2, . . . ,m} such that xn−1 ∈
Ain and xn ∈ Ain+1 . Since T is a cyclic (µ, ψ, φ)-weakly contraction,
we have

µ(d(xn+1, xn)) = µ(d(Txn, Txn−1))

≤ ψ(µ(d(xn, xn−1)), µ(d(xn, Txn)), µ(d(xn−1, Txn−1)),

µ(d(xn, Txn−1)), µ(d(xn−1, Txn)))− φ(M(xn, xn−1))

= ψ(µ(d(xn, xn−1)), µ(d(xn, xn+1)), µ(d(xn−1, xn)),

µ(d(xn, xn)), µ(d(xn−1, xn+1)))− φ(M(xn, xn−1)).

where M(xn, xn−1) = max{d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)}.
If M(xn, xn−1) = d(xn, xn+1), then

µ(d(xn+1, xn)) ≤ ψ(µ(d(xn, xn+1)), µ(d(xn, xn+1)), µ(d(xn, xn+1)), 0,

2µ(d(xn, xn+1)))− φ(d(xn, xn+1))

≤ µ(d(xn, xn+1))− φ(d(xn, xn+1))

≤ µ(d(xn, xn+1)),

which is a contradiction. Hence

(2.1) µ(d(xn+1, xn)) ≤ µ(d(xn, xn−1))− φ(d(xn, xn−1))

and
d(xn+1, xn) ≤ d(xn, xn−1).

Thus {d(xn+1, xn)} is a monotone decreasing sequence of non-negative
real numbers and hence is convergent. Therefore, there exists r ≥ 0
such that d(xn+1, xn)→ r.
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Letting n → ∞ in (2.1), and using the continuity of µ and φ, we
obtain that µ(r) ≤ µ(r) − φ(r). This implies that φ(r) = 0, hence
r = 0. Thus we have

(2.2) d(xn+1, xn)→ 0.

Now, we show that {xn} is a Cauchy sequence. For this purpose,
we prove the following result first.

Lemma 2.3. For every positive ε, there exists a natural number n
such that if r, q ≥ n with r − q ≡ 1 (modm), then d(xr, xq) < ε.

Proof. Assume the contrary. Thus there exists ε > 0 such that for any
n ∈ N, we can find rn > qn ≥ n with rn − qn ≡ 1 (modm) satisfying
d(xrn , xqn) ≥ ε.

Now, we take n > 2m. Then, corresponding to qn ≥ n, we can
choose rn in such that it is a smallest integer with rn > qn satisfying
rn− qn ≡ 1 (modm) and d(xrn , xqn) ≥ ε. Therefore, d(xrn−m , xqn) < ε.
By using the triangular inequality, we have

ε ≤ d(xqn , xrn)

≤ d(xqn , xrn−m) +
m∑
i=1

d(xrn−i
, xrn−i+1

)

< ε+
m∑
i=1

d(xrn−i
, xrn−i+1

).

Letting n→∞ and using d(xn+1, xn)→ 0, we obtain

lim d(xqn , xrn) = ε.(2.3)

Again, by the triangular inequality,

ε ≤ d(xqn , xrn)

≤ d(xqn , xqn+1) + d(xqn+1 , xrn+1) + d(xrn+1 , xrn)

≤ d(xqn , xqn+1) + d(xqn+1 , xqn) + d(xqn , xrn) + d(xrn , xrn+1) +

d(xrn+1 , xrn).

Letting n→∞ and using d(xn+1, xn)→ 0, we get

(2.4) lim d(xqn+1 , xrn+1) = ε.

Consider

d(xqn , Txrn) = d(xqn , xrn+1)

≤ d(xqn , xrn) + d(xrn , xrn+1),(2.5)
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and

d(xrn , Txqn) = d(xrn , xqn+1)

≤ d(xrn , xqn) + d(xqn , xqn+1).(2.6)

On taking n→∞ in inequalities (2.5) and (2.6), we have

(2.7) lim
n→∞

d(xqn , Txrn) = ε,

and

(2.8) lim
n→∞

d(xrn , Txqn) = ε.

As xqn and xrn lie in different adjacently labeled sets Ai and Ai+1

for certain 1 ≤ i ≤ m, using the fact T is a cyclic (µ, ψ, φ)-weakly
contraction, we obtain

µ(ε) ≤ µ(d(xqn+1 , xrn+1))

= µ(d(Txqn , Txrn))

≤ ψ(µ(d(xqn , xrn)), µ(d(xqn , Txqn)), µ(d(xrn , Txrn)),

µ(d(xqn , Txrn)), µ(d(xrn , Txqn)))− φ(M(xqn , xrn))

= ψ(µ(d(xqn , xrn)), µ(d(xqn , xqn+1)), µ(d(xrn , xrn+1)),(2.9)

µ(d(xqn , xrn+1)), µ(d(xrn , xqn+1)))− φ(M(xqn , xrn)),

where M(xqn , xrn) = max{d(xqn , xrn), d(xqn , Txqn), d(xrn , Txrn)}
On taking n → ∞ in (2.9), using (2.7) and (2.8), continuity of µ,

and φ and property of ψ, we get that

µ(ε) ≤ ψ(µ(ε), µ(0), µ(0), µ(ε), µ(ε))− φ(ε)

≤ µ(ε)− φ(ε).

Consequently, φ(ε) ≤ 0, which is contradiction with ε > 0. Hence the
result is proved. �

Now, using Lemma 2.3, we shall show that {xn} is a Cauchy se-
quence in Y . Fix ε > 0. By Lemma 2.3, we can find n0 ∈ N such that
r, q ≥ n0 with r − q ≡ 1 (modm)

(2.10) d(xr, xq) ≤
ε

2
.

Since lim d(xn, xn+1) = 0, we can also find n1 ∈ N such that

(2.11) d(xn, xn+1) ≤
ε

2m
,

for any n ≥ n1.
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Assume that r, s ≥ max{n0, n1} and s > r. Then there exists k ∈
{1, 2, . . . ,m} such that s−r ≡ k (modm). Hence s−r+t = 1 (modm),
for t = m− k + 1. So, we have

(2.12) d(xr, xs) ≤ d(xr, xs+j) + d(xs+j, xs+j−1) + . . .+ d(xs+1, xs).

Using (2.10), (2.11) and (2.12), we obtain

(2.13) d(xr, xs) ≤
ε

2
+ j × ε

2m
≤ ε

2
+m× ε

2m
= ε.

Hence {xn} is a Cauchy sequence in Y . Since Y is closed in X, then
Y is also complete and there exists x ∈ Y such that lim xn = x.

Now, we shall prove that x is a fixed point of T .
As Y = ∪mi=1Ai is a cyclic representation of Y with respect to T ,

the sequence {xn} has infinite terms in each Ai for i = {1, 2, . . . ,m}.
Suppose that x ∈ Ai, Tx ∈ Ai+1 and we take a subsequence {xnk

} of
{xn} with xnk

∈ Ai. By using the contractive condition, we can obtain

µ(d(xnk+1, Tx)) = µ(d(Txnk
, Tx))

≤ ψ(µ(d(xnk
, x)), µ(d(xnk

, Txnk
)), µ(d(x, Tx)),

µ(d(xnk
, Tx)), µ(d(x, Txnk

)))− φ(M(xnk
, x))

= ψ(µ(d(xnk
, x)), µ(d(xnk

, xnk+1)), µ(d(x, Tx)),

µ(d(xnk
, Tx)), µ(d(x, xnk+1)))− φ(M(xnk

, x)),

where M(xnk
, x) = max{d(xnk

, x), d(xnk
, xnk+1), d(x, Tx)}. Letting

n→∞ and using continuity of µ and φ, we have

µ(d(x, Tx)) ≤ ψ(µ(0), µ(0), µ(d(x, Tx)), µ(d(x, Tx)), µ(0))− φ(d(x, Tx))

≤ µ(d(x, Tx))− φ(d(x, Tx)),

which is a contradiction unless d(x, Tx) = 0. Hence x is a fixed point
of T .

Now, we shall prove the uniqueness of fixed point.
Suppose that x1 and x2 (x1 6= x2) are two fixed points of T . Using

the contractive condition and continuity of µ and ψ, we have

µ(d(x1, x2)) = µ(d(Tx1, Tx2))

≤ ψ(µ(d(x1, x2)), µ(d(x1, Tx1)), µ(d(x2, Tx2)),

µ(d(x1, Tx2)), µ(d(x2, Tx1)))− φ(M(x1, x2))

= ψ(µ(d(x1, x2)), µ(d(x1, x1)), µ(d(x2, x2)), µ(d(x1, x2)),

µ(d(x2, x1)))− φ(M(x1, x2))

= ψ(µ(d(x1, x2)), µ(0), µ(0), µ(d(x1, x2)), µ(d(x2, x1)))−
φ(M(x1, x2)),
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where M(x1, x2) = max{d(x1, x2), d(x1, x1), d(x2, x2)}.
So we deduce that

µ(d(x1, x2)) ≤ ψ(µ(d(x1, x2)), 0, 0, µ(d(x1, x2)),

µ(d(x2, x1)))− φ(d(x1, x2))

≤ µ(d(x1, x2))− φ(d(x1, x2))

which is a contradiction unless x1 = x2. Hence the main result is
proved. �

If µ(a) = a, then we have the following result.

Corollary 2.4. Let (X, d) be a complete metric space, m ∈ N, A1, A2,
. . . , Am nonempty closed subsets of X and Y = ∪mi=1Ai. Suppose that
T : Y → Y be an operator such that

(1) ∪mi=1Ai is a cyclic representation of Y with respect to T ;
(2) d(Tx, Ty) ≤ ψ(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) −

φ(M(x, y))
for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, φ ∈ Φ,
ψ ∈ Ψ and M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}. Then, T has
a fixed point z ∈ ∩ni=1Ai.
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