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Abstract. This paper provides a comprehensive introduction on recent 
advances to reduced ordered binary decision diagrams (ROBDDs or BDDs) as 
a state-of-the-art data structure in computed-aided design. Key aspects 
concerning the use of techniques based on lower bounds in the context of BDD 
optimization are investigated. Three embryonic genetic algorithms for BDD 
optimization are presented (from which a new one) and their performance 
compared. 
 

1. INTRODUCTION 
 

Ordered binary decision diagram (OBDD) is the most popular data structure 
that offers a good trade-off between efficiency of manipulation and 
compactness of representation of Boolean functions. They are widely used in 
CAD systems, VLSI, in areas like circuit design for testability, low-power 
design, field programmable gate arrays etc. The BDD’s size is given by the 
number of its nonterminal nodes and strongly depends on the chosen input 
variable ordering. For a given boolean function, one input variable ordering 
may yield an OBDD that is polynomial in the number of variables, while a 
different ordering may yield an exponential size OBDD.  

 This paper addresses the problem of optimizing the variable order in BDDs: 
how to determine a variable ordering for an OBDD representing a given 
Boolean function  f such that the number of nodes in the corresponding OBDD 
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for f is minimized. The problem to determine the optimal variable ordering is 
NP-complete [1]. First section presents OBDDs as a state-of-the-art data 
structure in VLSI design. Next chapters are focused on the main types of 
methods involved in OBDD optimization. 

 

2. BACKGROUND 
 

 In the problem of optimizing OBDDs, a switching function is represented as 
a BDD, a directed acyclic graph that essentially models how the assignments of 
truth values to the Boolean input variables are evaluated in a fixed order π, and 
satisfying a set of properties [5].  

Definition. Let π be a total order on the set of variables over Xn= {x1, x2,…, 
xn}. An ordered binary decision diagram with respect to the variable order π is 
a direct acyclic graph with exactly one root which satisfies the following 
properties: 
1. There are exactly two nodes without outgoing edges, labeled by the 
constants 0 and 1, respectively, called sinks. 
2.  Each non-sink node is labeled by a variable xi, and has two outgoing edges 
which are labeled by 0 and 1, respectively. These edges are called 0-edge 
(usually figured by dotted arrows) and 1-edge (line arrows), respectively (fig.1) 
and describe the two subfunctions for f obtained by applying Shannon’s 
expansion in xi [18]. 
3.  For each edge leading from a node labeled by xi to a node labeled by xj it 
holds that xi<л xj. i.e. the order in which the variables appear on a path in the 
graph is consistent with the variable order π. 

The variable of a node v is abbreviated by var(v). The computation path of an 
input a=a1, a2,…, an begins in the root, and in each node labeled by xi, the path 
follows the edge with label f(ai). 
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Figure 1. OBDD for f(a,b,c,d)=a+b·c+d·e·f with order a, b, c, d, e      

(+ =logical OR, · =logical AND) 
If },...2,1{ nv ∈  and π is an ordering on },...2,1{ n  then costv(f,π) denotes the 

number of nodes labeled by v in BDD(f,π) where BDD(f,π) is the OBDD 
diagram of f having the variable ordering π.  
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 Thus, the problem is to find an optimal variable ordering π that 

minimizes ∑
=

π
n

v
fv

1
),(cost . If a BDD is mapped to a digital circuit, a smaller 

BDD size is directly transferred to a smaller circuit design (e.g. in Pass 
Transistor Logic).  

 The existing methods in finding a good variable ordering can be classified 
into static techniques and dynamic techniques [18] or, from other perspective in 
exact methods, heuristic methods and methods based genetic algorithms (GA) 
as a special type of heuristics. The basic operation in the standard exact 
minimization algorithms and also in most of the heuristic algorithms for 
improving variable ordering is the exchange of two adjacent variables, called 
swap. The most popular algorithms in BDD minimization, based on the swap 
are sifting algorithm [19] and its variants [2]. Main results concerning the use 
of lower bounds in heuristic node minimization, exact node minimization and 
in BDDs optimization methods based on GAs are summarized in next three 
chapters. 
 

3. LOWER BOUNDS IN HEURISTIC NODE MINIMIZATION  
 

 As a BDD-based system may invoke dynamic reordering very often during 
the progress of BDD construction, time was still an important issue. For this 
reason in [17] is proposed an algorithm to partition the search space by 
grouping variables to improve sifting run times. A drawback of the method is 
that depends strongly on the initial ordering. Using sampling for space 
partitioning is proposed in [20], but the quality of the results varies widely 
depending on the choice of the sample. 

Promising results have been obtained by using lower bounds to prune the 
search space of BDD sizes during sifting, called lb-sifting and elb-sifting [8], 
[10]. These lower bounds state minimum sizes for certain orderings that will be 
considered in the following steps of the sifting algorithm.  

Further considerations are focused on the method of sifting with lower 
bounds. The idea is that a variable moving can be stopped if the BDD size 
stated by the lower bound already exceeds the smallest BDD size recorded so 
far. An improved lower bound is described in [11] tighter than lb-sifting and 
elb-sifting suggested before. The new bound behaves “orthogonally” to the old 
lower bounds, i.e. they are effective in situations where the old ones are not and 
vice versa. This leads to a better understanding of the different impact of lower 
bounds on the efficiency of the sifting algorithm. A combination of old and 
new lower bounds is introduced to prune the search space in different 
situations. This yields a final, tight lower bound which then is incorporated into 
the sifting algorithm.  
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The goal however is to avoid as many variable swaps as possible. The exact 
lower bound is weakened to a lower bound that prepares a calculation without 
any variable movement. This way is avoided too much computational time for 
bounds when used in a fast algorithm as the sifting. 

Reductions in run time of almost 90% have been obtained in experimental 
evaluation when comparing to classical, unbounded sifting. In comparison to 
lb-sifting, i.e. sifting using the classical lower bound from [8], the improved 
lower bound still yields further reductions in run time of more than 10% [12]. 
Also, the full quality of the results was preserved.  
 

4. EXACT NODE MINIMIZATION  
 

The computation of the optimal variable ordering is NP-hard thus a 
polynomial algorithm cannot be expected. The lemma proved by [15] forms the 
basis of all minimization algorithms currently implemented in the available 
OBDD packages and is based on the observation that the size of level(xi) is 
independent of the order of the variables bellow or above level(xi).  

Lemma. Let I⊆ {1, 2,…n}, k= |I| and v∈I. Then there is a constant c such 
that for each π∈Π(I) - set of all orders on I - satisfying π(k)= v, we have: 

                              costv(f, π)=c                          (1) 

where π(I) will denote the order in Π(I) which minimizes ∑
=

π
n

v
fv

1
),(cost  and 

MinCostI gives the corresponding minimal value of this sum. 
 More informally, lemma states that the number of nodes in a level k of an 

OBDD does not change if the variable ordering is changed below or above that 
level. [16] reformulated the above-mentioned algorithm. As a lower bound of 
BDD size is used lb= MinCostI+c-1, where c=cost|I|(f, πI) because, in order to 
have c nodes of the |I|-th variable, there must be at least c-1 nodes of the 
variables in N-I which will locate in the upper part of the BDD, N= {1, 2, ...n}. 

 In [7], a tighter lower bound for BDD size has been suggested, which 
drastically reduces the overall run time. By this, larger functions can be 
handled, e.g. exact solutions for 32-bit adders have been computed 
successfully. The lower bound proposed is: 

   lower_bound= MinCostI+max{c+mR, n-|I|}+1              (2) 
where mR is the number of output nodes (not leaves) in levels |I|+1, 2, …n and 
n-|I| is the number of variables in Xn-I and c is the size of a fooling set f(I, Xn-I).  
The constant node is always needed. The algorithm called FizZ also is the first 
one that applies a top-down approach.  

 A recent work [13] introduces an effective extension of the B&B technique 
that uses more than one lower bound for BDD size in parallel.  
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The additional lower bounds are obtained by a generalization of a lower 
bound known from VLSI design. 

The generalized bound can be also used for bottom-up construction of a 
minimized BDD. So the new approach is not restricted to a top-down 
construction like the approach of [7]. Moreover, combining the two lower 
bounds yields a new lower bound that is used to exclude states earlier than in 
previous approaches, resulting in a further speed-up.  

Early pruning of search space is achieved [12] by two techniques: one is to 
avoid transitions to successors that are already known not to contribute to the 
actualization of the smallest node number. The second is to find a means that 
allows testing every successor for a possible exclusion right after it was 
generated: in this way, unnecessary repeated movements to successor states can 
be avoided. Experimental results proved that the “early pruning” techniques 
yield a gain of up to 18.8% and a reduction in run time of 10.2%. On average, 
the reduction in run time is 18.5% (considering BDD reconstruction 
techniques, not mentioned here, [12]). Consequently, the top-down approach 
(JANUS↓ algorithm) is faster than FizZ, especially for larger examples 
achieving a reduction in run time by up to 49%. On average, the reduction in 
run time is 35.4% [12]. 

Recently, the change to another programming paradigm, ordered bestfirst 
search, i.e. the so-called A*-algorithm as known from AI, has been suggested. 
This step has been prepared in [9] which suggest an efficient state expansion 
technique (NEO algorithm). 

The A*-algorithm has superior run time to all previous B&B algorithms. 
Also, ordered best-first search, (A*-algorithm), can be combined with a 
classical B&B algorithm to save memory using a “delay state insertion” 
technique. 

A* is known to be optimal in the class of heuristic search algorithms that use 
the same evaluation function and that are guaranteed to find an optimal 
solution: larger parts of state spaces are pruned by A* than for any other such 
algorithm. More exactly, A* is known to minimize the number of distinct 
expanded states. The efficient pruning is due to a strategy to always choose the 
most promising state first for the next state expansion [12]. 

 

 

5. GENETIC ALGORITHMS FOR BDD MINIMIZATION 
 

 Genetic algorithms (GAs) for the variable ordering problem rely on a 
representation of the variable orderings in permutation form (chromosomes). 
They act on an initial population by applying genetic operators in order to 
obtain a new population of solutions. 

First genetic algorithms in finding the best ordering for OBDDs were due to 
Drechsler, Becker and Gockel [6]. Their algorithm was adapted and included in 
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CUDD package (CUDD) as a method of optimization. This algorithm is the 
first that proves that GA is a feasible and practical alternative to the exact 
algorithm for variable ordering and is generally used (or should be) as a witness 
algorithm in benchmarking when dealing with GA for the variable ordering in 
OBDDs and especially when CUDD is also used. The objective function that 
measures the fitness of each element is the number of nodes in the 
corresponding OBDD. Obviously, the corresponding OBDD is generated in 
concordance to the order expressed by the chromosome. Initial population is 
generated and optimized by shift [19]. The better half of the population is 
copied in each iteration without modification. Partially Mapped Crossover 
(PMX) is applied to a pool of 50% individuals. Newly created individuals are 
then mutated by applying mutation operators with a given probability. After 
each iteration, population size is constant (steady state reproduction). 
Algorithm stops if no improvement is obtained for 50log(best_fitness) 
iterations. 

The use of hybrid techniques that combine GAs with other optimization 
method is the actual trend of the research into new methods for BDD 
optimization [12]. In [4], a branch & bound technique is combined with a basic 
GA by adopting and operating with embryos as subsets of orders instead of 
individual complete orders. This hybridization leads to a better balancing 
between exploration and exploitation of the search space. The objective 
function based fitness is replaced by a lower bound based fitness and a growing 
mechanism (random generational growing, RGG) is applied by means of two 
new growing operators. The same results were obtained by comparing to [6] in 
the same conditions (CUDD package, benchmarks from LGSynth91 [22]) for 
all benchmarks except one; additional more complex benchmarks were tested 
with very good results. In the same context of embryonic GAs, two new 
growing strategies were proposed in [3] named random generational growing 
with sampling (RGGS) and random generational growing with sampling and 
sifting (RGGSS). Within RGGSS, sifting is integrated as a genetic operator.  
Next section describes a new algorithm that operates also with embryos instead 
of full grown chromosomes. 
 

6. UNITARY SYNCHRONOUS GROWING STRATEGY 
 

As mentioned in [3] in the embryonic approach a chromosome is a prefix 
),...,( 1 kxxx =  called embryo if  nk <≤1 , or called adult, for  nk = , a fully 

specified variable order. 
Considering embryos does not change the mutation operators but an 

additional crossover operator is used, a variant of AX in which the left cut point 
for the bigger embryo is equal to the length of the smaller embryo. 
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In the embryonic approach, the crossover has a collateral effect especially 
visible when the majority of the embryos have a small size: it could produce 
offspring’s whose lengths are much higher than the average size in the current 
population. In general, when the fitness function is a lower bound of the sizes 
of the BDDs respecting an ordering in the set S(x), the longer embryos usually 
lose the competition against the shorter ones because the predictive part of the 
lower bound could be imprecise and far enough from the bounded values, due 
to the scarcity of the information in the prefix. The best-first approach of [14] 
deals with this problem by first driving the search to the shorter ones and 
keeping the longer prefixes in the list of active (“open”) search nodes for a later 
use. The risk is a list of search nodes whose length could exceed the available 
memory. Since the B&B approach of [13] is breadth-first, it serves the shorter 
prefixes strictly before the longer ones, but still completeness is ensured since 
all important longer prefixes are considered at the later stages of the search 
space traversal. In the combination of B&B and GA, such longer prefixes could 
become definitively lost by survival selection. The unitary synchronous 
growing described below is a remedy.  

Initial population. It contains randomly generated embryos with the same 
prescribed length 0λ , where )10/,5max(2 0 n<λ< .  

Fitness based on lower bound. The fitness of the prefix is 
knnxfit k

i ilb −+∑= =1)( , where ni is number of nodes on the i-th level of the 
OBDD built on an arbitrary ordering in S(x). From [15] it is known that ni, 

ki ,...,1=  are the same for all possible extensions of the prefix ),...,( 1 kxx . The 
term n-k in the definition of )(xfitlb  plays the role of the predictive part, while 
the first part gives the contribution of the prefix itself. When comparing two 
embryos with equal prefix length, their intrinsic performance is reflected 
because their predictive parts can not discriminate between them. This suggests 
the way to tackle the inequity appearing when embryos with different lengths 
are compared. A variant to manage the growing phase is further discussed. 

Unitary synchronous periodic growing. In this variant, named for short 
USPG, consider the parameter T indicating the number of successive evolution 
stages between two consecutive growths of the length of embryos in the current 
population by one. So, reaching the final length takes )( 01 λ−⋅= nTit  
iterations. Actually, parameter T adjusts the slope of the growing: the 
dependence of the chromosome length on the number of iterations can be 
expressed by a (staircase-shaped) step function with the number of iterations on 
the abscissa and the chromosome length on the ordinate. The ratio 

)/( 01 λ−= nitT  is the step width on the abscissa with a corresponding step 
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height of one unit, while it1 is the evolution stage when all chromosomes are 
adults. High values of T lead to small slopes of the growing. A high slope is not 
recommended, because this may affect the exploration phase of the GA, 
shortening it, with no good reason. In contrast, the main motivation for 
combining GAs with branch & bound exactly is to explore more important 
parts of the search space by the use of multiple short embryos and by guiding 
the search with a predictive lower bound. 

The length of the individuals during stage t is given by ⎡ ⎤Ttt /)( 0 +λ=λ . 
So, at every T stages, each embryo ),...,( 1 kxxx =  is replaced by the best 

))(,1max( knpb − , ]1,0(∈bp  among its extensions, each of them extending its 
parent with exactly one variable that is not contained in the prefix. This 
growing is then followed by T successive stages. In this way, long 
chromosomes with more precise but larger score are not compared with short 
embryos, and consequently are not eliminated. 

Performance estimation. Table 1 shows the results for these three strategies. 
Column #bestknown gives the best ever reported [21] number of nodes for each 
benchmark. The column labeled with #nodes gives best-found results for each 
strategy and the column labeled #iter gives the corresponding number of 
iterations. The circuits marked by an asterisk indicate the circuits for which the 
best-known results were obtained from [6].  
 

USPG RGGS RGGSS Bench In Out #best
known #nodes #iter #nodes #iter #nodes #iter 

*cm85a 11 3 28 28 56 28 42 28 45 
*cm163a 16 5 26 26 102 26 40 26 41 

*cu 14 11 32 32 66 32 40 32 41 
*alu4 14 8 350 350 109 350 89 350 52 

*s1494 14 25 369 369 148 369 52 369 64 
vda 17 39 478 494 155 478 96 478 196 

misex3 14 14 478 478 72 478 84 478 72 
*apex2 39 3 - 304 475 308 253 302 573 
*apex7 49 37 - 216 437 215 305 214 1207 

dalu 75 16 689 705 728 702 357 698 357 
cordic 23 2 42 42 123 42 114 42 115 

ttt2 24 21 107 107 269 107 71 107 59 
apex6 135 99 498 530 1233 561 523 545 1061 

i3 132 6 133 133 621 157 460 133 396 
Table 1. Best found results for three growing strategies  

within embryonic GAs [3, 4] 
Within RGGSS strategy - as shown in Table 1 - the fitness computation 

involving sampling followed by sifting offers the best results with the price of a 
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certain increase of run time complexity (not shown here) but in the case of 
apex6 benchmark, USPG strategy returned the best result. That proves that the 
strategy has its own potential, assumption strengthen by the fact that for smaller 
sized circuits #bestknown is obtained for almost all benchmarks. 
 

7. CONCLUSIONS 
 

The paper presents both classical and recent aspects, main methods and 
algorithms for BDDs optimization. It also proves that GAs are a feasible and 
practical alternative to the exact algorithms for variable ordering of BDDs by 
comparing the results of three embryonic GAs developed by authors. A new 
strategy is described and evaluated. Experimental results prove that by 
combining GAs with branch & bound, more important parts of the search space 
are explored since good results were obtained systematically. As further 
direction of investigation, new growing strategies have to be designed and 
evaluated, the use of tighter lower bounds, and working with different 
structures of the chromosomes for a better integration of previous results on 
lower bounds for BDD size.  
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