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GEOMETRY ON THE BIG TANGENT BUNDLE

MANUELA GÎRŢU

Abstract. In this paper we describe some geometrical structures
on the manifold TM ⊕ T ∗M fibred over M : Liouville vector fields,
almost tangent structure, semisprays, nonlinear connections and we
show how these can be used in the study of mechanical systems.

1. Introduction

In a geometrical treatment of the mechanical systems a Lagrangian
and an Hamiltonian formalism can be alternatively used. The former is
based on a Lagrangian defined as a real function on the tangent bundle
TM of configuration manifold M , while the latter is based on an
Hamiltonian defined as a real function on the cotangent bundle T ∗M .
For classical mechanical systems the Lagrangian function is usually the
kinetic energy provided by a Riemannian metric on the manifold M
minus a potential energy. This is a remarkable example of the so-called
regular Lagrangian function. Any regular Lagrangian defines by the
Legendre map a unique regular Hamiltonian and conversely. Thus in
this case the mentioned formalisms are equivalent. The need to extend
the standard Lagrangian and Hamiltonian formalism to nonholonomic
mechanical systems or singular Lagrangian systems produced a variety
of means involving new concepts. Among these we find the use of the
big tangent bundle TM⊕T ∗M and in connection with it the so-called
Dirac structures.

————————————–
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connections.
(2010) Mathematics Subject Classification: 53C15, 538D18.

39



40 M. GÎRŢU

The geometry of sections of the vector bundle τ⊕τ ∗ : TM⊕T ∗M →
M is now well-understood under the name of generalized geometry, see
[7],[8] and the reference therein. The total space of the big tangent
bundle i.e. the manifold TM ⊕ T ∗M with the differentiable structure
induced by the structure of M and by the vector bundle structure of
the big tangent bundle, materializes the idea to consider the velocities
and momenta as independent variables. This idea was proposed and
developed by R. Skinner and R. Rusk ( [5],[6]) and later was used for
study of singular Lagrangian systems, [2]. The big tangent bundle is
a particular vector bundle and so in the study of its total space the
techniques from the book [3] can be applied. In this paper we begin
the study of the manifold TM = TM ⊕ T ∗M following the said book
[3] as well as [4]. For a different point of view we refer to [9]. In the
second Section we shall describe the local structure of the manifold
TM having in mind that it is fibred over M . The kernel of the dif-
ferential of the projection τ ⊕ τ ∗ defines a subbundle of the tangent
bundle T (TM) called the vertical bundle. As a distribution it is in-
tegrable with the leaves TxM ⊕ T ∗xM . It naturally decomposes into
two sub-distributions of equal dimensions and we define three Liou-
ville vector fields that can be used to characterize the homogeneity of
the various geometric objects with respect to velocities, momenta or
to the both. In the third Section we define and study the notion of
semispray on TM ⊕T ∗M regarding this bundle as an anchored vector
bundle on the line developed in [1]. In the fourth Section we intro-
duce a nonlinear connection as a distribution which is supplementary
to the vertical distribution and partially recover its relationship with
semisprays, well-known for the tangent bundle. In the last Section we
sketch a possibility to study a singular Lagrangian system using the
geometry of the big tangent bundle just developed.

2. Local structure of the manifold TM ⊕ T ∗M

Let M be an n-dimensional C∞ manifold, τ : TM →M its tangent
bundle and τ ∗ : T ∗M → M its cotangent bundle. We denote by
π ≡ τ ⊕ τ ∗ : TM ⊕ T ∗M → M the Whitney sum of the tangent and
cotangent bundle of M .

Let (U, (xi)) be a local chart on M . Then
(

∂
∂xi

∣∣
x

)
, x ∈ U is a local

field of sections in the tangent bundle over U and (dxi|x), x ∈ U is a
local field of sections in the cotangent bundle over U . By the definition
of the Whitney sum,

(
∂
∂xi

∣∣
x
, dxi|x

)
, x ∈ U is a local field of sections in

the bundle TM ⊕ T ∗M over U . Every section (y, p) of π over U takes
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the form (y, p) = yi ∂
∂xi +pidx

i and the local coordinates on π−1(U) will
be defined as (xi, yi, pi). The indices i, j, k, ... will run over {1, 2, ..., n}
and the Einstein convention on summation will be used.

Let (Ũ , (x̃i)) be another local chart on M with U∩Ũ 6= φ. On U∩Ũ
we have

(2.1) x̃i = x̃i(x1, ...xn), rank

(
∂x̃i

∂xj

)
= n.

It follows that a change of coordinates (xi, yi, pi) → (x̃i, ỹi, p̃i) on the
manifold TM = TM ⊕ T ∗M has the form

(2.2)

x̃i = x̃i(x1, ..., xn), rank

(
∂x̃i

∂xj

)
= n

ỹi =
∂x̃i

∂xj
(x)yj,

p̃i =
∂xj

∂x̃i
pj,

where

(
∂xj

∂x̃i

)
is the inverse of the Jacobian matrix

(
∂x̃i

∂xk

)
.

Let (∂i :=
∂

∂xi
, ∂̇i =

∂

∂yi
, ∂i =

∂

∂pi
) be the natural basis in T(y,p)TM .

The change of coordinates (2.2) implies

(2.3)

∂i =
∂x̃j

∂xi
∂̃j +

∂ỹj

∂xi
˜̇∂j +

∂p̃j
∂xi

∂̃j,

∂̇i =
∂x̃j

∂xi
(x) ˜̇∂j,

∂i =
∂xi

∂x̃j
(x)∂j.
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The natural cobasis (dxi, dyi, dpi) from T ∗(y,p)TM transforms as follows:

(2.4)

dx̃i =
∂x̃i

∂xj
(x)dxj,

dỹi =
∂2x̃i

∂xj∂xk
(x)yjdxk +

∂x̃i

∂xj
(x)dyj

dp̃i =
∂

∂xk

(
∂xj

∂x̃i

)
pjdx

k +
∂xj

∂x̃i
dpj.

The kernel of the tangent map π∗ : T (TM) → TM is called the

vertical bundle over TM . By (2.3), a vector field X i∂i + Y i∂̇i + Pi∂
i

on TM is vertical if and only if X i = 0. Thus the vertical bundle V
is locally spanned by (∂̇i, ∂

i) and its fibre is 2n−dimensional.
We note that V has the following decomposition

(2.5) V = V1 ⊕ V2,

where V1 is locally spanned by (∂̇i) and V2 is locally spanned by (∂i).
By (2.2) and (2.3), the vector fields

(2.6) C1 = yi∂̇i, C2 = pi∂
i and C1 + C2

are globally defined on TM . They are called the Liouville vector fields
and can be used to characterize the homogeneity with respect to the
variables (yi), (pi) or to the both sets of these variables for various
geometrical objects on TM .

We note also that on TM we have a globally defined function
f(x, y, p) = piy

i and a 1-form α = pidx
i. The 2-form dα is closed

but degenerate. Thus it defines on TTM a presymplectic form.

3. Semisprays on TM ⊕ T ∗M

We recall that a semispray on the manifold TM is a vector field
on TM which at the same time is a section in the vector bundle τ∗ :
TTM → TM , that is we have τTM(S(u)) = u and τ∗,u(S(u)) = u,
∀u ∈ TM , where τTM is the vector bundle projection TTM → TM .

Locally, if S = X i∂i +Si∂̇i is a vector field on TM , it is a semispray
if and only if X i = yi, i = 1, 2, ..., n. Thus the integral curves t →
(xi(t), yi(t)) of S are solution of the system of differential equation

(3.1)
dxi

dt
= yi,

dyi

dt
= Si.
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With the notation Si = −2Gi, this system is equivalent to

(3.2)
d2xi

dt2
+ 2Gi(x, ẋ) = 0,

which is the usual form of a second order differential equation (SODE).
The notion of semispray can be extended only to anchored vector
bundle, that is, to the vector bundles E → M that are endowed with
a morphism (anchor) ρ : E → TM . For details we refer to [1].

The vector bundle π : TM → M is anchored with the anchor
ρ : TM ⊕ T ∗M → TM , ρ(X,ω) = X. The above definition of a
semispray is extended as follows:

A vector field S on TM will be called a semispray if

π∗,u(S(u)) = (ρ ◦ τTM)(S(u)),

∀u ∈ TM , where τTM : T (TM)→ TM is the natural projection.

Locally, if S = X i(x, y, p)∂i + Si(x, y, p)∂̇i + Gi(x, y, p)∂
i, it is a

semispray if and only if X i(x, y, p) = yi.
The integral curves t→ (x(t), y(t), p(t)), t ∈ R of a semispray S are

solutions of the following system of differential equations:

(3.3)
dxi

dt
= yi,

dyi

dt
= Si(x, y, p),

dpi
dt

= Gi(x, y, p).

This is equivalent to

(3.4)
d2xi

dt2
= Si

(
x,
dx

dt
, p

)
,
dpi
dt

= Gi

(
x,
dx

dt
, p

)
.

The first equation (3.4) is a general form of the Euler - Lagrange
equation and the second is a part of Jacobi - Hamilton equation.

The local components (Sj, Gj) of a semispray S change to (S̃i, G̃i)
according to the following formulae:

(3.5)

S̃i =
∂x̃i

∂xj
Sj +

∂ỹi

∂xk
yk

G̃i =
∂xj

∂x̃i
Gj +

∂p̃i
∂xk

yk.

Conversely, a vector field S = yi∂i + Si∂̇i + Gi∂
i whose components

change as in (3.5) is a semispray.

We note that S = yi∂i +Si(x, y, p)∂̇i can not be a semispray on TM
because of the second equation in (3.5). If the functions Si(x, y, p) do
not depend on p, S may be viewed as a semispray on TM .
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Let us consider a linear operator J on vector fields given in the
natural basis by

(3.6) J(∂i) = ∂̇i, J(∂̇i) = 0, J(∂i) = 0.

By (2.3) the operator J is well-defined. It has the properties J2 = 0,
kerJ = V , imJ = V1 and it is easy to prove that

Theorem 3.1. A vector field S on TM is a semispray if and only
if JS = C1.

4. Nonlinear connections on TM ⊕ T ∗M

Let V be the vertical bundle over TM . It may be regarded as a
distribution of dimension 2n on the manifold TM . This distribution
is locally spanned by (∂̇i, ∂

i). Hence it is integrable.
Definition 4.1. A nonlinear connection is a distribution H on TM

called horizontal which is supplementary to the vertical distribution,
that is, we have

(4.1) TTM = H⊕ V = H⊕ V1 ⊕ V2.

The distribution H is of dimension n. We choose a local basis (δi)
of it such that

(4.2) π∗(δi) = ∂i, δi =
∂x̃j

∂xi
(x)δj,

where (δj) is a similar basis in a different local chart. It follows that

(4.3) δi = ∂i −N j
i (x, y, p)∂̇j +Nij(x, y, p)∂

j,

where the sign “−” is taken for convenience and in a different local
chart the functions Ñ j

i (x̃(x), ỹ(x, y), p̃(x, p)), Ñij(x̃(x), ỹ(x, y), p̃(x, p))
are given by

(4.4)

Ñ i
h

∂x̃h

∂xj
= Nh

j

∂x̃i

∂xh
− ∂ỹi

∂xj

Ñij =
∂xh

∂x̃i
∂xk

∂x̃j
Nhk + ph

∂2xh

∂x̃i∂x̃j
.

The equations (4.4) are implied by the second condition (4.2). Con-
versely, if on each domain of local chart on TM we have defined the
set of functions (N i

j , Nij) that satisfies (4.4) on overlaps, the basis
(δi) given by (4.3) satisfies (4.2) and spans a horizontal distribution.
Thus, a nonlinear connection is completely determined by the func-
tions (N i

j , Nij) verifying (4.4). Given a nonlinear connection we may
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choose (δi, ∂̇i, ∂
i) as local basis on TM . This basis is adapted to the

decomposition (4.1). The dual basis of it is (dxi, δyi, δpi), where

(4.5) δyi = dyi +N i
jdx

j, δpi = dpi −Njidx
j.

Thus any vector field on TM can be written in the form

(4.6) X = X iδi + Y i∂̇i + Zi∂
i.

The components (X i(x, y, p)), (Y i(x, y, p)), transform by a change of
coordinates as the components of a vector field on M while Zi(x, y, p)
as the components of an one form. One says that they define d−objects
on TM (d is for distinguished).

A semispray decomposes in the form

(4.7) S = yiδi + ki∂̇i + hi∂
i,

where ki = Si +N i
jy

j, hi = Gi −Njiy
j.

From (4.7) it comes out
Lemma 4.1. The difference of two semisprays is a vertical vector

field.
The usual relationship between the semisprays and the nonlinear

connections, [3], is partially recovered in this setting as follows:

Theorem 4.1. (i) Let be S = yi∂i + Si∂̇i +Gi∂
i be a semispray on

TM . Then the functions

(4.8) N i
j = ∂iGj, Nij = ∂̇iGj,

are the local coefficients of a nonlinear connection.
(ii) Let (N i

j , Nij) be the local coefficients of a nonlinear connection.

Then Gi = Nijy
j is the second coefficient of a semispray whose first

coefficient (Si) remains undetermined.
Proof. One applies ∂i to the law of transformation of Gj and one

verifies that ∂iGj satisfies the first equation from (4.4). If applies ∂̇i
to the same law of transformation, it comes out that ∂̇iNj verifies the
second equation from (4.4). The assertion (ii) follows by checking that
(Nijy

j) verifies the second equation from (3.5).

5. Application to mechanical systems

Let be a mechanical system on M described by a Lagrangian L :
TM → R. The manifold M is called the configuration space. The

variation with fixed endpoints of the action integral
∫ b

a
L(x(t), ẋ(t))dt
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for curves nearby a fixed curve t → x(t), y(t), t ∈ [a, b] ⊂ R provides
the Euler - Lagrange equations

(5.1)
∂L

∂xi
(x, ẋ)− d

dt

∂L(x, ẋ)

∂ẋi
= 0, ẋi =

(
dxi

dt

)
.

These equations describe the dynamics of the given mechanical system.
Recall that on TTM we have defined the so-called inertial form

ω = −d(pidx
i) = dxi ∧ dpi.

If L is a regular Lagrangian i.e. the matrix with the entries
gij(x, y) = ∂̇i∂̇jL(x, y) is of rank n, one may define a local diffeo-

morphism φ : TM → T ∗M by φ(x, y) = (x, ∂̇jL(x, y)) called the
Legendre map. Moreover, in this case one may define a local function
H : T ∗M → R by H(x, p) = piy

i − L(x, y), where y = (yi) is the
unique solution of the equation

pi = ∂̇iL(x, y).

In the following, we shall assume that L is degenerate. Thus, we
may no longer consider the Legendre map and H. However we may
replace H by a function Hg on TM ⊕ T ∗M defined by

(5.2) (x, y, p)→ Hg(x, y, p) = piy
i − L(x, y).

This function is globally defined on TM ⊕ T ∗M . We call it a general-
ized Hamiltonian.

Now we have on TM ⊕ T ∗M a closed 2-form ω and a function Hg.
As usual, we may consider the equation

iXω = dHg,

in the unknown X, a vector field on TM . Since ω is degenerate this
equation has no unique solution and we shall see that even if it has
solutions, these are not defined on the whole TM . More precisely, we
have

Theorem 5.1. Let be the first order equation of motion

(5.3) iXω = dHg

in the unknown X, a vector field on TM .
(i) The equation (5.3) has no solution on the whole TM ⊕T ∗M but

only on a submanifold C1 ⊂ TM ⊕ T ∗M with C1 = {(x, y, p) | pi =
∂L

∂yi
}.
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(ii) The function

(
∂L

∂xi
(x, y)

)
are the local coefficients for a semis-

pray on the submanifold C1.
(iii) The solutions X of (5.3) are semisprays on the submanifold

C1.
Proof. We search for solutions X of (5.3) in the form X = X i∂i +

Si∂̇i +Gi∂
i. We find

iXω = −Pidx
i +X idpi, dH

g = − ∂L
∂xi

dxi +

(
pi −

∂L

∂yi

)
dyi + yidpi.

Then (5.3) yields

(5.4) X i = yi, pi −
∂L

∂yi
= 0, Gi =

∂L

∂xi
.

Thus, the solutions X exists only on the submanifold C1 and they are

given by X = yi∂i+S
i∂̇i+

∂L

∂xi
∂i, a form similar to that of a semispray.

Thus, (i) is proved.
To prove (ii), first we have

∂L

∂xi
=
∂L

∂x̃j
∂x̃j

∂xi
+
∂L

∂ỹj
∂ỹj

∂xi

and on C1 this equality is equivalent to G̃k = Gi
∂xi

∂xk
− p̃j

∂ỹj

∂xi
∂xi

∂x̃k
.

Using the chain rule one finds

G̃k =
∂xi

∂xk
Gi +

∂p̃k
∂xj

yj.

Thus the functions Gk =
∂L

∂xk
on C1 verify the second formula (3.5)

and so (ii) is proved.
As (Si(x, y, p)) verify the first formula (3.5), by (ii) it comes out that

on C1, the vector field X is a semispray with the function (Si(x, y, p))
undetermined. Thus the proof is complete.

The integral curves of the solution X of (5.3) are solutions of the
following system of differential equations:

(5.5)
d2xi

dt2
= Si

(
x,
dx

dt
, p

)
,
dpi
dt

=
∂L

∂xi
(x).

These solutions are the trajectories of the given mechanical system.
In the case when L is degenerate, the functions (Si) are not deter-
mined and we need new constraints to fix them. Such constraints are
suggested in [5]. If L is a non-degenerate Lagrangian, the submanifold
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C1 has the form U × U∗, where U ⊂ TM and U∗ = φ(U) ⊂ T ∗M
are such that the Legendre map is diffeomorphism. If φ is a global
diffeomorphism, a case when it is said that L is hyperregular, then
C1 coincides to TM . In the both two cases, a natural solution X one
obtains if one takes Si(x, y, p) = Si(x, y) as the local coefficients of the
semispray determined by L, that is

(5.6) Si(x, y, p) = gij
(
∂L

∂xj
− ∂2L

∂xk∂yj
yk
)
.

In this case, the system (5.5) splits into independent equations. The
first equation determines the trajectory of the system and the second
its momenta.
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