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SEQUENCE SPACES DEFINED BY A SEQUENCE OF
MODULUS FUNCTIONS

KULDIP RAJ AND AJAY K. SHARMA

Abstract. In the present paper we introduce some new sequence
spaces defined by a sequence of modulus functions F' = (f;). We
study some topological properties and inclusion relations between
these spaces.

1. INTRODUCTION AND PRELIMINARIES

Let w be the set of all sequences of real or complex numbers and
lo, ¢ and cg be the sequence spaces of bounded, convergent and null
sequences x = (xy), respectively. A linear functional ¢ on [, is said to
be Banach limit if it has the properties, p(z) > 0 when the sequence
x = (zx) has zx > 0 for all k, p(e) = 1, where e = (1,1,1,---) and
o(xpy1) = @(z) for all z € 1, see [5]. For more detail on the Banach
limit, we may refer to Colak and Cakar [7], Das [9] and references
therein. The concept of almost convergence was defined by Lorentz in
[13], using the idea of Banach limits. Lorentz proved that

1 n
p={o=(z)  lim =Y ists, uniformly in s }.
¢ {m (k) im P Tpis exists, uniformly in s

Maddox ([16], [17]) has defined z to be strongly almost convergent
to a number L if

RN . .
hin - kz |2k4+s — L] = 0, uniformly in s.
-1
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Let p = (px) be a sequence of strictly positive real numbers. Nanda
[19] has defined the following sequence spaces :

1 n
¢, p] = {513 = (w) : im — Z |zpys — LIP* =0, uniformly in s},
non
k=1
. 1 o . .
¢, plo = {x = (x1) 1171Ln5 ; |zg4s|P* = 0, uniformly in s}
and

X 1 «
¢, P00 = {x = (k) : up - kz_: |2ps [P < oo}.

The notion of difference sequence spaces was introduced by Kizmaz
[11], who studied the difference sequence spaces [ (A), ¢(A) and
co(A). The notion was further generalized by Et and Colak [10] by
introducing the spaces [ (A"), ¢(A™) and ¢y(A™). Let u, v be non-
negative integers, then for 7 = [, ¢, ¢y we have sequence spaces

Z(Ay) ={x = (xp) € w: (Ayxy) € Z},

where Atz = (Alzy) = (A 'z, — A ayy,) and Alzy, = ;. for all
k € N, which is equivalent to the following binomial representation

u - % u
Avl’k = Z(—l) ( i )CL’]H_M‘.
i=0
Let X be a linear metric space. A function p : X — R is called
paranorm, if

(1) p(x) >0, for all z € X,

(2) p(—z) = p(z), for all x € X,

(3) p(z +y) < p(x) +ply), for all z,y € X,

(4) if (A,) is a sequence of scalars with A, — X as n — oo and
(x,,) is a sequence of vectors with p(z, —x) — 0 as n — oo,
then p(A,z, — Ax) = 0 as n — .

A paranorm p for which p(z) = 0 implies x = 0 is called total
paranorm and the pair (X, p) is called a total paranormed space. It
is well known that the metric of any linear metric space is given by
some total paranorm (see [25], Theorem 10.4.2, P-183).

A modulus function is a function f : [0, 00) — [0, 00) such that

(1) f(z) =0 if and only if x = 0,

(2) flz+y) < flz)+ fly) forall z >0,y >0,
(3) f is increasing
(4) f

is continuous from right at 0.
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It follows that f must be continuous everywhere on [0,00). The

modulus function may be bounded or unbounded. For example, if we
take f(z) = 25, then f(z) is bounded. If f(x) = 2?7, 0 < p < 1, then
the modulus f(x) is unbounded. Subsegentially, modulus function has
been discussed in ([1], [2], [3], [4], [18], [20], [21], [22]) and many others.

Let A = (ayx) be an infinite matrix of complex numbers. We write
Az = (A (2)2_ if A (x) = D07, ampkxy converges for each m € N.
A sequence z = (zy) is said to be summable (C,1) if and only if
lim, Y ", x; exists. Spaces of strongly Cesaro sequences were dis-
cussed by Kuttner [12] and this concept was generalized by Maddox
[15] and some others. The class of sequences which are strongly Ce-
saro summable with respect to a modulus was introduced by Maddox
[14] as an extension of the definition of strongly Cesaro summable.
Connor [8] extended his definition by replacing the Cesaro matrix
with an arbitrary non-negative regular matrix summability method
A. In [23] Savasg, following Connor [8] and defined the concept of
strongly almost A-summability with respect to a modulus, but the
definition introduced there is not very satisfactory and seems to be
unnatural. By specializing the infinite matrix in the definition intro-
duced in [23], we don’t get strongly almost convergent sequences with
respect to a modulus. In [24] Savas introduced an alternative defi-
nition of strongly almost A-summability with respect to a modulus.
This definition seems to be more natural and contains the definition
of strongly almost convergence with respect to a modulus as a spe-
cial case. The sets wy(A, f,p), w(A, f,p) and wa (A, f,p) will called
the spaces of strongly almost summable to zero, strongly almost sum-
mable and strongly almost bounded with respect to the modulus f
respectively [24]. The argument s, that is, the factor £~* was used
by Bulut and Cakar [6], to generalize the Maddox sequence space [(p)
where p = (px) be a bounded sequence of positive real numbers and
s > 0. It performs an extension mission. For example, the space
lp,s) ={z €w:d 1o, k™ *|zx"* < oo as a subspace for s > 0 and it
coincides with I(p) only for s = 0.

Let X be a complex linear space with zero element § and X = (X, q)
be a seminormed space with the seminorm ¢. By S(X) we denote
the linear space of all sequences x = (z3) with 2 € X and usual
coordinatewise operations. If A = (\;) is a scalar sequence and x €
S(X) then we shall write A\x = (Agxy). Taking X = C we get w, the
space of all complex-valued sequences.
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Let A = (amk) be a non-negative matrix and p = (px) be a bounded
sequence of positive real numbers and F' = (f) be a sequence of
modulus functions. Now, we define the following sequence spaces in
this paper:

wo(A,p, F,AY,q,s) = {x €S(X): hm Zamkk [frla(Ay :ck+n))]pk = 0, uniformly in n,s > 0},

w(A,p, F, A:7q, s) = {$ € S(X) :limm—sco Dj Gmrk™*® [fk(q(Agx;H_n—l))}pk: 0, uniformly in n,
for some [, s > 0};

and

woo(A,p, F, A, q,8) = {2 € S(X) : sup 3 aik ™ [fi(a(Aliz )] < 00,5 > 0.
m,n o

If we take F(z) = x, we get the spaces

wo(/l,p, Al q,s) = {x €S(X): llm Zamkk q(Ayxp4y))Pk = 0, uniformly in n,s > 0}

w(/l,p, Al q,s) = {x €S(X): hm Za kk T (g(AY Tk4rn — 1))Pk = 0, uniformly in n,
for some [, s > O}

and

woo(A,p, AY,q,s) = {x €S(X): sup Zamkk (A xp4n))PE < 00,8 > 0}

If we take p = (pr) = 1, we have

wo(A, F,AY,q,s) = {m € S(X): lim > amik™*[f1(q(Afzxsn))] = 0, uniformly in n,s > o},
k

w(A, F, A% q,8) = {z € S(X): llm Zamkk S fk(q(Av:EkJrn — l))} = 0, uniformly in n,
for some [, s > O}

and

Weo (A, F,AY, q, s) = {x €S(X): supZamkkfs[fk(q(A:ja:kJrn))} < 00,8 > 0}.
L
The following inequality will be used throughout the paper. If 0 <
pe <suppr = H, K = max(1,2771) then
(1.1) |ak + b | < K{|ar™ + [bx "}

for all k and ag, b, € C. Also |a[P* < max(1,|a|") for all a € C.
The main aim of the present paper is to introduce and examine
some new sequence spaces by using a sequence of modulus functions.
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2. MAIN RESULTS

Theorem 2.1 Let F = (fy) be a sequence of modulus func-
tions, p = (px) be a bounded sequence of positive real num-
bers and A = (amk) be a mnon-negative regular matriz.  Then

wO(A7p7 F? AZ7Q7 S) C w(A7p7 F7 A37Q7 S) C wOO<A7p7 F’ A;’)L’ Q7 S)‘

Proof. It is obvious that wg(fl,p, F Al q,s) C w(fl,p, F A% q,5).
Suppose that = € w(fl,p, F,A" q,s). Since ¢ is a seminorm, there
exists N integer such that ¢(I) < N. Since F' = (fi) be a sequence of
modulus functions, A = (am;) is a non-negative regular matrix and
from (1.1), we can write

Z Ak ™° [fk(q(Aﬁxm))}pk < K{ Z k™" [fk(q(AZxk+n — l))]pk
+ INFOTT S amek™ }.

Therefore x € woo(fl,p, F, Al q,s) and this completes the proof.
Theorem 2.2 Let FF = (fx) be a sequence of modu-
lus functions and p = (pg) be a bounded sequence of positive
real numbers. Then wo(fl,p, F, Ag,q,s),w(fl,p, F,AY q,s) and
woo(/l,p,F,Ajf,q,s) are linear spaces over the complex field C.
Proof. Let z,y € w(/l,p, F,AY q,s) and «, € C, suppose that
= Lw(A, p, F,A% q,s)] and y — lw(A,p, F,A" q,s)]. For a,
there exists the integers M, and Nz such that |a| < M, and |B| < Np.
From (1.1) and definitions of F' and ¢, we have
Wik ™ [ fe(@( @A T pip + BAYYsn — (aly + Bl2)))]™ <

Kk M [ fi(q(Abwiin—0)) ] + K amek ™ NJ [ fe(g(Abypsn—12)) ]
when adding the above inequality from & = 1 to oo, we get ax +
By € w(fl,p, F,A! q,s). This proves that w(/l,p, F,AY q,s) is a
linear space. Similarly, we can prove that wo(fl,p, F,A" q,s) and
woo(A,p, F, Al q,s) are linear spaces.

Theorem 2.3 Let F' = (fx) be a sequence of modulus functions
and p = (px) be a bounded sequence of positive real numbers. Then
the spaces wO(A,p, F,AY q,s) and w(fl,p, F,AY q,s) are topological
linear spaces paranormed by

9(@) = sup { 3 ank™ [fula(Aiisn)]" }

1
M

m
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where M = max(1, H = sup py,).
k

Proof. From Theorem 2.1, for each x € wo(fl,p, F A% q,s),9(z)
exists. Clearly g(0) = 0, g(x) = g(—=z) and by Minkowski’s inequality
g(x +1y) < g(z) + g(y). For the continuity of scalar multiplication
suppose that (u') is a sequence of scalars such that |u* — | — 0 and
g(zt — ) — 0 for arbitrary sequence (z') € wo(A,p, F,A", q,s). We
shall show that g(u'z' — pz) — 0(t — o). Say 7, = |u* — pl, then

1

[ ik [fala(t Al — i)} <
k

L

{Z{afkk_ﬁ[/l(t,k,n)]% + anﬂfkk_ﬁ[B(t,k,n)]pﬁk}M}ﬁ, where
k

A(t, k,n) = N fi(qAY (@)1, — Tran)), Bt K n) = fie(Tig Ay (24n)) and
N =1+ max{1,sup |gf|}.

glplat — px) < Nrsup { S [A(t,]\l:, n)]pk}ﬁz
etk

1

sup{Zamkk_s[B(t,k,n)}pk}ﬁ = Nug(z® — 2) +
m,n %

1
sup{Zamkk’s [B(t,k,n)]pk}M. Because of g(axt — z) — 0 we
m,n L

must only show that sup { Zamkk_s [B(t, k,n)]pk}ﬁ — 0(t — ).

m,n &
There exist a positive integer ¢y such that 0 < 7, < 1 for ¢t > t,.
Write

1

aup {3 k= [flaAlal )]} > 0(m = o0)

m,n k=m+1

Hence, for every € > 0, there exist a positive integer mg such that

0 L

SUP{ Z Ak ™" [fk(qAZ<I2+n))}pk}M < g

T k=mo+1

For t > tg, since gAY (xp4n) < qA%(xy), we get

k™ [fk(Tt(qu(fEHn)))]pk < k™ [fk(qAZ(karn))}pk
for each n and k. This implies that

o0

sup{ D" anik™ [felriladi(at )] |

man k=mo+1

1
M
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1

< sup{ Z Amihk™° [fk(qA:f(aczm))]pk}M < % Hence, there exist
min k=mo+1

a 0(0 < d < 1) such that
sup{Zamkk [fi(me(gAy (karn)))}pk} < (%)M for 0 <7 < 4. Also

we can ﬁnd a number h such that 7, < ¢ for t > h. So, for t > h, we

mo

1
have sup { Z Ak ™* [fk(Tt(qA’;(xZJm)))}pk} < %, so eventually,
m,n —1
1

sup { 3D [fu(r(aat o))"}

1
M

<sup{zamkk (a2l

wsup { 5 ik~ [(mladt(a )]}

m,n

k=mo+1
< s+ 5 = €. This shows that
sup { Z Wik ™ [ fr(me (gAY (2] ,)))] } i — 0(t — o0). Thus

m,n

wO(A,p, F,q, A, s) is paranormed space by g.
Theorem 2.4 Let F = (fy) be a sequence of modulus functions
and p = (px) be a bounded sequence of positive real numbers. Then

the space wO(A p, F,q, A", s) is complete with respect to its paranorm
whenever (X, q) is complete.

Proof. Suppose (z') is a Cauchy sequence in wo(fl,p, F,q, A", s).
Therefore

20) gla'=a") = sup { Do [uai(oh =k )]} =0

as 1,7 — oo. Also, for each n and k
E [ fu((@AY @y — 7)) = 0

as i,j — oo and so gAY(z}_,, — xiw) — 0(i,j — o0) from the conti-
nuity of f. It follows that the sequence (zj_,,) is a Cauchy in (X, q)
for each fixed n and k. Then by the completeness of (X, q) we get the
sequences (Tgin) € X such that

(2.2) GOy (Lhsp — Thrn) = 0(j = 00).
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It is easy to see the validity of the inequality
We have
qu (x;€+n - x?ﬂrn) - QAZ (xz-i-n - xk+n) (] — OO)

Thus from (2.2), for each € > 0 there exist ig(€) such that [g(z’ —

mo
xj)}M < M for i, > ig. Also sup{Zamkk’s[fk(qu(x};M —

m,n 1
x?ﬂ—l—n) )] o }

< sup { Z k™" fk(un(ka x£+n))}pk}

m,n

= [g(a" — xj)} . Letting j — oo we have

mo
sup { > ik [frqAY (), — xi+n))]pk} —
m,n 1
mo
sup { Z amik ™ [ fe(gAy (2 — fﬁk+n))]pk} <M
m,n k,‘:l

for i > 19. Since my is arbitrary, by taking my — oo, we obtain
1
a7
sup{ E ik ™® fk (gAY (), — karn))}pk} <€

for all m and n that is
g(z' —1) =0 as i — oo.

We first need to show x € U)0<A,p, fr, @, AY, 5). We know that g(z?) is
bounded, say, g(z?) < K. Furthermore we have

Wik ™ [ fr(qAY (2] p, — Thin)) ] — 0(i = 00).

Now we can determine a sequence 7, € wo(0 < i < 1) for each k,
such that

k™ (@AY (@ — pn))]™ < ik (AN 2P
On the other hand,
gt )P < KL [AlaAih s, —rpan )]+ [filad2 ()]

where K = max(1,2071),H = supps. Also we have
Wik ™ [ fr(qAY (Thyn ) |P
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< Kamkk‘s{ [fe(aA% (@) y = g ))]™ + [fk(qAﬁ(fﬂiJrn))}pk}

< K + Dapmehk™ [fk(qAﬁ(a;};Jrn))}pk from the last inequality above,
we obtain x € wo(fl,p, F,q,s) and this completes the proof of the
theorem.

Lemma 2.1. Let F' = (f},), F" = (f}!) are sequences of modulus
functions and 0 < § < 1. If F'(t) > § fort € [0,00) then

27" (1)

(F" o F')(t) < F'(1).

Theorem 2.5. Let F' = (f}), F" = (f}!) are sequences of modulus

functions and s, s1,s9 > 0. Then
(i) limsup% < oo implies wo(A,p, F",q,s) Cwo(A,p, F',q,s),
(ZZ) wO(A7p7 Fla q, S) N wO(A7p7 Fﬂa q, S) g wO(A7p7 F, + Fwa q, S);
(1i1) If the matric A = (amk) is a regular matriz and s > 1, then
wO(A7pa Fla q, S) g U)()(A,p, F'o Fﬂa q, 5)7
(ZU) S1 S 52 Zmphes w0<A7p7 F)Qv 51) C U)O(A,p, Fan 82)'
Proof. (i) Since there exists a C' > 0 such that F'(t) < F”(t) by
the hypothesis, therefore we can write that

ik ™ [ [ @A (Tr40)) ™ < CF ik ™ [f (A7 ()]

Let x € wg(fl,p, F”.q,s). When adding the above inequality from
k=1 to oo, we have x € wo(A,p, F',q, s).

(i) The relation follows from the inequality a,,pk~° [( fi +
DAY (2r40)) ™ )

= ik [ fi(aDY (@r4n)) + F (@AY (2r10))] ™

< Kamkkfs{[f,'g(qA}j(karn))]pk + | ,’c’(qA;‘(karn))}pk} where K =
max(1,28-1).

(iii) Let 0 < 0 < 1, and define the sets Ny = {k € N: f, (gAY (xp4n)) <
0} and Ny = {k € N : fi(¢A¥(2+s)) > 0}. It follows from Lemma
2.1 that

2 //(1)

(10 ) @bt ann) < 2k
when k € Ny. If k € Ny then
(fi © fi) (a3 (@rtn)) < f7(0),

Fe(aAy (Thn)),

and so
k= [(frofi) (aAy (zhn)) [P < €1k™
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for = € wo(A,p, F', q, 5), where ¢, = max{[f,;'((s)]infm, [f,;f(é)]sum}.
On the other hand
2f7(1)

ik [ 0 )@ e < gk [FEZ i (gANme))]
< etk [fr(¢AY (Then)) ™

for k € N,, where €5 = max{[%}mfpk’ [%}S“ppk}, Now, say

e = max{er, €2} and we get >, apphk™* [(f,’C o é’)(qu(an))}pk
< { S o+ 3 ik fk(qu(an))]pk} for k € NyUN, = N.

This implies z € wo(/l,p, F'oF”" q,s).

Theorem 2.6. Let s > 1, F be bounded and A be
a mon mnegative reqular matriz. When x € wo(fl,p, F,q,s)
> x axTy is convergent iff (ax) € ¢, where ¢ is a finite sequences.
Proof. The sufficiency is trivial.
For the necessity, suppose that a ¢ ¢. Then there is a sequence of

positive integers m; < mg < --- such that |am,k| > 0. let us define
—q(u)“am]c, k=m0, k#my

(yx) =
0 s k # my

where u € X such that ¢(u) > 0. Since F' is bounded and s > 1,

> ik [ filgA ()] < 00,

Hence (yx) € woo(A,p, F,q,s) but Zakyk = Zl = oo. This is a
k m
contradiction to Z aryr convergent. This completes the proof of the
k

theorem.
Acknowledgement: The authors thank the referee for his valuable
suggestion that improved the presentation of the paper.
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