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R - MECHANICAL SYSTEMS

OTILIA LUNGU

Abstract. In the present paper we study a particular case of Fins-
lerian mechanical system This is defined by a triple

∑
R = (M,F 2, Fe),

where M is the configuration space, F (x, y) = α (x, y) + β (x, y) is a
Randers metric and Fe = aijk (x) yjyk ∂

∂yi
are the external forces.

1. Introduction and Preliminaries

Let M be an n-dimensional, real C∞ manifold. Denote by
(TM, τ,M) the tangent bundle of M and let F n = (M,F (x, y))
be a Finsler space, where F : TM → R+ is it fundamental function,
i.e., F verifies the following axioms:

i) F is a differentiable function on T̃M = TM −{0} and it is contin-
uous on the null section of the projection τ : TM →M ;
ii) F is positively 1- homogeneous with respect to the variables yi;

iii) For every (x, y) ∈ T̃M the Hessian of F 2 with respect yi is posi-
tively defined.

Consequently, the d-tensor field gij (x, y) = 1
2
∂2F 2

∂yi∂yj
is positively de-

fined. It is called the fundamental tensor or metric tensor of F n.
For a non-zero vector y ∈ TpM , define hy (u, v) = gy (u, v) −

F−2 (y) gy (y, u) gy (y, v), with u, v ∈ TpM.h = {hy} is called the
angular metric of F.The geodesics of F are characterized locally by
d2xi

dt2
+ 2Gi

(
x, dx

dt

)
= 0, where Gi = 1

4
gik
{

2
∂gpk
∂xq
− ∂gpq

∂xk

}
ypyq.
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2. Randers spaces

Let F n = (M,F (x, y)) be a Finsler space with the fundamental

function F (x, y) = α (x, y) + β (x, y) where α (x, y) =
√
aij (x) yiyj

and β (x, y) = bi (x) yi. a = aij (x) dxidxj is a pseudo-Riemannian
metric on M and bi (x) is a covector field on the manifold M .We de-
note by ”p” the covariant differentiation with respect to the Levi-Civita
connection γ =

{
γijk
}

of the associated Riemannian space (M,α2). We
shall use the notation as follows [9]:

l̃i =
∂α

∂yi
=
aijy

j

α
, li =

∂F

∂yi
= l̃i + bi, l

i =
yi

F
, l̃i =

yi

α
,

bj|k =
∂bj
∂xk
− bsγsjk, rij =

1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i),

sij = aihshj, sj = bis
i
j, eij = rij + bisj + bjsi,

e00 = eijy
iyj, s0 = siy

i, si0 = sijy
j.

The fundamental tensor gij of the Randers metric F = α + β is
expressed by

(2.1) gij =
F

α
(aij − l̃il̃j) + lilj.

The functions Gi (x, y) = 1
2
Γijk (x, y) yjyk are the components of the

geodesic spray S = yi
∂

∂xi
− 2Gi ∂

∂yi
and Γijk (x, y) are the Christoffel

symbols of the metric tensor gij. By a direct calculation

(2.2) Gi = (γijk + libj|k)y
jyk + (aij − libj)(bj|k − bk|j)αyk,

or

(2.3) Gi = G̃i +
1

2F
(rkly

kyl − 2αbra
rpsply

l)yi + αairsrly
l,

or, equivalently,

(2.4) Gi = G̃i +
e00
2F

yi − s0yi + αsi0,

with G̃i the components of the geodesic spray of the Riemannian space.

The Cartan nonlinear connection
C

N for the Finsler space F n =
(M,F = α + β) has the coefficients

(2.5)
C

N i
j =

∂Gi

∂yj
.
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Definition 2.1.The Finsler space F n = (M,F = α + β) equiped

with Cartan nonlinear connection
C

N is called a Randers space and it

is denoted by RF n =

(
M,α + β,

C

N

)
.

The local basis adapted to the Cartan nonlinear connection is(
δ
δxi
, ∂
∂yi

)
i=1,n

with

(2.6)

C

δ

δxi
=

∂

∂xi
−

C

Nk
i

∂

∂yk
.

Theorem 2.1. There exists an unique
C

N-metrical connection

CΓ

(
C

N

)
=
(
F i
jk, C

i
jk

)
of the Randers space RF n which verifies the

following axioms:

i)
C

∇H
k gij = 0;

C

∇V
k gij = 0;

ii)
C

T ijk = 0;
C

Sijk = 0.

The connection CΓ

(
C

N

)
has the coefficients expressed by the gener-

alized Christoffel symbols:

(2.7)


C

F i
jk = 1

2
gis
(

C
δ gsj
δxk

+
C
δ gsk
δxj
−

C
δ gjk
δxs

)
C

Ci
jk = 1

2
gis
(
∂gsj
∂yk

+ ∂gsk
∂yj
− ∂gjk

∂ys

)
.

The integrability tensor of
C

N is

(2.8)
C

Ri
jk =

C

δ
C

N i
j

δxk
−

C

δ
C

N i
k

δxj
.

3. R-Mechanical Systems

For a manifold M , that is the configuration space of Finslerian dy-
namical system, let us consider the tangent bundle TM to which we
refer to as the velocity space. Suppose that there exists a Randers

metric F = α + β on T̃M and aijk (x) a symmetric tensor on the
configuration space M of type (1, 2) .
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Definition 3.1. An R-mechanical system is a triple
∑

R =
(M,F 2, Fe) ,where Fe = aijk (x) yjyk ∂

∂yi
are the external forces, and

F n = (M,F = α + β) is a Randers space endowed with Cartan non-
linear connection N .

We denote F i (x, y) = aijk (x) yjyk and one considers Fi (x, y) =

gijF
j (x, y) the covariant components of the external forces Fe.

The energy of the Randers space RF n = (M,F = α + β) is

(3.1) εF 2 = yi
∂ (α+ β)2

∂yi
− (α+ β)2 = (α+ β)2 = gij (x, y) yiyj .

If the external forces Fe are global defined on T̃M we obtain

Theorem 3.2. [8] For the Finslerian mechanical system
∑

R =(
M, (α + β)2 , Fe

)
the following properties hold true:

i) The operator S defined by

(3.2) S = yi
∂

∂xi
− (2

R

Gi − 1

2
aijk (x) yjyk)

∂

∂yi

is a vector field, global defined on the phase space T̃M .
ii) S is a semispray which depends only on

∑
Rand it is a spray if Fe

are 2-homogeneous with respect to yi.
iii) The integral curves of the vector field S are the evolution curves
given by the Lagrange equations of

∑
R:

(3.3)
d2xi

dt2
+ Γijk(x,

dx

dt
)
dxj

dt

dxk

dt
=

1

2
F i(x,

dx

dt
).

The semispray S (3.2) has the coefficients
R

Gi expressed by

(3.4) 2
R

Gi = 2Gi − 1

2
aijk (x) yjyk = Γijk (x, y) yjyk − 1

2
aijk (x) yjyk.

Thus, the canonical nonlinear connection
R

N of the Finslerian me-
chanical system

∑
R has the coefficients

(3.5)
R

N i
j =

∂
R

Gi

∂yj
=

C

N i
j − aijk (x) yk

The nonlinear connection
R

N determines the horizontal distribution
R

N which is supplementary to the natural vertical distribution on the
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tangent manifold T̃M . A local adapted basis to these distributions is R

δ

δxj
,
∂

∂yj


j=1,n

where

(3.6)

R

δ

δxj
=

∂

∂xi
−

R

N i
j

∂

∂yj
=

∂

∂xi
−

C

N i
j

∂

∂yj
+ aijk (x) yk

∂

∂yj

=

C

δ

δxi
+ aijk (x) yk

∂

∂yj
.

The adapted cobasis is

(
dxi,

R

δyi
)
i=1,n

with

(3.7)

R

δyi = dyi +
R

N i
jdx

j = dyi +
C

N i
jdx

j − aijk (x) ykdxj

=
C

δyi − aijk (x) ykdxj.

We determine the torsion
R

T ijk and the curvature
R

Ri
jk of the canonical

connection
R

N by a direct calculation:

(3.8)
R

T ijk =
∂

R

N i
j

∂yk
− ∂

R

N i
k

∂yj
= 0.

(3.9)
R

Ri
jk =

R

δ
R

N i
j

δxk
−

R

δ
R

N i
k

δxj
=

C

Ri
jk + (N s

ka
i
jk −N s

j a
i
sk).

Applying the theory from the book [9] the following theorem holds:

Theorem 3.3. Let
∑

R =
(
M, (α + β)2 , Fe

)
be a R- mechanical sys-

tem and
R

N the canonical nonlinear connection of
∑

R. There exists an

unique d-connection RΓ(
R

N) = (
R

F i
jk,

R

Ci
jk) determined by the following

axioms:

i)
R

∇H
k gij = 0;

R

∇V
k gij = 0;

ii)
R

T ijk = 0;
R

Sijk = 0,
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where

(3.10)

R

∇H
k gij =

R

δ gij
δxk
−

R

F s
ik gsj −

R

F s
jk gis

R

∇V
k gij =

∂gij
∂yk
−

R

Cs
ik gsj −

R

Cs
jk gis.

We call this connection the canonical metrical d-connection of
∑

R.

Theorem 3.4. The local coefficients of the canonical metrical d-
connection of

∑
R are

(3.11)


R

F i
jk = 1

2
gis

R

δ gsj
δxk

+

R

δ gsk
δxj
−

R

δ gjk
δxs


R

Ci
jk = 1

2
gis
(
∂gsj
∂yk

+
∂gsk
∂yj
− ∂gjk
∂ys

)
In order to calculate

R

F i
jk and

R

Ci
jk we have from (3.6):

(3.12)

R
δ gsj
δxk

=

C
δ gsj
δxk

+ aijk (x) yk
∂gsj
∂yh

.

Now, the developed expression of the coefficients
R

F i
jk and

R

Ci
jk is given

in the next theorem:

Theorem 3.5. The canonical metrical d-connection of
∑

R has the
coefficients

R

F i
jk =

C

F i
jk +1

2
gis
(
ahkpy

p∂gsj
∂yh

+ ahjpy
p ∂gsk
∂yh
− ahspyp

∂gjk
∂yh

)
R

Ci
jk =

C

Ci
jk .
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