
29

"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 23 (2013), No. 1, 29 - 38

NEW ASPECTS IN OPTIMIZATION OF BDDS: MIXED TECHNIQUES
BASED ON POPULATIONS OF SOLUTIONS AND LOWER BOUND

IULIAN FURDU AND PETRU GABRIEL PUIU

Abstract. This paper provides a comprehensive introduction on recent
advances to reduced ordered binary decision diagrams (ROBDDs or BDDs) as
a state-of-the-art data structure in computed-aided design. Key aspects
concerning the use of techniques based on lower bounds in the context of BDD
optimization are investigated. Three embryonic genetic algorithms for BDD
optimization are presented (from which a new one) and their performance
compared.

1. INTRODUCTION

Ordered binary decision diagram (OBDD) is the most popular data structure
that offers a good trade-off between efficiency of manipulation and
compactness of representation of Boolean functions. They are widely used in
CAD systems, VLSI, in areas like circuit design for testability, low-power
design, field programmable gate arrays etc. The BDD’s size is given by the
number of its nonterminal nodes and strongly depends on the chosen input
variable ordering. For a given boolean function, one input variable ordering
may yield an OBDD that is polynomial in the number of variables, while a
different ordering may yield an exponential size OBDD.

 This paper addresses the problem of optimizing the variable order in BDDs:
how to determine a variable ordering for an OBDD representing a given
Boolean function f such that the number of nodes in the corresponding OBDD

Keywords and phrases: Circuit optimization, Genetic algorithms, Logic
design, Optimization methods, Very-large-scale integration.
(2010) Mathematics Subject Classification: 06E30, 94C10, 68W35.

I. FURDU AND P. G. PUIU

30

for f is minimized. The problem to determine the optimal variable ordering is
NP-complete [1]. First section presents OBDDs as a state-of-the-art data
structure in VLSI design. Next chapters are focused on the main types of
methods involved in OBDD optimization.

2. BACKGROUND

 In the problem of optimizing OBDDs, a switching function is represented as
a BDD, a directed acyclic graph that essentially models how the assignments of
truth values to the Boolean input variables are evaluated in a fixed order π, and
satisfying a set of properties [5].

Definition. Let π be a total order on the set of variables over Xn= {x1, x2,…,
xn}. An ordered binary decision diagram with respect to the variable order π is
a direct acyclic graph with exactly one root which satisfies the following
properties:
1. There are exactly two nodes without outgoing edges, labeled by the
constants 0 and 1, respectively, called sinks.
2. Each non-sink node is labeled by a variable xi, and has two outgoing edges
which are labeled by 0 and 1, respectively. These edges are called 0-edge
(usually figured by dotted arrows) and 1-edge (line arrows), respectively (fig.1)
and describe the two subfunctions for f obtained by applying Shannon’s
expansion in xi [18].
3. For each edge leading from a node labeled by xi to a node labeled by xj it
holds that xi<л xj. i.e. the order in which the variables appear on a path in the
graph is consistent with the variable order π.

The variable of a node v is abbreviated by var(v). The computation path of an
input a=a1, a2,…, an begins in the root, and in each node labeled by xi, the path
follows the edge with label f(ai).

b

1 0

c

d

e

f

a

Figure 1. OBDD for f(a,b,c,d)=a+b·c+d·e·f with order a, b, c, d, e

(+ =logical OR, · =logical AND)
If },...2,1{ nv ∈ and π is an ordering on },...2,1{ n then costv(f,π) denotes the

number of nodes labeled by v in BDD(f,π) where BDD(f,π) is the OBDD
diagram of f having the variable ordering π.

NEW ASPECTS IN OPTIMIZATION OF BDDS: MIXED TECHNIQUES

31

 Thus, the problem is to find an optimal variable ordering π that

minimizes ∑
=

π
n

v
fv

1
),(cost . If a BDD is mapped to a digital circuit, a smaller

BDD size is directly transferred to a smaller circuit design (e.g. in Pass
Transistor Logic).

 The existing methods in finding a good variable ordering can be classified
into static techniques and dynamic techniques [18] or, from other perspective in
exact methods, heuristic methods and methods based genetic algorithms (GA)
as a special type of heuristics. The basic operation in the standard exact
minimization algorithms and also in most of the heuristic algorithms for
improving variable ordering is the exchange of two adjacent variables, called
swap. The most popular algorithms in BDD minimization, based on the swap
are sifting algorithm [19] and its variants [2]. Main results concerning the use
of lower bounds in heuristic node minimization, exact node minimization and
in BDDs optimization methods based on GAs are summarized in next three
chapters.

3. LOWER BOUNDS IN HEURISTIC NODE MINIMIZATION

 As a BDD-based system may invoke dynamic reordering very often during
the progress of BDD construction, time was still an important issue. For this
reason in [17] is proposed an algorithm to partition the search space by
grouping variables to improve sifting run times. A drawback of the method is
that depends strongly on the initial ordering. Using sampling for space
partitioning is proposed in [20], but the quality of the results varies widely
depending on the choice of the sample.

Promising results have been obtained by using lower bounds to prune the
search space of BDD sizes during sifting, called lb-sifting and elb-sifting [8],
[10]. These lower bounds state minimum sizes for certain orderings that will be
considered in the following steps of the sifting algorithm.

Further considerations are focused on the method of sifting with lower
bounds. The idea is that a variable moving can be stopped if the BDD size
stated by the lower bound already exceeds the smallest BDD size recorded so
far. An improved lower bound is described in [11] tighter than lb-sifting and
elb-sifting suggested before. The new bound behaves “orthogonally” to the old
lower bounds, i.e. they are effective in situations where the old ones are not and
vice versa. This leads to a better understanding of the different impact of lower
bounds on the efficiency of the sifting algorithm. A combination of old and
new lower bounds is introduced to prune the search space in different
situations. This yields a final, tight lower bound which then is incorporated into
the sifting algorithm.

I. FURDU AND P. G. PUIU

32

The goal however is to avoid as many variable swaps as possible. The exact
lower bound is weakened to a lower bound that prepares a calculation without
any variable movement. This way is avoided too much computational time for
bounds when used in a fast algorithm as the sifting.

Reductions in run time of almost 90% have been obtained in experimental
evaluation when comparing to classical, unbounded sifting. In comparison to
lb-sifting, i.e. sifting using the classical lower bound from [8], the improved
lower bound still yields further reductions in run time of more than 10% [12].
Also, the full quality of the results was preserved.

4. EXACT NODE MINIMIZATION

The computation of the optimal variable ordering is NP-hard thus a
polynomial algorithm cannot be expected. The lemma proved by [15] forms the
basis of all minimization algorithms currently implemented in the available
OBDD packages and is based on the observation that the size of level(xi) is
independent of the order of the variables bellow or above level(xi).

Lemma. Let I⊆ {1, 2,…n}, k= |I| and v∈I. Then there is a constant c such
that for each π∈Π(I) - set of all orders on I - satisfying π(k)= v, we have:

 costv(f, π)=c (1)

where π(I) will denote the order in Π(I) which minimizes ∑
=

π
n

v
fv

1
),(cost and

MinCostI gives the corresponding minimal value of this sum.
 More informally, lemma states that the number of nodes in a level k of an

OBDD does not change if the variable ordering is changed below or above that
level. [16] reformulated the above-mentioned algorithm. As a lower bound of
BDD size is used lb= MinCostI+c-1, where c=cost|I|(f, πI) because, in order to
have c nodes of the |I|-th variable, there must be at least c-1 nodes of the
variables in N-I which will locate in the upper part of the BDD, N= {1, 2, ...n}.

 In [7], a tighter lower bound for BDD size has been suggested, which
drastically reduces the overall run time. By this, larger functions can be
handled, e.g. exact solutions for 32-bit adders have been computed
successfully. The lower bound proposed is:

 lower_bound= MinCostI+max{c+mR, n-|I|}+1 (2)
where mR is the number of output nodes (not leaves) in levels |I|+1, 2, …n and
n-|I| is the number of variables in Xn-I and c is the size of a fooling set f(I, Xn-I).
The constant node is always needed. The algorithm called FizZ also is the first
one that applies a top-down approach.

 A recent work [13] introduces an effective extension of the B&B technique
that uses more than one lower bound for BDD size in parallel.

NEW ASPECTS IN OPTIMIZATION OF BDDS: MIXED TECHNIQUES

33

The additional lower bounds are obtained by a generalization of a lower
bound known from VLSI design.

The generalized bound can be also used for bottom-up construction of a
minimized BDD. So the new approach is not restricted to a top-down
construction like the approach of [7]. Moreover, combining the two lower
bounds yields a new lower bound that is used to exclude states earlier than in
previous approaches, resulting in a further speed-up.

Early pruning of search space is achieved [12] by two techniques: one is to
avoid transitions to successors that are already known not to contribute to the
actualization of the smallest node number. The second is to find a means that
allows testing every successor for a possible exclusion right after it was
generated: in this way, unnecessary repeated movements to successor states can
be avoided. Experimental results proved that the “early pruning” techniques
yield a gain of up to 18.8% and a reduction in run time of 10.2%. On average,
the reduction in run time is 18.5% (considering BDD reconstruction
techniques, not mentioned here, [12]). Consequently, the top-down approach
(JANUS↓ algorithm) is faster than FizZ, especially for larger examples
achieving a reduction in run time by up to 49%. On average, the reduction in
run time is 35.4% [12].

Recently, the change to another programming paradigm, ordered bestfirst
search, i.e. the so-called A*-algorithm as known from AI, has been suggested.
This step has been prepared in [9] which suggest an efficient state expansion
technique (NEO algorithm).

The A*-algorithm has superior run time to all previous B&B algorithms.
Also, ordered best-first search, (A*-algorithm), can be combined with a
classical B&B algorithm to save memory using a “delay state insertion”
technique.

A* is known to be optimal in the class of heuristic search algorithms that use
the same evaluation function and that are guaranteed to find an optimal
solution: larger parts of state spaces are pruned by A* than for any other such
algorithm. More exactly, A* is known to minimize the number of distinct
expanded states. The efficient pruning is due to a strategy to always choose the
most promising state first for the next state expansion [12].

5. GENETIC ALGORITHMS FOR BDD MINIMIZATION

 Genetic algorithms (GAs) for the variable ordering problem rely on a
representation of the variable orderings in permutation form (chromosomes).
They act on an initial population by applying genetic operators in order to
obtain a new population of solutions.

First genetic algorithms in finding the best ordering for OBDDs were due to
Drechsler, Becker and Gockel [6]. Their algorithm was adapted and included in

I. FURDU AND P. G. PUIU

34

CUDD package (CUDD) as a method of optimization. This algorithm is the
first that proves that GA is a feasible and practical alternative to the exact
algorithm for variable ordering and is generally used (or should be) as a witness
algorithm in benchmarking when dealing with GA for the variable ordering in
OBDDs and especially when CUDD is also used. The objective function that
measures the fitness of each element is the number of nodes in the
corresponding OBDD. Obviously, the corresponding OBDD is generated in
concordance to the order expressed by the chromosome. Initial population is
generated and optimized by shift [19]. The better half of the population is
copied in each iteration without modification. Partially Mapped Crossover
(PMX) is applied to a pool of 50% individuals. Newly created individuals are
then mutated by applying mutation operators with a given probability. After
each iteration, population size is constant (steady state reproduction).
Algorithm stops if no improvement is obtained for 50log(best_fitness)
iterations.

The use of hybrid techniques that combine GAs with other optimization
method is the actual trend of the research into new methods for BDD
optimization [12]. In [4], a branch & bound technique is combined with a basic
GA by adopting and operating with embryos as subsets of orders instead of
individual complete orders. This hybridization leads to a better balancing
between exploration and exploitation of the search space. The objective
function based fitness is replaced by a lower bound based fitness and a growing
mechanism (random generational growing, RGG) is applied by means of two
new growing operators. The same results were obtained by comparing to [6] in
the same conditions (CUDD package, benchmarks from LGSynth91 [22]) for
all benchmarks except one; additional more complex benchmarks were tested
with very good results. In the same context of embryonic GAs, two new
growing strategies were proposed in [3] named random generational growing
with sampling (RGGS) and random generational growing with sampling and
sifting (RGGSS). Within RGGSS, sifting is integrated as a genetic operator.
Next section describes a new algorithm that operates also with embryos instead
of full grown chromosomes.

6. UNITARY SYNCHRONOUS GROWING STRATEGY

As mentioned in [3] in the embryonic approach a chromosome is a prefix
),...,(1 kxxx = called embryo if nk <≤1 , or called adult, for nk = , a fully

specified variable order.
Considering embryos does not change the mutation operators but an

additional crossover operator is used, a variant of AX in which the left cut point
for the bigger embryo is equal to the length of the smaller embryo.

NEW ASPECTS IN OPTIMIZATION OF BDDS: MIXED TECHNIQUES

35

In the embryonic approach, the crossover has a collateral effect especially
visible when the majority of the embryos have a small size: it could produce
offspring’s whose lengths are much higher than the average size in the current
population. In general, when the fitness function is a lower bound of the sizes
of the BDDs respecting an ordering in the set S(x), the longer embryos usually
lose the competition against the shorter ones because the predictive part of the
lower bound could be imprecise and far enough from the bounded values, due
to the scarcity of the information in the prefix. The best-first approach of [14]
deals with this problem by first driving the search to the shorter ones and
keeping the longer prefixes in the list of active (“open”) search nodes for a later
use. The risk is a list of search nodes whose length could exceed the available
memory. Since the B&B approach of [13] is breadth-first, it serves the shorter
prefixes strictly before the longer ones, but still completeness is ensured since
all important longer prefixes are considered at the later stages of the search
space traversal. In the combination of B&B and GA, such longer prefixes could
become definitively lost by survival selection. The unitary synchronous
growing described below is a remedy.

Initial population. It contains randomly generated embryos with the same
prescribed length 0λ , where)10/,5max(2 0 n<λ< .

Fitness based on lower bound. The fitness of the prefix is
knnxfit k

i ilb −+∑= =1)(, where ni is number of nodes on the i-th level of the
OBDD built on an arbitrary ordering in S(x). From [15] it is known that ni,

ki ,...,1= are the same for all possible extensions of the prefix),...,(1 kxx . The
term n-k in the definition of)(xfitlb plays the role of the predictive part, while
the first part gives the contribution of the prefix itself. When comparing two
embryos with equal prefix length, their intrinsic performance is reflected
because their predictive parts can not discriminate between them. This suggests
the way to tackle the inequity appearing when embryos with different lengths
are compared. A variant to manage the growing phase is further discussed.

Unitary synchronous periodic growing. In this variant, named for short
USPG, consider the parameter T indicating the number of successive evolution
stages between two consecutive growths of the length of embryos in the current
population by one. So, reaching the final length takes)(01 λ−⋅= nTit
iterations. Actually, parameter T adjusts the slope of the growing: the
dependence of the chromosome length on the number of iterations can be
expressed by a (staircase-shaped) step function with the number of iterations on
the abscissa and the chromosome length on the ordinate. The ratio

)/(01 λ−= nitT is the step width on the abscissa with a corresponding step

I. FURDU AND P. G. PUIU

36

height of one unit, while it1 is the evolution stage when all chromosomes are
adults. High values of T lead to small slopes of the growing. A high slope is not
recommended, because this may affect the exploration phase of the GA,
shortening it, with no good reason. In contrast, the main motivation for
combining GAs with branch & bound exactly is to explore more important
parts of the search space by the use of multiple short embryos and by guiding
the search with a predictive lower bound.

The length of the individuals during stage t is given by ⎡ ⎤Ttt /)(0 +λ=λ .
So, at every T stages, each embryo),...,(1 kxxx = is replaced by the best

))(,1max(knpb − ,]1,0(∈bp among its extensions, each of them extending its
parent with exactly one variable that is not contained in the prefix. This
growing is then followed by T successive stages. In this way, long
chromosomes with more precise but larger score are not compared with short
embryos, and consequently are not eliminated.

Performance estimation. Table 1 shows the results for these three strategies.
Column #bestknown gives the best ever reported [21] number of nodes for each
benchmark. The column labeled with #nodes gives best-found results for each
strategy and the column labeled #iter gives the corresponding number of
iterations. The circuits marked by an asterisk indicate the circuits for which the
best-known results were obtained from [6].

USPG RGGS RGGSS Bench In Out #best
known #nodes #iter #nodes #iter #nodes #iter

*cm85a 11 3 28 28 56 28 42 28 45
*cm163a 16 5 26 26 102 26 40 26 41

*cu 14 11 32 32 66 32 40 32 41
*alu4 14 8 350 350 109 350 89 350 52

*s1494 14 25 369 369 148 369 52 369 64
vda 17 39 478 494 155 478 96 478 196

misex3 14 14 478 478 72 478 84 478 72
*apex2 39 3 - 304 475 308 253 302 573
*apex7 49 37 - 216 437 215 305 214 1207

dalu 75 16 689 705 728 702 357 698 357
cordic 23 2 42 42 123 42 114 42 115

ttt2 24 21 107 107 269 107 71 107 59
apex6 135 99 498 530 1233 561 523 545 1061

i3 132 6 133 133 621 157 460 133 396
Table 1. Best found results for three growing strategies

within embryonic GAs [3, 4]
Within RGGSS strategy - as shown in Table 1 - the fitness computation

involving sampling followed by sifting offers the best results with the price of a

NEW ASPECTS IN OPTIMIZATION OF BDDS: MIXED TECHNIQUES

37

certain increase of run time complexity (not shown here) but in the case of
apex6 benchmark, USPG strategy returned the best result. That proves that the
strategy has its own potential, assumption strengthen by the fact that for smaller
sized circuits #bestknown is obtained for almost all benchmarks.

7. CONCLUSIONS

The paper presents both classical and recent aspects, main methods and
algorithms for BDDs optimization. It also proves that GAs are a feasible and
practical alternative to the exact algorithms for variable ordering of BDDs by
comparing the results of three embryonic GAs developed by authors. A new
strategy is described and evaluated. Experimental results prove that by
combining GAs with branch & bound, more important parts of the search space
are explored since good results were obtained systematically. As further
direction of investigation, new growing strategies have to be designed and
evaluated, the use of tighter lower bounds, and working with different
structures of the chromosomes for a better integration of previous results on
lower bounds for BDD size.

REFERENCES

[1] B. Bollig, I. Wegener, Improving the Variable Ordering of OBDDs Is NP-
Complete, IEEE Transactions on Computers 45 (9) (1996), 993-1002.

[2] K. S. Brace, R. L. Rudell, R. E. Bryant, Efficient implementation of a BDD
package, Proc. of the 27th ACM/IEEE Design for Automation Conf (1990), 45-
49.

[3] O. Brudaru, R. Ebendt, I. Furdu, Optimizing Variable Ordering of
BDDs with Double Hybridized Embryonic Genetic Algorithm, 12th Int’l
Symp. on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara
(2010), 167-173.

[4] O. Brudaru, I. Furdu, R. Ebendt, Embryonic Genetic Algorithm with Random
Generational Growing Strategy for Optimizing Variable Ordering of BDDs,
Sci. Stud. Res., Ser. Math. Inform. 20, 1 (2010), 45-60.

[5] R. E. Bryant, C. Meinel, Ordered Binary Decision Diagrams In Electronic
Design Automation: Foundations, Applications and Innovations, Ed. S.
Hassoun and T. Sasao, Kluwer Academic Publishers, 285-307, 2001.

[6] R. Drechsler, B. Becker, N. Gockel, A genetic algorithm for variable ordering of
OBDDs, Int'l Workshop on Logic Synth. (1995), 55-64.

[7] R. Drechsler, N. Drechsler, W. Günther, Fast exact minimization of BDDs, IEEE
Trans. on CAD 19 (3) (2000), 384-389.

[8] R. Drechsler, W. Gunther, F. Somenzi, Using lower bounds during dynamic
BDD minimization, IEEE Trans. on CAD 20 (1) (2001), 51-57.

[9] R. Ebendt, Reducing the number of variable movements in exact BDD
minimization, Int’l Symp. on Circuits and Systems 5 (2003), 605-608.

I. FURDU AND P. G. PUIU

38

[10] R. Ebendt, R. Drechsler, Lower bounds for dynamic BDD reordering, Asia and
South Pacific Design Automation Conf. (2005), 579-582.

[11] R. Ebendt, R. Drechsler, The Effect of Improved Lower Bounds in Dynamic
BDD Reordering, IEEE Trans. on CAD of Integrated Circuits and Systems 25, 5
(2006), 902-909.

[12] R. Ebendt, R. G. Fey, R. Drechsler, Advanced BDD Optimization, Springer-
Verlag, Berlin, 2005.

[13] R. Ebendt, W. Gunther, R. Drechsler, An improved branch and bound
algorithm for exact BDD minimization, IEEE Trans. on CAD 22 (12)
(2003),1657-1663.

[14] R. Ebendt, W. Günther, R. Drechsler, Combining Ordered Best-First Search
with Branch and Bound for Exact BDD Minimization, IEEE Trans. on CAD of
Integrated Circuits and Systems 24 (10) (2005), 1515-1529.

[15] S. J. Friedman, K. Supowitz, Finding the optimal variable ordering for binary
decision diagrams, IEEE Trans. on Computers 39 (5) (1990), 710-713.

[16] N. Ishiura, H. Sawada, S. Yajima, Minimization of BDD based on exchange of
variables, IEEE Proc. of the International Conference on Computer Aided Design
(1991), 472-475.

[17] C. Meinel, A. Slobodova, Speeding up variable reordering for OBDDs, ICCD
(1997), 338-343.

[18] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI Design,
Springer-Verlag, Berlin, 1998.

[19] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams,
Int'l Conf. of CAD (1993), 42-47.

[20] A. Slobodova, C. Meinel, Sample method for minimization of OBDD, Int’l
Workshop on Logic Synth. (1998), 311-316.

[21] CUDD package publicly available at: ftp://vlsi.colorado.edu/pub/ (accesed
07/02/2013)

[22]LGSynth91 benchmarks available from
http://www.cbl.ncsu.edu:16080/benchmarks/Benchmarks-upto-1996.html

Iulian Furdu
“Vasile Alecsandri” University of Bacău
Faculty of Sciences
Department of Mathematics, Informatics and Education Sciences
157 Calea Mărăşeşti, Bacău, 600115, ROMANIA
e-mail: ifurdu@ub.ro

Petru Gabriel Puiu
“Vasile Alecsandri” University of Bacău
Faculty of Engineering
Department of Power Engineering, Mechatronics and Computer Science
157 Calea Mărăşeşti, Bacău, 600115, ROMANIA
e-mail: ppgabriel@ub.ro

