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SEQUENCE SPACES DEFINED BY A SEQUENCE OF
MODULUS FUNCTIONS

KULDIP RAJ AND AJAY K. SHARMA

Abstract. In the present paper we introduce some new sequence
spaces defined by a sequence of modulus functions F = (fk). We
study some topological properties and inclusion relations between
these spaces.

1. Introduction and Preliminaries

Let w be the set of all sequences of real or complex numbers and
l∞, c and c0 be the sequence spaces of bounded, convergent and null
sequences x = (xk), respectively. A linear functional ϕ on l∞ is said to
be Banach limit if it has the properties, ϕ(x) ≥ 0 when the sequence
x = (xk) has xk ≥ 0 for all k, ϕ(e) = 1, where e = (1, 1, 1, · · · ) and
ϕ(xk+1) = ϕ(xk) for all x ∈ l∞ see [5]. For more detail on the Banach
limit, we may refer to Çolak and Çakar [7], Das [9] and references
therein. The concept of almost convergence was defined by Lorentz in
[13], using the idea of Banach limits. Lorentz proved that

ĉ =
{
x = (xk) : lim

n

1

n

n∑
k=1

xk+s exists, uniformly in s
}
.

Maddox ([16], [17]) has defined x to be strongly almost convergent
to a number L if

lim
n

1

n

n∑
k=1

|xk+s − L| = 0, uniformly in s.

————————————–
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Let p = (pk) be a sequence of strictly positive real numbers. Nanda
[19] has defined the following sequence spaces :

[ĉ, p] =
{
x = (xk) : lim

n

1

n

n∑
k=1

|xk+s − L|pk = 0, uniformly in s
}
,

[ĉ, p]0 =
{
x = (xk) : lim

n

1

n

n∑
k=1

|xk+s|pk = 0, uniformly in s
}

and

[ĉ, p]∞ =
{
x = (xk) : sup

s,n

1

n

n∑
k=1

|xk+s|pk <∞
}
.

The notion of difference sequence spaces was introduced by Kızmaz
[11], who studied the difference sequence spaces l∞(∆), c(∆) and
c0(∆). The notion was further generalized by Et and Çolak [10] by
introducing the spaces l∞(∆n), c(∆n) and c0(∆n). Let u, v be non-
negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆u
v) = {x = (xk) ∈ w : (∆u

vxk) ∈ Z},
where ∆u

vx = (∆u
vxk) = (∆u−1

v xk − ∆u−1
v xk+v) and ∆0

vxk = xk for all
k ∈ N, which is equivalent to the following binomial representation

∆u
vxk =

m∑
i=0

(−1)i
(
u
i

)
xk+vi.

Let X be a linear metric space. A function p : X → R is called
paranorm, if

(1) p(x) ≥ 0, for all x ∈ X,
(2) p(−x) = p(x), for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and

(xn) is a sequence of vectors with p(xn − x) → 0 as n → ∞,
then p(λnxn − λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total
paranorm and the pair (X, p) is called a total paranormed space. It
is well known that the metric of any linear metric space is given by
some total paranorm (see [25], Theorem 10.4.2, P-183).
A modulus function is a function f : [0,∞)→ [0,∞) such that

(1) f(x) = 0 if and only if x = 0,
(2) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,
(3) f is increasing
(4) f is continuous from right at 0.
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It follows that f must be continuous everywhere on [0,∞). The
modulus function may be bounded or unbounded. For example, if we
take f(x) = x

x+1
, then f(x) is bounded. If f(x) = xp, 0 < p < 1, then

the modulus f(x) is unbounded. Subseqentially, modulus function has
been discussed in ([1], [2], [3], [4], [18], [20], [21], [22]) and many others.

Let A = (amk) be an infinite matrix of complex numbers. We write
Ax = (Am(x))∞m=1 if Am(x) =

∑∞
k=1 amkxk converges for each m ∈ N.

A sequence x = (xk) is said to be summable (C, 1) if and only if
limn

∑n
i=1 xi exists. Spaces of strongly Cesaro sequences were dis-

cussed by Kuttner [12] and this concept was generalized by Maddox
[15] and some others. The class of sequences which are strongly Ce-
saro summable with respect to a modulus was introduced by Maddox
[14] as an extension of the definition of strongly Cesaro summable.
Connor [8] extended his definition by replacing the Cesaro matrix
with an arbitrary non-negative regular matrix summability method
A. In [23] Savaş, following Connor [8] and defined the concept of
strongly almost A-summability with respect to a modulus, but the
definition introduced there is not very satisfactory and seems to be
unnatural. By specializing the infinite matrix in the definition intro-
duced in [23], we don’t get strongly almost convergent sequences with
respect to a modulus. In [24] Savas introduced an alternative defi-
nition of strongly almost A-summability with respect to a modulus.
This definition seems to be more natural and contains the definition
of strongly almost convergence with respect to a modulus as a spe-
cial case. The sets w0(Â, f, p), w(Â, f, p) and w∞(Â, f, p) will called
the spaces of strongly almost summable to zero, strongly almost sum-
mable and strongly almost bounded with respect to the modulus f
respectively [24]. The argument s, that is, the factor k−s was used
by Bulut and Çakar [6], to generalize the Maddox sequence space l(p)
where p = (pk) be a bounded sequence of positive real numbers and
s ≥ 0. It performs an extension mission. For example, the space
l(p, s) = {x ∈ w :

∑∞
k=1 k

−s|xk|pk < ∞ as a subspace for s > 0 and it
coincides with l(p) only for s = 0.

Let X be a complex linear space with zero element θ and X = (X, q)
be a seminormed space with the seminorm q. By S(X) we denote
the linear space of all sequences x = (xk) with xk ∈ X and usual
coordinatewise operations. If λ = (λk) is a scalar sequence and x ∈
S(X) then we shall write λx = (λkxk). Taking X = C we get w, the
space of all complex-valued sequences.



118 KULDIP RAJ AND AJAY K. SHARMA

Let A = (amk) be a non-negative matrix and p = (pk) be a bounded
sequence of positive real numbers and F = (fk) be a sequence of
modulus functions. Now, we define the following sequence spaces in
this paper:

w0(Â, p, F,∆u
v , q, s) =

{
x ∈ S(X) : lim

m→∞

∑
k

amkk
−s
[
fk(q(∆u

vxk+n))
]pk = 0, uniformly in n, s ≥ 0

}
,

w(Â, p, F,∆
u

v , q, s) =
{
x ∈ S(X) : limm→∞

∑
k amkk

−s
[
f
k
(q(∆u

vxk+n−l))
]pk= 0,uniformly in n,

for some l, s ≥ 0
}

;

and

w∞(Â, p, F,∆u
v , q, s) =

{
x ∈ S(X) : sup

m,n

∑
k

amkk
−s
[
fk(q(∆u

vxk+n))
]pk <∞, s ≥ 0

}
.

If we take F (x) = x, we get the spaces

w0(Â, p,∆u
v , q, s) =

{
x ∈ S(X) : lim

m→∞

∑
k

amkk
−s(q(∆u

vxk+n))pk = 0, uniformly in n, s ≥ 0
}
,

w(Â, p,∆u
v , q, s) =

{
x ∈ S(X) : lim

m→∞

∑
k

amkk
−s(q(∆u

vxk+n − l))pk = 0, uniformly in n,

for some l, s ≥ 0
}

and

w∞(Â, p,∆u
v , q, s) =

{
x ∈ S(X) : sup

m,n

∑
k

amkk
−s(q(∆u

vxk+n))pk <∞, s ≥ 0
}
.

If we take p = (pk) = 1, we have

w0(Â, F,∆u
v , q, s) =

{
x ∈ S(X) : lim

m→∞

∑
k

amkk
−s
[
fk(q(∆u

vxk+n))
]

= 0, uniformly in n, s ≥ 0
}
,

w(Â, F,∆u
v , q, s) =

{
x ∈ S(X) : lim

m→∞

∑
k

amkk
−s
[
fk(q(∆u

vxk+n − l))
]

= 0, uniformly in n,

for some l, s ≥ 0
}

and

w∞(Â, F,∆u
v , q, s) =

{
x ∈ S(X) : sup

m,n

∑
k

amkk
−s
[
fk(q(∆u

vxk+n))
]
<∞, s ≥ 0

}
.

The following inequality will be used throughout the paper. If 0 ≤
pk ≤ sup pk = H, K = max(1, 2H−1) then

(1.1) |ak + bk|pk ≤ K{|ak|pk + |bk|pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.
The main aim of the present paper is to introduce and examine

some new sequence spaces by using a sequence of modulus functions.
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2. Main Results

Theorem 2.1 Let F = (fk) be a sequence of modulus func-
tions, p = (pk) be a bounded sequence of positive real num-
bers and A = (amk) be a non-negative regular matrix. Then

w0(Â, p, F,∆u
v , q, s) ⊂ w(Â, p, F,∆u

v , q, s) ⊂ w∞(Â, p, F,∆u
v , q, s).

Proof. It is obvious that w0(Â, p, F,∆u
v , q, s) ⊂ w(Â, p, F,∆u

v , q, s).

Suppose that x ∈ w(Â, p, F,∆u
v , q, s). Since q is a seminorm, there

exists N integer such that q(l) ≤ N. Since F = (fk) be a sequence of
modulus functions, A = (amk) is a non-negative regular matrix and
from (1.1), we can write∑
k

amkk
−s[fk(q(∆u

vxk+n))
]pk ≤ K

{∑
k

amkk
−s[fk(q(∆u

vxk+n − l))
]pk

+
[
NF (1)

]H∑
k

amkk
−s
}
.

Therefore x ∈ w∞(Â, p, F,∆u
v , q, s) and this completes the proof.

Theorem 2.2 Let F = (fk) be a sequence of modu-
lus functions and p = (pk) be a bounded sequence of positive

real numbers. Then w0(Â, p, F,∆u
v , q, s), w(Â, p, F,∆u

v , q, s) and

w∞(Â, p, F,∆u
v , q, s) are linear spaces over the complex field C.

Proof. Let x, y ∈ w(Â, p, F,∆u
v , q, s) and α, β ∈ C, suppose that

x → l1[w(Â, p, F,∆u
v , q, s)] and y → l2[w(Â, p, F,∆u

v , q, s)]. For α, β
there exists the integers Mα and Nβ such that |α| ≤Mα and |β| ≤ Nβ.
From (1.1) and definitions of F and q, we have
amkk

−s[fk(q(α∆u
vxk+n + β∆u

vyk+n − (αl1 + βl2)))
]pk ≤

Kamkk
−sMH

α

[
fk(q(∆

u
vxk+n−l1))

]pk+Kamkk
−sNH

β

[
fk(q(∆

u
vyk+n−l2))

]pk
when adding the above inequality from k = 1 to ∞, we get αx +
βy ∈ w(Â, p, F,∆u

v , q, s). This proves that w(Â, p, F,∆u
v , q, s) is a

linear space. Similarly, we can prove that w0(Â, p, F,∆u
v , q, s) and

w∞(Â, p, F,∆u
v , q, s) are linear spaces.

Theorem 2.3 Let F = (fk) be a sequence of modulus functions
and p = (pk) be a bounded sequence of positive real numbers. Then

the spaces w0(Â, p, F,∆u
v , q, s) and w(Â, p, F,∆u

v , q, s) are topological
linear spaces paranormed by

g(x) = sup
m

{∑
k

amkk
−s[fk(q(∆u

vxk+n))
]pk} 1

M
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where M = max(1, H = sup
k
pk).

Proof. From Theorem 2.1, for each x ∈ w0(Â, p, F,∆u
v , q, s), g(x)

exists. Clearly g(0) = 0, g(x) = g(−x) and by Minkowski’s inequality
g(x + y) ≤ g(x) + g(y). For the continuity of scalar multiplication
suppose that (µt) is a sequence of scalars such that |µt − µ| → 0 and

g(xt − x) → 0 for arbitrary sequence (xt) ∈ w0(Â, p, F,∆u
v , q, s). We

shall show that g(µtxt − µx) → 0(t → ∞). Say τt = |µt − µ|, then{∑
k

amkk
−s[fk(q(µ

t∆u
vx

t
k+n − µ∆u

vxk+n))]pk
} 1

M ≤{∑
k

{a
1
M
mkk

− s
M [A(t, k, n)]

pk
M + a

1
M
mkk

− s
M [B(t, k, n)]

pk
M }M

} 1
M
, where

A(t, k, n) = Nfk(q∆
u
v(x

t
k+n− xk+n)), B(t, k, n) = fk(τtq∆

u
v(xk+n)) and

N = 1 + max{1, sup |µt|}.

g(µtxt − µx) ≤ N
H
M sup

m,n

{∑
k

amkk
−s
[A(t, k, n)

N

]pk} 1
M

+

sup
m,n

{∑
k

amkk
−s[B(t, k, n)

]pk} 1
M

= N
H
M g(xt − x) +

sup
m,n

{∑
k

amkk
−s[B(t, k, n)

]pk} 1
M
. Because of g(xt − x) → 0 we

must only show that sup
m,n

{∑
k

amkk
−s[B(t, k, n)

]pk} 1
M → 0(t → ∞).

There exist a positive integer t0 such that 0 ≤ τt ≤ 1 for t > t0.
Write

sup
m,n

{ ∞∑
k=m+1

amkk
−s[fk(q∆u

v(x
t
k+n))

]pk} 1
M → 0(m→∞).

Hence, for every ε > 0, there exist a positive integer m0 such that

sup
m,n

{ ∞∑
k=m0+1

amkk
−s[fk(q∆u

v(x
t
k+n))

]pk} 1
M
<
ε

2
.

For t > t0, since τtq∆
u
v(xk+n) ≤ q∆u

v(xk), we get

amkk
−s[fk(τt(q∆u

v(xk+n)))
]pk ≤ amkk

−s[fk(q∆u
v(xk+n))

]pk
for each n and k. This implies that

sup
m,n

{ ∞∑
k=m0+1

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} 1
M
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≤ sup
m,n

{ ∞∑
k=m0+1

amkk
−s[fk(q∆u

v(x
t
k+n))

]pk} 1
M
<

ε

2
. Hence, there exist

a δ(0 < δ < 1) such that

sup
m,n

{ m0∑
k=1

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} ≤ (
ε

2
)M for 0 < τt < δ. Also

we can find a number h such that τt < δ for t > h. So, for t > h, we

have sup
m,n

{ m0∑
k=1

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} 1
M

<
ε

2
, so eventually,

sup
m,n

{∑
k

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} 1
M

≤ sup
m,n

{ m0∑
k=1

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} 1
M

+ sup
m,n

{ ∞∑
k=m0+1

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} 1
M

< ε
2

+ ε
2

= ε. This shows that

sup
m,n

{∑
k

amkk
−s[fk(τt(q∆u

v(x
t
k+n)))

]pk} 1
M → 0(t → ∞). Thus

w0(Â, p, F, q,∆u
v , s) is paranormed space by g.

Theorem 2.4 Let F = (fk) be a sequence of modulus functions
and p = (pk) be a bounded sequence of positive real numbers. Then

the space w0(Â, p, F, q,∆u
v , s) is complete with respect to its paranorm

whenever (X, q) is complete.

Proof. Suppose (xi) is a Cauchy sequence in w0(Â, p, F, q,∆u
v , s).

Therefore

(2.1) g(xi−xj) = sup
m,n

{∑
k

amkk
−s[fk(q∆u

v(x
i
k+n−x

j
k+n))

]pk} 1
M → 0

as i, j →∞. Also, for each n and k

k−s
[
fk((q∆

u
v(x

i
k+n − x

j
k+n))

]pk → 0

as i, j → ∞ and so q∆u
v(x

i
k+n − x

j
k+n) → 0(i, j → ∞) from the conti-

nuity of f . It follows that the sequence (xik+n) is a Cauchy in (X, q)
for each fixed n and k. Then by the completeness of (X, q) we get the
sequences (xk+n) ∈ X such that

(2.2) q∆u
v(x

i
k+n − xk+n)→ 0(j →∞).
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It is easy to see the validity of the inequality∣∣q∆u
v

(
xik+n − x

j
k+n

)
− q∆u

v

(
xik+n − xk+n

)∣∣ ≤ q∆u
v

(
xik+n − xk+n

)
.

We have

q∆u
v

(
xik+n − x

j
k+n

)
→ q∆u

v

(
xik+n − xk+n

)
(j →∞).

Thus from (2.2), for each ε > 0 there exist i0(ε) such that
[
g(xi −

xj)
]M

< εM for i, j > i0. Also sup
m,n

{ m0∑
k=1

amkk
−s[fk(q∆u

v(x
i
k+n −

xjk+n))
]pk}

≤ sup
m,n

{∑
k

amkk
−s[fk(q∆u

v(x
i
k+n − x

j
k+n))

]pk}
=
[
g(xi − xj)

]M
. Letting j →∞ we have

sup
m,n

{ m0∑
k=1

amkk
−s[fk(q∆u

v(x
i
k+n − x

j
k+n))

]pk}→
sup
m,n

{ m0∑
k=1

amkk
−s[fk(q∆u

v(x
i
k+n − xk+n))

]pk} < εM

for i > i0. Since m0 is arbitrary, by taking m0 →∞, we obtain

sup
m,n

{∑
k

amkk
−s[fk(q∆u

v(x
i
k+n − xk+n))

]pk} 1
M
< ε

for all m and n that is

g(xi − x)→ 0 as i→∞.

We first need to show x ∈ w0(Â, p, fk, q,∆
u
v , s). We know that g(xi) is

bounded, say, g(xi) ≤ K. Furthermore we have

amkk
−s[fk(q∆u

v(x
i
k+n − xk+n))

]pk → 0(i→∞).

Now we can determine a sequence ηk ∈ w0(0 < ηik ≤ 1) for each k,
such that

amkk
−s[fk(q∆u

v(x
i
k+n − xk+n))

]pk ≤ ηikamkk
−s[fk(q∆

u
v(x

i
k+n))]pk .

On the other hand,

[fk(q∆
u
v(xk+n))]pk ≤ K

{[
fk(q∆

u
v(x

i
k+n−xk+n))

]pk+
[
fk(q∆

u
v(x

i
k+n))

]pk}
where K = max(1, 2H−1);H = sup pk. Also we have
amkk

−s[fk(q∆
u
v(xk+n))]pk
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≤ Kamkk
−s
{[
fk(q∆

u
v(x

i
k+n − xk+n))

]pk +
[
fk(q∆

u
v(x

i
k+n))

]pk}
≤ K(ηik + 1)amkk

−s[fk(q∆u
v(x

i
k+n))

]pk from the last inequality above,

we obtain x ∈ w0(Â, p, F, q, s) and this completes the proof of the
theorem.

Lemma 2.1. Let F ′ = (f ′k), F ′′ = (f ′′k ) are sequences of modulus
functions and 0 < δ < 1. If F ′(t) > δ for t ∈ [0,∞) then

(F ′′ ◦ F ′)(t) ≤ 2F ′′(1)

δ
F ′(t).

Theorem 2.5. Let F ′ = (f ′k), F ′′ = (f ′′k ) are sequences of modulus
functions and s, s1, s2 > 0. Then

(i) lim sup F ′(t)
F ′′(t)

<∞ implies w0(Â, p, F ′′, q, s) ⊂ w0(Â, p, F ′, q, s),

(ii) w0(Â, p, F ′, q, s) ∩ w0(Â, p, F ′′, q, s) ⊆ w0(Â, p, F ′ + F ′′, q, s),
(iii) If the matrix A = (amk) is a regular matrix and s > 1, then

w0(Â, p, F ′, q, s) ⊆ w0(Â, p, F ′ ◦ F ′′, q, s),

(iv) s1 ≤ s2 implies w0(Â, p, F, q, s1) ⊂ w0(Â, p, F, q, s2).
Proof. (i) Since there exists a C > 0 such that F ′(t) ≤ F ′′(t) by

the hypothesis, therefore we can write that

amkk
−s[f ′k(q∆u

v(xk+n))
]pk ≤ CHamkk

−s[f ′′k (q∆u
v(xk+n))

]pk .
Let x ∈ w0(Â, p, F ′′, q, s). When adding the above inequality from

k = 1 to ∞, we have x ∈ w0(Â, p, F ′, q, s).
(ii) The relation follows from the inequality amkk

−s[(f ′k +

f ′′k )(q∆u
v(xk+n))

]pk
= amkk

−s[f ′k(q∆u
v(xk+n)) + f ′′k (q∆u

v(xk+n))
]pk

≤ Kamkk
−s
{[
f ′k(q∆

u
v(xk+n))

]pk +
[
f ′′k (q∆u

v(xk+n))
]pk} where K =

max(1, 2H−1).
(iii) Let 0 < δ < 1, and define the sets N1 = {k ∈ N : f ′k(q∆

u
v(xk+n)) ≤

δ} and N2 = {k ∈ N : f ′k(q∆
u
v(xk+n)) > δ}. It follows from Lemma

2.1 that

(f ′′k ◦ f ′k)(q∆u
v(xk+n)) ≤ 2f ′′k (1)

δ
f ′k(q∆

u
v(xk+n)),

when k ∈ N2. If k ∈ N1 then

(f ′′k ◦ f ′k)(q∆u
v(xk+n)) ≤ f ′′k (δ),

and so

k−s[(f ′′k of
′
k)(q∆

u
v(xk+n))]pk ≤ ε1k

−s
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for x ∈ w0(Â, p, F ′, q, s), where ε1 = max
{

[f ′′k (δ)]inf pk , [f ′′k (δ)]sup pk

}
.

On the other hand

amkk
−s[(f ′′k ◦ f ′k)(q∆u

v(xk+n))]pk ≤ amkk
−s
[2f ′′k (1)

δ
f ′k(q∆

u
v(xk+n))

]pk
≤ ε2amkk

−s[f ′k(q∆
u
v(xk+n))]pk

for k ∈ N2, where ε2 = max
{[2f ′′k (1)

δ

]inf pk ,
[2f ′′k (1)

δ

]sup pk
}

. Now, say

ε = max{ε1, ε2} and we get
∑

k amkk
−s[(f ′k ◦ f ′′k )(q∆u

v(xk+n))
]pk

≤
{∑

k amkk
−s+

∑
k amkk

−s[fk(q∆u
v(xk+n))

]pk} for k ∈ N1∪N2 = N.

This implies x ∈ w0(Â, p, F ′ ◦ F ′′, q, s).
Theorem 2.6. Let s > 1, F be bounded and A be

a non negative regular matrix. When x ∈ w0(Â, p, F, q, s)∑
k akxk is convergent iff (ak) ∈ φ, where φ is a finite sequences.

Proof. The sufficiency is trivial.
For the necessity, suppose that a /∈ φ. Then there is a sequence of
positive integers m1 < m2 < · · · such that |amk| > 0. let us define

(yk) =


u

q(u)amk
, k = mk θ, k 6= mk

θ , k 6= mk

where u ∈ X such that q(u) > 0. Since F is bounded and s > 1,∑
k

amkk
−s[fk(q∆u

v(yk+n))
]pk <∞.

Hence (yk) ∈ w∞(Â, p, F, q, s) but
∑
k

akyk =
∑
m

1 = ∞. This is a

contradiction to
∑
k

akyk convergent. This completes the proof of the

theorem.
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