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R - MECHANICAL SYSTEMS

OTILIA LUNGU

Abstract. In the present paper we study a particular case of Fins-
lerian mechanical system This is defined by a triple >, = (M, F?, F,),
where M is the conﬁguratlon space, F (z,y) = a(z,y) + B (x, y) is a

Randers metric and F, = aj, L () yy” 681 are the external forces.

1. INTRODUCTION AND PRELIMINARIES

Let M be an n-dimensional, real C° manifold. Denote by
(TM,7, M) the tangent bundle of M and let F" = (M, F (z,y))
be a Finsler space, where F' : TM — R, is it fundamental function,
Le., F verifies the following axioms:

i) F is a differentiable function on TM = TM — {0} and it is contin-
uous on the null section of the projection 7 : TM — M;

ii) F is positively 1- homogeneous with respect to the variables y*;
iii) For every (z,y) € TM the Hessian of F? with respect 3’ is posi-
tively defined.

Consequently, the d-tensor field g;; (7,y) = 5 8‘(;5 = is positively de-
fined. It is called the fundamental tensor or metric tensor of F™.

For a non-zero vector y € T,M, define h,(u,v) = g, (u,v) —
F2(y) g, (y,u) g, (y,v), with u,v € T,M.h = {h,} is called the
angular metric of F.The geodesics of F' are characterized locally by

dtz L4 2G" ( X, dt) =0, where G = {289’”“ — %ipzf}ypyq

ox4
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2. RANDERS SPACES

Let F" = (M, F (x,y)) be a Finsler space with the fundamental
function F(x,y) = a(;r y) + B (x,y) where a(x,y) = \/a;; (z) y'yI
and S (z,y) = b;(2)y". a = a;; (x)dz'd2? is a pseudo-Riemannian
metric on M and b; (x) is a covector field on the manifold M .We de-
note by 71”7 the covariant differentiation with respect to the Levi-Civita
connection y = {7, } of the associated Riemannian space (M, o?). We
shall use the notation as follows [9]:

= Oa  ag’ or - Y u Y

li = -:J—ali:_~:li bi,l' ==, I' ==,
oy’ Q@ dyt + F Q@
ob; 1

s 1
bjtk = 5% = bWk i = 5 (butg + bjja) 15 = 5 (bt — D),
S;- = aihshj, Sj = biS;-, 61‘]‘ = Tij -+ bisj + bjSZ',
o0 = €Y'y’ S0 = Siy’, S = 5;9]~

The fundamental tensor g;; of the Randers metric F' = o + [ is

expressed by
F .

(2.1) 9ij = (@i — lily) + ll;.

The functions G* (z,y) = %Fék (z,y) y’y"* are the components of the

geodesic spray S = ! aa. — 2Gi§ and T (2,y) are the Christoffel
xl yl

symbols of the metric tensor g;;. By a direct calculation
(22)  G'= (Vi + by’ y" + (@7 = UV) by — buyy)ay”,

or

1 . .
(2.3) Gi=G'+ ﬁ(rkly y' — 2ab,asy )y + aa” sy,

or, equivalently,

) ~ . e . . .
(2.4) G'=G"+ %yz — SoY" + asg,

with G* the components of the geodesic spray of the Riemannian space.

c
The Cartan nonlinear connection N for the Finsler space F" =
(M, F = a+ () has the coefficients
c - an

(2.5) N = 55
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Definition 2.1.The Finsler space F" = (M, F = a+ () equiped
with Cartan nonlinear connection ]%7 is called a Randers space and it
is denoted by RF™ = M,OH—B,]% )

The local basis adapted to the Cartan nonlinear connection is

0 0 :
<W’ 8_y7‘>22 with

1n

> Q

0 50

2. - = - NF—.
(26) oxt  Oxt b oyk

c
Theorem 2.1. There exists an unique N-metrical connection

c o
Ccr N) = (F;k, ]’k) of the Randers space RE™ which verifies the
following axioms:

c c

¢ ¢

c

The connection CT <N> has the coefficients expressed by the gener-
alized Christoffel symbols:

c
F?k — _gzs (
(2.7) n

C
7 1
jk — 29

c
The integrability tensor of N is

c¢ ccC
¢ 5N; 4N}
(28) A P

3. R-MECHANICAL SYSTEMS

For a manifold M, that is the configuration space of Finslerian dy-
namical system, let us consider the tangent bundle T'M to which we
refer to as the velocity space. Suppose that there exists a Randers
metric F' = a + [ on T'M and azk (r) a symmetric tensor on the
configuration space M of type (1,2).
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Definition 3.1. An R-mechanical system is a triple > , =

(M, F?, F,) where F, = a} (2) yjykagi are the external forces, and
F" = (M, F = a+ /) is a Randers space endowed with Cartan non-

linear connection V.

We denote F'(x,y) = a') (x)y’y" and one considers F;(z,y) =

gi; F7 (z,y) the covariant components of the external forces F.
The energy of the Randers space RF™ = (M, F = a + ) is

i0(a+B)°

(3.1) Ep2 =Y oy

—(a+B)? = (a+8)" = gij (x,9) y'y’.
If the external forces F, are global defined on TM we obtain

Theorem 3.2. [8] For the Finslerian mechanical system ), =
(M, (a+ B)?, Fe) the following properties hold true:

i) The operator S defined by

| 9

(3.2) s - 20— S @) 5

i
Y oz

is a vector field, global defined on the phase space T'M.

i) S is a semispray which depends only on ) pand it is a spray if F,
are 2-homogeneous with respect to 1.

iii) The integral curves of the vector field S are the evolution curves
given by the Lagrange equations of ) p:

d*a’ , do dx) dz* 1 i dx

33 i, Gryartdrt 1o, odry
(3.3) gz Tl ) g = o gy

R
The semispray S (3.2) has the coefficients G* expressed by

1

F=T () Pyt — §a§-k () y'y".

R
(34) 2G'=2G"— Qaék () yy

R
Thus, the canonical nonlinear connection N of the Finslerian me-
chanical system ), has the coefficients

R
R an C )
(3.5) N; = oy = Nj — al (z) T

R
The nonlinear connection N determines the horizontal distribution

R
N which is supplementary to the natural vertical distribution on the
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tangent manifold TM. A local adapted basis to these distributions is

50
6$‘j s a_yj Where
j=Tm
g 0 ) 0 ¢ 0
_— = — NZ— = - — v - ¢ k—.
(3.6) Sz Oz j @yé Oz 7 Oy + ajy (2)y Oy
0 i
= Sz gk (z)y 3_y9

R ) R . oo ) .
(3.7) oy' = dy' + Nj’fdgj = dy' + Njdr) — ay (v) yrda
= 0y’ — aly (z) y*da’.

R R
We determme the torsion T’ and the curvature R: ik of the canonical

connection N by a direct calculation:

nO9NT N
R gﬁz‘ gﬁi c
(3.9) = mj - 5 = R+ (Niaj, — Njagy).

Applying the theory from the book [9] the following theorem holds:

Theorem 3.3. Let Y p = (M, («+ B)?, F.) be a R- mechanical sys-

R
tem and N the canonical nonlinear connection of Y . There exists an
R

R RR
unique d-connection RU(N) = (Fj, C5,) determined by the following
amoms
7’) Vk Gij = 0 Vk; 9ij = :'
R
ii) T, = 0; S;k ~0,
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where
R
R
6 9ij R
VH gi; = F s — F3 is
(3.10) J ga; ik 957 = k9
Gij Rs
vk} gzy - ay] Csty Cjk Gis-

We call this connection the canonical metrical d-connection of Y.

Theorem 3.4. The local coefficients of the canonical metrical d-
connection of y_ , are

R R R R
i 1 is 598j+5gsk_5gjk

(3.11)

}% _ 1 s 99s; i 9Ysk _ 9gjk
Jk 29 ayk dyi dy?

R R
In order to calculate Fj, and C; we have from (3.6):

R C
593]' _ 5gsj i kagsj
(3.12) 5ok = Sak + ajy () y -

R R
Now, the developed expression of the coefficients F' Zk and C”k is given

in the next theorem:

Theorem 3.5. The canonical metrical d-connection of ) has the
coefficients

R c
i T +1 is h pagsj +a pagsk _ pagjk
ik = L'k 739 appY ayh py a py
R %
C}k = C}k
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