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SOME FIXED POINT THEOREMS FOR T-KANNAN
CONTRACTIONS AND WEAKLY COMPATIBLE

PAIRS OF MAPPINGS IN G-CONE METRIC SPACES

ANJU PANWAR, RENU CHUGH AND SEEMA MEHRA

Abstract. In the framework of G-cone metric spaces introduced by
[9], we prove several fixed point theorems for mappings satisfying T-
Kannan, respectively T-Chaterjea contractive conditions, as well as for
weakly commuting pair of mappings satisfying contractive conditions.
Our results extend and improve similar results that are known in cone
metric spaces.

1. Introduction and preliminaries

Different generalizations of the notion of a metric space have been
proposed by Gahler [16, 17] and by Dhage [1, 2]. However, Ha et
al. [12] have pointed out that the results obtained by Gahler for his
2-metrics are independent, rather than generalizations, of the corre-
sponding results in metric spaces, while in [19, 20], Zead Mustafa and
Brailey Sims have pointed out that Dhage’s notion of a D-metric space
is fundamentally flawed and most of the results claimed by Dhage and
others are invalid.

Zead Mustafa and Brailey Sims [19] introduced a more appropriate
and robust notion of a generalized metric space. Guang and Xian [8]
generalized the concept of metric spaces, replacing the set of real
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numbers by an ordered Banach space defining in this way a cone metric
space. The notion of G-cone metric space in [9] generalizes the notions
of G-metric space and Cone metric space.

Section 1 is dedicated to fixed points of generalized T-Kannan map-
pings such as TK1 and TK2-mappings.

In section 2, Some common fixed point theorems for weakly com-
patible mappings are proved.

Definition 1.1 ([8]). Let E be a real Banach space and P a subset
of E. P is called a cone if and only if

i) P is closed, non-empty and P 6= {0};
ii) ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b;
iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤ with
respect to P by x ≤ y if and only if y − x ∈ P . x < y will stand for
x ≤ y and x 6= y, while x � y will stand for y − x ∈ intP , where
intP denotes the interior of P . The cone P is called normal if there is
a number M > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y implies

‖x‖ ≤M‖y‖.
The least positive number satisfying above is called the normal con-
stant of P ([8]). The cone P is called regular if every increasing se-
quence which is bounded above is convergent. That is, if {xn}n≥1 is a
sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then there is
x ∈ E such that lim

n→∞
‖xn − x‖ = 0.

Definition 1.2 ([9]). Let X be a nonempty set. Suppose a mapping
G : X ×X ×X → E satisfies:

(G1) G(x, y, z) = 0 if x = y = z
(G2) 0 < G(x, x, y); whenever x 6= y, for all x, y ∈ X,
(G3) G(x, x, y) ≤ G(x, y, z), whenever z 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all

three variables), and
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X.
Then G is called a generalized cone metric on X and X is called

a generalized cone metric space or more specifically a G-cone metric
space. We use the following Proposition 1.1 in G-cone metric space
same as in G-metric space.

Definition 1.3 ([9]). A G-cone metric space X is symmetric if

G(x, y, y) = G(y, x, x) for all x, yX.
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Definition 1.4 ([9]). Let X be a G-cone metric space and {xn} be a
sequence in X. We say that {xn} is:

a) Cauchy sequence if for every c ∈ E with 0 � c, there is N such
that for all n,m, l > N , G(xn, xm, xl)� c;

b) Convergent sequence if for every c in E with 0 � c, there is
N such that for all n,m > N , G(x, xn, xm) � c for some fixed x in
X. Here x is called the limit of a sequence {xn} and is denoted by
lim
n→∞

xn = x or xn → x as n→∞.

A G-cone metric space X is said to be complete if every Cauchy
sequence in X is convergent in X.

Remark 1.5 ([18]). Let E be an ordered Banach (normed) space.
Then c is an interior point of P , if and only if [−c, c] is a neighborhood
of 0.

Remark 1.6. i) If a ≤ b and b� c, then a� c.
Indeed, c − a = (c − b) + (b − a) ≥ c − b implies [−(c − a), c − a] ⊇
[−(c− b), c− b].

ii) If 0 ≤ u� c for each c ∈ intP , then u = 0.

Remark 1.7 ([7]). If c ∈ intP , 0 ≤ an and an → 0, then there exists
n0 such that for all n > n0 we have an � c.

Remark 1.8. Let 0 � c. If 0 ≤ G(x, xn, xm) ≤ bn and bn → 0, then
eventually G(x, xn, xm)� c, where xn is sequence and x is given point
in X.

Remark 1.9 ([7]). If 0 ≤ an ≤ bn and an → a, bn → b, then a ≤ b,
for each cone P .

Remark 1.10 ([7]). If E is a real Banach space with cone P and if
a ≤ λa where a ∈ P and 0 < λ < 1, then a = 0.

Remark 1.11. Let (X,G) be a G-cone metric space. Let us remark
that the family {N(x, e) : x ∈ X, 0 � e}, where N(x, e) = {y ∈ X :
G(x, y, y)� e}, is a subbasis for topology on X. We denote this cone
topology by τ0, and note that is τ0 a Hausdorff topology (see, e.g., [15]
without proof).

For the proof of the last statement, we suppose that for each
c, 0 � c we have N(x, c) ∩ N(y, c) 6= φ. Thus, there exists y ∈ X
such that G(x, a, a) � c/2 and G(a, y, y) � c/2. Hence, G(x, y, y) ≤
G(x, a, a) + G(a, y, y) � c/2 + c/2 = c. Clearly, for each n, we have
c/n ∈ intP , so c/n−G(x, y, y) ∈ intP ⊂ P . Now, 0−G(x, y, y) ∈ P ,
that is, G(x, y, y) ∈ −P ∩ P , and we have G(x, y, y) = 0.
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We use following proposition in G-cone metric space.

Proposition 1.12 ([8]). Let (X,G) be a G-metric space. Then for
any x, y, z and a ∈ X it follows that:

i) If G(x, y, z) = 0, then x = y = z,
ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),
iii) G(x, y, y) ≤ G(y, x, x),
iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),
v) G(x, y, z) ≤ 2/3(G(x, y, a) +G(x, a, z) +G(a, y, z)),
vi) G(x, y, z) ≤ (G(x, a, a) +G(y, a, a) +G(z, a, a))

Proposition 1.13 ([9]). Let X be a G-cone metric space, {xm}, {yn},
{zl} be sequences in X such that xn → x, yn → y, zn → z then
G(xm, yn, zl)→ G(x, y, z) as m,n, l→∞.

Example 1.14. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R
and G : X ×X ×X → E defined by G(x, y, z) = (|x− y| + |y − z| +
|z − x|, α[|x − y| + |y − z| + |z − x|]) where α ≥ 0 is constant. Then
(X,G) is a G-cone metric space.

2. Fixed point theorems for generalized T-Kannan type
mappings in G-cone metric spaces

J. Moralesa and E. Rojas [10] analyzed the existence (and unique-
ness) of fixed points of T-Kannan type contractive mappings S defined
on a complete cone metric space (M,d), as well as, T-Chaterjea map-
pings.

In this section, we obtain sufficient condition for the existence of a
unique fixed point of generalized T-Kannan type mappings on com-
plete G-cone metric spaces.

Definition 2.1. Let (X,G) be a G-cone metric space, P a normal
cone with normal constant K and T : X ×X. Then

i) T is said to be continuous if lim
n→∞

xn = x implies that T (xn) =

T (x), for all {xn} in X;
ii) T is said to be subsequentially convergent, if for every sequence
{xn} in X, the transformed sequence {T (xn)} contains a convergent
subsequence in X;

iii) T is said to be sequentially convergent if for every sequence
{xn} in X, the transformed sequence {T (xn)} contains a convergent
sequence in X.

Definition 2.2. Let (X,G) be a G-cone metric space and T, S : M →
M two functions.
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(K1) A mapping S is said to be a generalized T-Kannan contraction,
(TK1-generalized contraction) if there is b ∈ [0, 1/6) constant such that

G(TSx, TSy, TSz) ≤ b[G(Tx, TSx, TSx) +G(Ty, TSy, TSy)

+G(Tz, TSz, TSz)]

for x, y, z ∈ X.
(K2) A mapping S is said to be a T-Chatterjea contraction, (TK2-

generalized contraction) if there is c ∈ [0, 1/6) constant such that

G(TSx, TSy, TSz) ≤ c[G(Tx, TSy, TSy) +G(Ty, TSz, TSz)

+G(Tz, TSx, TSx)]

for all x, y, z ∈ X.

Example 2.3. Let E = (C[0,1], R), P = {ϕ ∈ E/ϕ ≥ 0} ⊆ E, X = R
and G : X×X×X → E defined by G(x, y, z) = (|x−y|+|y−z|+|z−x|)
f(x), where f(x) is a positive function on I[0, 1]. Then (X,G) is a
G-cone metric space.

Here, S is a TK1- generalized contraction. Moreover, it is not diffi-
cult to show that S is besides a TK2- generalized contraction.

Theorem 2.4. Let (X,G) be a complete G-cone metric space, P be
a normal cone with normal constant K. Suppose T is a one to one
and continuous mapping from X into itself and S : X → X a TK1-
generalized contraction. Then,
i) For every x0 ∈ X

lim
n→∞

G(TSnx0, TS
n+1x0, TS

n+1x0) = 0;

ii) There is v ∈ X such that

lim
n→∞

TSnx0 = v;

iii) If T is subsequentially convergent; then (Snx0) has a convergent
subsequence; iv) There is a unique u ∈ X such that

Su = u;

v) If T is sequentially convergent; then for each x0 ∈ X the iterate
sequence (Snx0) converges to u.
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Proof. Let x0 be an arbitrary point in X. We define the iterative
sequence (xn) by xn+1 = Sxn = Snx0. We have

G(Txn, Txn+1, Txn+1) = G(TSxn−1, TSxn, TSxn)

≤ b[G(Txn−1, TSxn−1, TSxn−1)

+G(Txn, TSxn, TSxn)

+G(Txn, TSxn, TSxn)]

so,

G(Txn, Txn+1, Txn+1) ≤ bG(Txn−1, TSxn−1, TSxn−1)

+ 2G(Txn, Txn+1, Txn+1)

G(Txn, Txn+1, Txn+1) ≤
b

1− 2b
G(Txn−1, Txn, Txn)

and we can conclude, by repeating the same argument, we get that

G(TSnx0, TS
n+1x0, TS

n+1x0)(2.1)

≤
(

b

1− 2b

)n
G(Tx0, TSx0, TSx0)

From (2.1) we have

‖G(TSnx0, TS
n+1x0, TS

n+1x0)‖ ≤
(

b

1− 2b

)n
K‖G(Tx0, TSx0, TSx0)‖

where K is the normal constant of E. By inequality above we get

lim
n→∞

‖G(TSnx0, TS
n+1x0, TS

n+1x0)‖ = 0

hence,

lim
n→∞

G(TSnx0, TS
n+1x0, TS

n+1x0) = 0(2.2)

By inequality (2.1), for every m,n ∈ N with m > n we have

G(Txn, Txm, Txm)

≤ G(Txn, Txn+1, Txn+1) +G(Txn+1, Txn+2, Txn+2) + · · ·
+G(Txm−1, Txm, Txm)

≤

[(
b

1− 2b

)n
+

(
b

1− 2b

)n+1

+ · · ·+
(

b

1− 2b

)m−1]
×G(Tx0, TSx0, TSx0)

≤
(

b

1− 2b

)n
1(

1− b
1−2b

)G(Tx0, TSx0, TSx0)
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So, for all positive integer m > n, we have

G(TSnx0, TS
mx0, TS

mx0)(2.3)

≤
(

b

1− 2b

)n
1(

1− b
1−2b

)G(Tx0, TSx0, TSx0)

from (2.3) we have,

‖G(TSnx0, TS
mx0, TS

mx0)‖

≤
(

b

1− 2b

)n
1(

1− b
1−2b

)‖G(Tx0, TSx0, TSx0)‖

where K is the normal constant of X. Taking limit and keeping in
mind that

(
b

1−2b

)
< 1, we obtain

lim
n→∞

‖G(TSnx0, TS
mx0, TS

mx0)‖ = 0 .

In this way we have, lim
n→∞

G(TSnx0, TS
mx0, TS

mx0) = 0, which im-

plies that (TSnx0) is a Cauchy sequence in M . Since X is a complete
G-cone metric space, then there is v ∈ X such that

lim
n→∞

TSnx0 = v(2.4)

Now, if T is subsequentially convergent, (Snx0) has a convergent sub-
sequence. So, there are u ∈ X and (xni

) such that

lim
i→∞

Snix0 = u(2.5)

Since T is continuous and by (2.5) we obtain

lim
i→∞

TSnix0 = Tu(2.6)

By (2.4) and (2.6) we conclude that

Tu = v(2.7)
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On the other hand,

G(TSu, Tu, Tu) ≤ G(TSu, TSnix0, TS
nix0)

+G(TSnix0, TS
ni+1x0, TS

ni+1x0)

+G(TSni+1x0, Tu, Tu)

≤ b[G(Tu, TSu, TSu) + 2G(TSni−1x0, TS
nix0, TS

nix0)]

+

(
b

1− 2b

)ni

G(Tx0, TSx0, TSx0) +G(TSni+1x0, Tu, Tu)

G(TSu, Tu, Tu) ≤ b[2G(TSu, Tu, Tu) + 2G(TSni−1x0, TS
nix0, TS

nix0)]

+

(
b

1− 2b

)ni

G(Tx0, TSx0, TSx0)

+G(TSni+1x0, Tu, Tu)

hence,

G(TSu, Tu, Tu) ≤
(

2b

1− 2b

)
2G(TSni−1x0, TS

nix0, TS
nix0)]

+

(
2b

1− 2b

)(
b

1− 2b

)ni

G(Tx0, TSx0, TSx0)

+

(
2b

1− 2b

)
G(TSni+1x0, Tu, Tu)

‖G(TSu, Tu, Tu)‖ ≤
(

bK

1− 2b

)
‖G(TSni−1x0, TS

nix0, TS
nix0)‖

K

1− 2b

(
b

1− 2b

)ni

‖G(TSx0, Tx0, Tx0)‖

+
K

1− 2b
‖G(TSni+1x0, Tu, Tu)‖ → 0 (i→∞),

where K is the normal constant of X. By convergence above we get
that G(TSu, Tu, Tu) = 0, which implies the equality TSu = Tu.
Since T is one to one, then Su = u, consequently S has a fixed point.
Because S is a TK1-generalized contraction we have

G(TSu, TSv, TSv)

≤ b[G(Tu, TSu, TSu) +G(Tv, TSv, TSv) +G(Tv, TSv, TSv)].

If v is another fixed point of S, then from the injectivity of T we get
Su = Sv, or is the same, the fixed point is unique. Finally, if T is
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sequentially convergent, by replacing (Sni) for (Sn) we conclude that

lim
n→∞

Snx0 = u.

This shows that (Snx0) converges to the fixed point of S. �

Theorem 2.5. Let (X,G) be a complete G-cone metric space, P be
a normal cone with normal constant K. Suppose T is a one to one
and continuous mapping from X into itself and S : X → X a TK2-
generalized contraction. Then,

i) For every x0 ∈ X
lim
n→∞

G(TSnx0, TS
n+1x0, TS

n+1x0) = 0.

ii) There is v ∈ X such that

lim
n→∞

TSnx0 = v.

iii) If T is subsequentially convergent; then (Snx0) has a convergent
subsequence.

iv) There is a unique u ∈ X such that

Su = u.

If T is sequentially convergent; then for each x0 ∈ X, (Sn(x0)) con-
verges to u.

Proof. Let x0 be an arbitrary point in X. We define the iterative
sequence (xn) by xn+1 = Sxn = Snx0. Since S is a TK2-generalized
contraction, we have

G(TSxn, TSxn+1, TSxn+1) ≤ c[G(Txn, TSxn+1, TSxn+1)

+G(Txn+1, TSxn+1, TSxn+1)

+G(Txn+1, TSxn, TSxn)]

≤ c[G(TSxn−1, TSxn+1, TSxn+1)

+G(TSxn, TSxn+1, TSxn+1)

≤ c[G(TSxn−1, TSxn, TSxn)

+G(TSxn, TSxn+1, TSxn+1)

+G(TSxn, TSxn+1, TSxn+1)].

Thus,

G(TSxn, TSxn+1, TSxn+1) ≤
c

1− 2c
G(TSxn−1, TSxn, TSxn)

= hG(TSxn−1, TSxn, TSxn)
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where h =
c

1− 2c
, Recursively, we obtain

G(TSxn, TSxn+1, TSxn+1) ≤ hnG(TSx0, TSx1, TSx1)(2.8)

‖G(TSxn, TSxn+1, TSxn+1)‖ ≤ hn ·K‖G(TSx0, TSx1, TSx1)‖
where K is the normal constant of X. Hence

lim
n→∞

‖G(TSxn, TSxn+1, TSxn+1)‖ = 0,

this implies that

lim
n→∞

G(TSxn, TSxn+1, TSxn+1) = 0,

By (2.8), for every m,n ∈ N with n > m we have,

G(TSxn, TSxm, TSxm) ≤ G(TSxn, TSxn+1, TSxn+1) + · · ·
+G(TSxm−1, TSxm, TSxm)

≤ [hn−1 + hn−2 + · · ·+ hm]G(TSx0, TSx1, TSx1)

≤ hm

1− h
G(TSx0, TSx1, TSx1),

taking norm we get

‖G(TSxn, TSxm, TSxm)‖ ≤ hm

1− h
K‖G(TSx0, TSx1, TSx1)‖

we have
lim
n→∞

‖G(TSxn, TSxm, TSxm)‖ = 0,

hence (TSnx0) is a Cauchy sequence in X and since X is a complete
G-cone metric space, there is v ∈ X such that

lim
n→∞

TSnx0 = v.

The rest of the proof is similar to the proof of Theorem 2.1. �

Remark 2.6. Our results in Theorem 2.1 extends Theorem 3.1 from
Morales and Rojas [10] and Theorem 2.2 extends Theorem 3.5 from
Morales and Rojas [10].

3. Fixed point theorems in G-cone metric spaces

K. Jha [11] and G. Jungck, S. Radenovic, S. Radojevic and V. Rako-
cevic [7] proved Common Fixed Point Theorems for Weakly Compat-
ible Pairs on Cone Metric Spaces. Also many authors [3, 4, 5, 14]
obtained common fixed point theorems involving cone metric spaces.

In this section, we obtain necessary and sufficient conditions for the
existence of common fixed points for two and three self mappings of a
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G-cone metric space. Our results extend, generalize a number of fixed
point theorems of Abbas and Jungck [13], Jungck and Rhoades [6] and
K. Jha [11].

Definition 3.1. Let (X,G) be a G-cone metric space and P a cone
with nonempty interior. Suppose that the mappings f, g : X → X are
such that the range of g contains the range of f , and f(X) or g(X) is
a complete subspace of X. We will call the pair (f, g) as Abbas and
Jungck’s pair, or AJ’s pair.

Definition 3.2 ([13]). Let f and g be self-maps of a set X (i.e.,
f, g : X → X). If w = fx = gx for some x in X, then x is called a
coincidence point of f and g, and w is called a point of coincidence
of f and g. Self-maps f and g are said to be weakly compatible if
they commute at their coincidence point, that is, if fx = gx for some
x ∈ X, then fgx = gfx.

Proposition 3.3 ([13]). Let f and g be weakly compatible self-maps of
a set X. If f and g have a unique point of coincidence w = fx = gx,
then w is the unique common fixed point of f and g.

Now we generalize the results of K. Jha [11] in G-cone metric space

Theorem 3.4. Let (X,G) be a G-cone metric space, and P be a
normal cone with normal constant K. Suppose that the mappings
f, g : X → X satisfy the contractive condition

G(fx, fy, fz) ≤ r[G(gy, fx, fx) +G(gx, fy, fy) +G(gx, fx, fx)

+G(gy, fy, fy) +G(gx, gy, gz)]

where r ∈ [0, 1/4) is a constant. If the range of g contains the range of
f and g(X) is complete subspace of X, then f and g have an unique
coincidence point in X. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Then, since fX ⊆ gX,
we can choose a point x1 in X such that f(x0) = g(x1). Continuing
like this, having chosen xn in X, we get xn+1 in X such that f(xn) =
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g(xn+1). Then,

G(gxn, gxn+1, gxn+1) = G(fxn−1, fxn, fxn)

≤ r[G(gxn, fxn−1, fxn−1) +G(gxn−1, fxn, fxn)

+G(gxn−1, fxn−1, fxn−1) +G(gxn, fxn, fxn)

+G(gxn−1, gxn, gxn)]

≤ r[G(gxn, gxn, gxn) +G(gxn−1, gxn−1, gxn−1)

+G(gxn−1, gxn, gxn) +G(gxn, gxn+1, gxn+1)

+G(gxn−1, gxn, gxn)]

≤ r[2G(gxn−1, gxn, gxn) +G(gxn, gxn+1, gxn+1)]

So, we have

G(gxn, gxn+1, gxn+1) ≤ hG(gxn, gxn−1, gxn), with h =
2r

1− r
.

Now, for n > m, we get

G(gxn, gxm, gxm) ≤ G(gxn, gxn+1, gxn+1) +G(gxn+1, gxn+2, gxn+2)

+G(gxn+2, gxn+3, gxn+3) + · · ·+G(gxm−1, gxm, gxm)

≤ (hn−1 + hn−2 + · · ·+ hm)G(gx0, gx1, gx1)

≤ hm

1− h
G(gx0, gx1, gx1)

which, using the normality of cone P , implies that

‖G(gxn, gxm, gxm)‖ ≤ hm

1− h
‖G(gx0, gx1, gx1)‖

Then, G(gxn, gxm, gxm)→ 0 as n,m→∞, and so {gxn} is a Cauchy
sequence in X. Since g(X) is a complete subspace of X, so there exists
q in g(X) such that gxn → q, as n→∞. Consequently, we can find p
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in X such that g(p) = q. Thus,

G(gxn, fp, fp) = G(fxn−1, fp, fp)

≤ r[G(gp, fxn−1, fxn−1) +G(gxn−1, fp, fp)

+G(gxn−1, fxn−1, fxn−1) +G(gp, fp, fp)

+G(gxn−1, gp, gp)]

≤ r[G(gp, gxn, gxn) +G(gxn−1, fp, fp)

+G(gxn−1, gxn, gxn) +G(gp, fp, fp)]

G(q, fp, fp) ≤ r[G(q, fp, fp) +G(q, fp, fp)] as n→∞.
G(q, fp, fp) ≤ 2r[G(q, fp, fp)]

Then by Remark 1.6, we have

G(q, fp, fp) = 0.

This implies fp = q.
The uniqueness of a limit in a cone metric space implies that f(p) =

g(p). Again, we show that f and g have a unique point of coincidence.
For this, if possible, assume that there exists another point t in X

such that f(t) = g(t).
Then, we have

G(gt, gp, gp) = G(ft, fp, fp)

≤ r[G(gp, ft, ft) +G(gt, fp, fp) +G(gt, ft, ft)

+G(gp, fp, fp) +G(gt, gp, gp)]

G(gt, gp, gp) ≤ r[G(gp, gt, gt) +G(gt, gp, gp)

+G(gt, gt, gt) +G(gp, gp, gp) +G(gt, gp, gp)]

G(gt, gp, gp) ≤ r[2G(gt, gp, gp) +G(gt, gp, gp)

+G(gt, gp, gp)]

G(gt, gp, gp) ≤ 4r[G(gt, gp, gp)]

Then by Remark 1.6, we have

G(gt, gp, gp) = 0.

This implies gt = gp.
Then by using the Proposition 3.1, we get that f and g have a

unique common fixed point.
This completes the proof of the theorem. �
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Corollary 3.5 ([11]). Let (X, d) be a cone metric space, and P be
a normal cone with normal constant K. Suppose that the mappings
f, g : X → X satisfy the contractive condition

G(fx, fy) ≤ r[G(fx, gy) +G(fy, gx) +G(fx, gx) +G(fy, gy)]

where r ∈ [0, 1/4) is a constant. If the range of g contains the range
of f and g(X) is complete subspace of X, then f and g have a unique
coincidence point in X. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Example 3.6. Let E = I2, I = [0, 1], P = {(x, y) ∈ E : x, y ≥ 0} ⊆
I2, G : I × I × I → E such that G(x, y, z) = (|x − y| + |y − z| +
|z − x|, α[|x− y|+ |y − z|+ |z − x|]) where α > 0 is constant. Define

f(x) =
αx

1 + αx
, for all x ∈ I and gx = αx for all x ∈ I. Then, for

α = 1, both the mappings f and g are weakly compatible and satisfy
all the conditions of the above theorem with x = 0 as unique common
fixed point.

Now we will prove some fixed point theorems of contractive map-
pings for G-cone metric space. We generalize some results of [8, 13] by
omitting the assumption of normality in the results.

Theorem 3.7. Let (X,G) be a G-cone metric space. Suppose that
(f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X, there exists

u = u(x, y, z) ∈
{
G(gx, gy, gz), G(gx, fx, fx), G(gy, fy, fy),(3.1)

G(gx, fy, fy) +G(gz, fx, fx)

2

}
such that

G(fx, fy, fz) ≤ λu.(3.2)

Then f and g have a unique coincidence point in X. Moreover if f
and g are weakly compatible, f and g have a unique common fixed
point.

Proof. Let x0 ∈ X, and let x1 ∈ X be such that gx1 = fx0 = y0.
Having defined xn ∈ X, let xn+1 ∈ X be such that gxn+1 = fxn = yn.

We first claim that

G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn) for n ≥ 1(3.3)
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We have

G(yn, yn+1, yn+1) ≤ G(fxn, fxn+1, fxn+1)(3.4)

where

u ∈
{
G(gxn, gxn+1, gxn+1), G(gxn, fxn, fxn),(3.5)

G(gxn+1, fxn+1, fxn+1),

G(gxn, fxn+1, fxn+1) +G(gxn+1, fxn, fxn)

2

}
=

{
G(yn−1, yn, yn), G(yn−1, yn, yn), G(yn, yn+1, yn+1),

G(yn−1, yn+1, yn+1) +G(yn, yn, yn)

2

}
=

{
G(yn−1, yn, yn), G(yn, yn+1, yn+1),

G(yn−1, yn+1, yn+1)

2

}
Now we have the following three cases.

If u = G(yn−1, yn, yn) then clearly (3.3) holds. If
u = G(yn, yn+1, yn+1) then according to Remark 1.6
G(gxn, gxn+1, gxn+1) = 0 and (3.3) is immediate. Finally, sup-
pose that u = (1/2)G(yn−1, yn+1, yn+1). Now,

G(yn, yn+1, yn+1) ≤ λ(1/2)G(yn−1, yn+1, yn+1)(3.6)

≤ λ

2
G(yn−1, yn, yn) +

1

2
G(yn, yn+1, yn+1)

Hence, G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn) and we proved (3.3).
Now, we have

G(yn, yn+1, yn+1) ≤ λnG(y0, y1, y1)(3.7)

We will show that {yn} is a Cauchy sequence. For n > m, we have

G(yn, ym, ym) ≤ G(yn, yn−1, yn−1) +G(yn−1, yn−2, yn−2) + · · ·(3.8)

+G(ym+1, ym, ym)

and we obtain

G(yn, ym, ym) ≤ (λn−1 + λn−2 + · · ·+ λm)G(y0, y1, y1)(3.9)

≤ λm

1− λ
G(y0, y1, y1)→ 0 as m→∞

From Remark 1.6 it follows that for 0 � c and large m : λm(1 −
λ)−1G(y0, y1, y1)� c; thus, according to Remark 1.2(i), G(yn, ym, ym)
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� c. Hence, by Definition, {yn} is a Cauchy sequence. Since f(X) ⊆
g(X) and f(X) or g(X) is complete, there exists a q ∈ g(X) such that
gxn → q ∈ g(X) as n → ∞. Consequently, we can find p ∈ X such
that gp = q.

Let us show that fp = q. For this we have

G(fp, q, q) ≤ G(fp, fxn, fxn) +G(fxn, q, q)(3.10)

≤ λ · un +G(fxn, q, q)

where

un ∈
{
G(gp, gxn, gxn), G(gp, fp, fp), G(gxn, fxn, fxn),(3.11)

G(gp, fxn, fxn) +G(gxn, fp, fp)

2

}
Let 0 � c. Clearly there are following four cases hold for infinitely
many n.
Case 1.

G(fp, q, q) ≤ λG(gp, gxn, gxn) +G(fxn, q, q)(3.12)

� λ · c
2λ

+
c

2
= c

Case 2.

G(fp, q, q) ≤ λG(gxn, fxn, fxn) +G(fxn, q, q)(3.13)

≤ 2G(fxn, gxn, gxn) +G(fxn, q, q)

≤ 2λ[G(fxn, q, q) +G(q, gxn, gxn)] +G(fxn, q, q)

≤ (2λ+ 1)G(fxn, q, q) +G(q, gxn, gxn)

� (2λ+ 1) · c

2(2λ+ 1)
+ λ

c

2λ
= c

Case 3.

G(fp, q, q) ≤ λG(gp, gp, fp, ) +G(fxn, q, q)(3.14)

≤ 2λG(fp, gp, gp, ) +G(fxn, q, q)

G(fp, q, q) ≤ 1

1− 2λ
G(fxn, q, q)

� 1

1− 2λ
· c

1
1−2λ

= c
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Case 4.

G(fp, q, q) ≤ λ

(
G(gp, fxn, fxn) +G(gxn, fp, fp)

2

)
+G(fxn, q, q)

(3.15)

≤ λG(fxn, gp, gp) + λG(fp, q, q) +G(fxn, q, q)

G(fp, q, q) ≤ λ+ 1

1− λ
G(fxn, q, q)

� λ+ 1

1− λ
· c(1− λ)

λ+ 1
= c

In all cases, we obtain G(fp, q, q) � c for each c ∈ intP . Using
Remark 1.2(ii), it follows that G(fp, q, q) = 0, or fp = q.

Hence, we proved that f and g have a coincidence point p ∈ X and a
point of coincidence q ∈ X such that q = f(p) = g(p). If q1 is another
point of coincidence, then there is p1 ∈ X with q1 = fp1 = gp1. Now,

G(q, q1, q1) = G(fp, fp1, fp1) ≤ λu(3.16)

where

u ∈
{
G(gp, fp1, fp1), G(gp, fp, fp), G(gp1, fp1, fp1),(3.17)

G(gp, fp1, fp1) +G(gp1, fp, fp)

2

}
=

{
G(q, q1, q1), G(q, q, q), 0,

G(q, q1, q1) +G(q1, q, q)

2

}
= {G(q, q1, q1), 0}

This implies

G(q, q1, q1) = G(fp, fp1, fp1)

≤ λ

{
G(q, q1, q1), 0,

G(q, q1, q1) +G(q1, q, q)

2

}
.
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By Remark 1.6 we get, G(q, q1, q1) = 0, that is, q = q1.

G(q, q1, q1) = G(fp, fp1, fp1)

≤ λ

{
G(q, q1, q1) +G(q1, q, q)

2

}
G(q, q1, q1) ≤

λ

2
[G(q, q1q1) +G(q1, q, q)]

G(q, q1, q1) ≤

(
λ
2

1− λ
2

= K

)
[G(q1, q, q)]

Again by same argument,

G(q1, q, q) ≤ (K)[G(q, q1, q1)]

So

G(q, q1, q1) ≤ K2[G(q1, q, q)], since K < 1

Then this implies that q = q1.
Since q = f(p) = g(p) is the unique point of coincidence of f and

g, and f and g are weakly compatible, q is the unique common fixed
point of f and g by Proposition 3.1 [13]. �

Theorem 3.8. Let (X,G) be a G-cone metric space. Suppose that
(f, g) is AJ’s pair, and that for some constant (0, 1) and for every
x, y ∈ X, there exists

u = u(x, y, z) ∈
{
G(gx, gy, gz),

G(gx, fx, fx) +G(gy, fy, fy)

2
,

(3.18)

G(gx, fy, fy) +G(gy, fx, fx)

2

}
,

such that

G(fx, fy, fz) ≤ λu.(3.19)

Then f and g have a unique coincidence point in X. Moreover, if
f and g are weakly compatible, f and g have a unique common fixed
point.

Proof. Let x0 ∈ X, and let x1 ∈ X be such that gx1 = fx0 = y0.
Having defined xn ∈ X, let xn+1 ∈ X be such that gxn+1 = fxn = yn.

We first show that

G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn) for n ≥ 1(3.20)
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Notice that

G(yn, yn+1, yn+1) ≤ G(fxn, fxn+1, fxn+1) ≤ λun(3.21)

where

un ∈
{
G(gxn, gxn+1, gxn+1),(3.22)

G(gxn, fxn, fxn) +G(gxn+1, fxn+1, fxn+1)

2
,

G(gxn, fxn+1, fxn+1) +G(gxn+1, fxn, fxn)

2

}
u ∈

{
G(yn−1, yn, yn),

G(yn−1, yn, yn) +G(yn, yn+1, yn+1)

2
,

G(yn−1, yn+1, yn+1)

2

}
As in Theorem 3.1, we have to consider three cases.

If u = G(yn−1, yn, yn), then clearly (3.20) holds.

If u =
{
G(yn−1,yn,yn)+G(yn,yn+1,yn+1)

2

}
, then

from (3.19) with x = xn, y = xn+1 and z = xn+1, we have

G(yn, yn+1, yn+1) ≤ λ

{
G(yn−1, yn, yn) +G(yn, yn+1, yn+1)

2

}
(3.23)

≤ λ
G(yn−1, yn, yn)

2
+
G(yn, yn+1, yn+1)

2

Hence, G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn), and in this case (3.20)
holds. Finally, if u = G(yn−1, yn+1, yn+1)/2, then

G(yn, yn+1, yn+1) ≤ λ
G(yn−1, yn+1, yn+1)

2
(3.24)

≤ λ

{
G(yn−1, yn, yn) +G(yn, yn+1, yn+1)

2

}
≤ λ

G(yn−1, yn, yn)

2
+ λ

G(yn, yn+1, yn+1)

2

and (3.20) holds. Thus, we proved that in all three cases (3.20) holds.
Now, from the proof of Theorem 3.1,we know that {gxn+1} =
{fxn} = {yn} is a cauchy sequence. Hence, there exists q in g(X)
and p ∈ X such that gxn → q, n→∞ and g(p) = q.
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Now we have to show that fp = q. For this we have

G(fp, q, q) ≤ G(fp, fxn, fxn) +G(fxn, q, q)(3.25)

≤ λ · un +G(fxn, q, q)

where

un ∈
{
G(gp, gxn, gxn),

G(gp, fp, fp) +G(gxn, fxn, fxn)

2
,(3.26)

G(gp, fxn, fxn) +G(gxn, fp, fp)

2

}
Let 0 � c. Clearly at least one of the following three cases holds for
infinitely many n.
Case 1.

G(fp, q, q) ≤ λG(gp, gxn, gxn) +G(fxn, q, q) ≤ λ · c
2λ

+
c

2
(3.27)

Case 2.

G(fp, q, q) ≤ λ
G(gxn, fxn, fxn) +G(gp, fp, fp)

2
+G(fxn, q, q)

(3.28)

≤ 2λ
G(fxn, gxn, gxn) +G(fp, gp, gp)

2
+G(fxn, q, q)

≤ λG(fxn, q, q) + λ ·G(fp, q, q) +G(fxn, q, q),

G(fp, q, q)− λG(fp, q, q) ≤ (λ+ 1)G(fxn, q, q)(3.29)

G(fp, q, q) ≤ λ+ 1

1− λ
G(fxn, q, q)

� λ+ 1

1− λ
c(1− λ)

λ+ 1
= c

Case 3.

G(fp, q, q) ≤ λ
G(gp, fxn, fxn) +G(gxn, fp, fp)

2
+G(fxn, q, q)

≤ 2λ
G(fxn, gp, gp) +G(fp, gxn, gxn)

2
+G(fxn, q, q)

≤ λG(fxn, q, q) + λ ·G(fp, q, q) +G(fxn, q, q)
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G(fp, q, q)− λG(fp, q, q) ≤ (λ+ 1)G(fxn, q, q)

G(fp, q, q) ≤ λ+ 1

1− λ
G(fxn, q, q)

� λ+ 1

1− λ
c(1− λ)

λ+ 1
= c

In all cases we obtain G(fp, q, q) � c for each c ∈ intP . Using
Remark 1.2(ii), it follows that G(fp, q, q) = 0 or fp = q.

Thus we showed that f and g have a coincidence point p ∈ X, that
is, point of coincidence q ∈ X such that q = fp = gp. If q1 is another
point of coincidence then there is p1 ∈ X with q1 = fp1 = gp1. Now
from (3.19), it follows that

G(q, q1, q1) = G(fp, fp1, fp1) ≤ λu,(3.30)

where

u ∈
{
G(gp, gp1, gp1),

G(gp, fp, fp) +G(gp1, fp1, fp1)

2
,

G(gp, fp1, fp1) +G(gp1, fp, fp)

2

}
=

{
G(q, q1, q1),

G(q, q, q) +G(q1, q1, q1)

2
,
G(q, q1, q1) +G(q1, q, q)

2

}
=

{
G(q, q1, q1), 0,

G(q, q1, q1) +G(q1, q, q)

2

}
This implies

G(q, q1, q1) = G(fp, fp1, fp1)

≤ λ

{
G(q, q1, q1), 0,

G(q, q1, q1) +G(q1, q, q)

2

}
.

By Remark 1.6 we get, G(q, q1, q1) = 0, that is, q = q1.

G(q, q1, q1) = G(fp, fp1, fp1)

≤ λ

{
G(q, q1, q1) +G(q1, q, q)

2

}
G(q, q1, q1) ≤

λ

2
[G(q, q1q1) +G(q1, q, q)]

G(q, q1, q1) ≤

(
λ
2

1− λ
2

= K

)
[G(q1, q, q)]
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Again by same argument,

G(q1, q, q) ≤ (K)[G(q, q1, q1)]

So

G(q, q1, q1) ≤ K2[G(q1, q, q)], since K < 1

Then this implies that q = q1.
If f and g are weakly compatible, then as in the proof of Theo-

rem 3.1, we have that q is a unique common fixed point of f and g.
Hence proved the theorem. �

Now we generalize results of G. Jungck, S. Radenovic, S. Radojevic
and V. Rakocevic [7] in G-cone metric space by extending number of
factors also.

Theorem 3.9. Let (X,G) be a G-cone metric space. Suppose that
(f, g) is AJ’s pair, and that there exist nonnegative constants ai satis-

fying
7∑
i=1

ai < 1 such that, for each x, y ∈ X

G(fx, fy, fz) ≤ a1G(gx, gy, gz) + a2G(gx, fx, fx) + a3G(gy, fy, fy)
(3.31)

+ a4G(gx, fy, fy) + a5G(gy, fz, fz)

+ a6G(gz, fx, fx) + a7G(gz, fz, fz)

Then f and g have a unique coincidence point in X. Moreover if f
and g are weakly compatible, f and g have a unique common fixed
point.

Proof. Let us define the sequences xn and yn as in the proof of Theo-
rem 3.1. We have to show that

G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn) for some λ ∈ (0, 1), n ≥ 1.
(3.32)

G(yn, yn+1, yn+1) = G(fxn, fxn+1, fxn+1),

≤ a1G(yn−1, yn, yn) + a2G(yn−1, yn, yn)

+ a3G(yn, yn+1, yn+1) + a4G(yn−1, yn+1, yn+1)

+ a5G(yn, yn, yn) + a6G(yn, yn, yn)

+ a7G(yn, yn+1, yn+1)

G(yn, yn+1, yn+1) ≤ (a1 + a2 + a4)G(yn−1, yn, yn)

+ (a3 + a7)G(yn, yn+1, yn+1),
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where λ = (a1 + a2 + a4)(1− a3 − a7)−1 ∈ (0, 1) and we get (3.32).
Now, from the proof of Theorem 3.1, we know that {gxn+1} = {fxn} =
{yn} is a Cauchy sequence. Hence, there exist q in g(X) and p ∈ X
such that gxn → q, n→∞ and gp = q.

We have to show that fp = q. For this we have

G(fp, q, q) ≤ G(fp, fxn, fxn) +G(fxn, q, q)

(3.33)

≤ a1G(gp, gxn, gxn) + a2G(gp, fp, fp) + a3G(gxn, fxn, fxn)

+ a4G(gp, fxn, fxn) + a5G(gxn, fp, fp)

+ a6G(gxn, fp, fp) + a7G(gxn, gxn, gxn) +G(fxn, q, q)

≤ a1G(q, gxn, gxn) + a2G(q, fp, fp) + a3G(gxn, fxn, fxn)

+ a4G(q, fxn, fxn) + (a5 + a6)G(gxn, fp, fp)

+G(fxn, q, q)

≤ a1G(q, gxn, gxn) + 2a2G(fp, q, q) + 2a3G(fxn, q, q)

+ 2a4G(fxn, q, q) + 2(a5 + a6)G(fp, q, q) +G(fxn, q, q)

≤ 2(a2 + a5 + a6)G(fp, q, q) + (2a3 + 2a4 + 1)G(fxn, q, q)

G(fp, q, q) ≤
(

2a3 + 2a4 + 1

1− 2a2 − 2a5 − 2a6

)
G(fxn, q, q)

≤
(

2a3 + 2a4 + 1

1− 2a2 − 2a5 − 2a6

)
·
(
c · (1− 2a2 − 2a5 − 2a6)

2a3 + 2a4 + 1

)
� c .

Then according to Remark 1.2(ii), G(fp, q, q) = 0, that is, fp = q.
Thus we showed that f and g have a coincidence point p ∈ X that

is, point of coincidence q ∈ X such that q = fp = gp. If q1 is another
point of coincidence then there is p1 ∈ X with q1 = fp1 = gp1. Now,

G(q, q1, q1) = G(fp, fp1, fp1)

≤ a1G(gp, gp1, gp1) + a2G(gp, fp, fp) + a3G(gp1, fp1, fp1)

+ a4G(gp, fp1, fp1) + a5G(gp1, fp, fp) + a6G(gp1, fp, fp)

+ a7G(gp1, fp1, fp1)

≤ a1G(q, q1, q1) + a2G(q, q, q) + a3G(q1, q1, q1)

+ a4Gt(q, q1, q1) + a5G(q1, q, q) + a6G(q1, q, q)

+ a7G(q1, q1, q1)
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≤ (a1 + a4)G(q, q1, q1) + (a5 + a6)G(q1, q, q)

G(q, q1, q1) ≤
(

a5 + a6
1− a1 − a4

= λ

)
G (q1, q, q)

Again by same argument,

G(q1, q, q) ≤ (λ)[G(q, q1, q1)](3.34)

So
G(q, q1, q1) ≤ λ2[G(q1, q, q)], since λ < 1

Then this implies that q = q1. f and g are weakly compatible, then
as in the proof of Theorem 3.1, we have that q is a unique common
fixed point of f and g. Hence proved the theorem. �

Corollary 3.10. Let (X, d) be a cone metric space. Suppose that (f, g)
is AJ’s pair, and that there exists nonnegative constants ai satisfying
5∑
i=1

ai < 1 such that, for each x, y ∈ X

d(fx, fy) ≤ a1d(gx, gy) + a2d(gx, fx) + a3d(gy, fy)(3.35)

+ a4d(gx, fy) + a5d(gy, fx).

Then f and g have a unique coincidence point in X. Moreover if f
and g are weakly compatible, f and g have a unique common fixed
point.

Here, we prove the common fixed point theorem for three mappings:

Lemma 3.11. Let X be a non-empty set and the mappings S, T, f :
X → X have a unique point of coincidence v in X. If (S, f) and
(T, f) are weakly compatible, then S, T and f have a unique common
fixed point.

Proof. Since v is point of coincidence S, T and f . Therefore, v =
fu = Su = Tu for some u ∈ X. By weakly compatibility of (S, f) and
(T, f) we have

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv.

It implies that Sv = Tv = fv = w (say). Then w is a point of
coincidence of S, T and f . Therefore, v = w by uniqueness. Thus v
is a unique common fixed point of S, T and f . �

Theorem 3.12. Let (X,G) be a G-cone metric space and the map-
pings S, T, f : X → X satisfy:

G(fx, fy, fz) ≤ λG(Sx, Ty, Tz)(3.36)
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for all x, y, z ∈ X where 0 ≤ λ < 1. If f(X) ⊂ S(X)∩T (X) and if one
of S(X) and T (X) is complete, then S, T and f have a unique point
of coincidence. Moreover if (S, f) and (T, f) are weakly compatible,
then S, T and f have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Then fx0 ∈ X. Since f(X)
is contained in S(X), there exists a point x1 in X such that fx0 = Sx1.
Since f(X) is also contained in T (X), we can choose a point x2 in X
such that fx1 = Tx2. Continuing this process and having chosen xn
in X. We obtain xn+1 in X such that

fx2k+1 = Tx2k+2 fx2k = Sx2k+1, k = 0, 1, 2, . . . .

Then,

G(fx2k, fx2k+1, fx2k+1) ≤ λG(Sx2k, Tx2k+1, Tx2k+1)

= λG(fx2k−1, fx2k, fx2k).

Similarly,

G(fx2k+1, fx2k+2, fx2k+2) ≤ λG(Sx2k+1, Tx2k+2, Tx2k+2)

= λG(fx2k, fx2k+1, fx2k+1)

Now by induction, we obtain for each k = 0, 1, 2, . . .,

G(fx2k+1, fx2k+2, fx2k+2) ≤ λ2k+1G(fx0, fx1, fx1).

Let

yn = fxn, n = 0, 1, 2, . . . .

Now for all n, we have

G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn)

≤ · · · ≤ λnG(y0, y1, y1).

Now for any m > n,

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2)

+G(yn+2, yn+3, yn+3) + · · ·+G(ym−1, ym, ym)

≤ (λn−1 + λn−2 + · · ·+ λm)G(y0, y1, y1)

≤ λm

1− λ
G(y0, y1, y1)

Let 0� c be given. Choose δ > 0 such that

c+ {x ∈ E : ‖x‖ < δ} ⊆ P.
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Also, choose a natural number N1, such that

λm

1− λ
G(y0, y1, y1) ∈ {x ∈ E : ‖x‖ < δ}, for all n ≥ N1.

Then
λm

1− λ
G(y0, y1, y1)� c, for all n ∈ N1.

Thus,

m > n ≥ N1 ⇒ G(yn, ym, ym) ≤ λm

1− λ
G(y0, y1, y1)� c,

it implies that {yn} is a Cauchy sequence. Since S(X) and T (X) both
are complete, there exists u, v ∈ X such that yn → v = Su = Tu.
Choose a natural number N2 such that

G(yn, v, v)� c

4
, for all n ≥ N2.

Hence, for all n ≥ N2,

G(Su, fu, fu) ≤ G(Su, y2n+2, y2n+2) +G(y2n+2, fu, fu)

≤ G(v, y2n+2, y2n+2) +G(fx2n+2, fu, fu)

≤ G(v, y2n+2, y2n+2) + λG(Sx2n+2, Tu, Tu)

≤ 2G(y2n+2, v, v) +G(y2n+1, Tu, Tu)

� c

2
+
c

4
=

3c

4

Thus

G(Su, fu, fu)� c

m
, for all m > 1.

So,
c

m
−G(Su, fu, fu) ∈ P, for all m > 1.

Since
c

m
→ 0 (as m→∞) and P is closed, −G(Su, fu, fu) ∈ P , but

P ∩ (−P ) = {0}. Therefore, G(Su, fu, fu) = 0. Hence fu = Su.
Similarly, by using

G(Tu, fu, fu) ≤ G(Tu, y2n+2, y2n+2) +G(y2n+2, fu, fu),

we can show that fu = Tu, it implies that v is a common point of
coincidence of S, T and f that is v = fu = Su = Tu.

Now we show that f , S and T have unique point of coincidence.
For this, assume that there exists another point v∗ in X such that
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v∗ = fu∗ = Su∗ = Tu∗ for some u∗ in X. Now,

G(v, v∗, v∗) = G(fu, fu∗, fu∗) ≤ λG(Su, Tu∗, Tu∗)

≤ λG(v, v∗, v∗)

This implies that v∗ = v. If (S, f) and (T, f) are weakly compatible,
by Lemma 3.1, S, T and f have a unique common fixed point. �

Acknowledgement: The authors are very thankful to referees for
their valuable suggestions.

References

[1] B. C. Dhage, Generalized metric space and mapping with fixed point,
Bull. Calcutta Math. Soc. 84(1992), 329–336.

[2] B. C. Dhage, Generalized metric spaces and topological structure. I,
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