
“Vasile Alecsandri” University of Bacău
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POINCARÉ INEQUALITIES BASED ON BANACH
FUNCTION SPACES ON METRIC MEASURE SPACES

MARCELINA MOCANU

Abstract. We introduce a new type of first order Poincaré in-
equality for functions defined on a metric measure space, that is an
useful tool in the study of Newtonian spaces based on Banach function
spaces. This Poincaré inequality extends the Orlicz-Poincaré inequal-
ity introduced by Aı̈ssaoui (2004) and the Poincaré inequality based
on Lorentz spaces, introduced by Costea and Miranda (2011), that in
turn generalize the well-known weak (1, p)−Poincaré inequality. Us-
ing very recent results of Durand-Cartagena, Jaramillo and Shanmu-
galingam (2012, 2013), it turns out that every complete metric space
X, endowed with a doubling measure and supporting a weak Poincaré
inequality based on a Banach function space is (thick) quasiconvex.
We prove that the validity of the Poincaré inequality based on a Ba-
nach function space, on a doubling metric measure space, implies a
pointwise estimate involving an appropriate maximal operator.

1. Introduction and preliminaries

Poincaré inequalities from the theory of Sobolev spaces are very
useful in several fields, such as harmonic analysis, the calculus of vari-
ations, the theory of partial differential equations and nonlinear po-
tential theory.

————————————-
Keywords and phrases: metric measure space, Banach function
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From a historical viewpoint, the applicability of Poincaré inequali-
ties is not surprising, since Poincaré arrived at this type of inequali-
ties while studying a variational characterization of the eigenvalues of
Fourier’s problem for heat equation [16]. The first order calculus on
metric measure spaces is based on the notion of upper gradient. An up-
per gradient of a function u : X → R is a Borel function g : X → [0,∞]
satisfying

(1.1) |u(γ(b))− u(γ(a))| ≤
∫
γ

gds

for every rectifiable curve γ : [a, b]→ R.
The validity of a weak (1, p)−Poincaré inequality on a metric mea-

sure space provides a control on the mean oscillation of a locally inte-
grable function on a arbitrary ball, in terms of the mean value of the
p-th power of a function’s upper gradient, on a related ball. The use
of (1, p)−Poincaré inequalities on metric measure spaces can be traced
back to [11].

Let (X, d, µ) be a metric measure space, that is, a metric space
(X, d) endowed with a Borel regular measure µ which is finite and
positive on balls. The measure µ is said to be doubling if there exists
a constant Cd ≥ 1 such that such that for every ball B(x, r) ⊂ X the
following inequality holds

(1.2) µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

In the following we assume that u : X → R is a locally integrable
function. We denote the mean value of u on A by uA = 1

µ(A)

∫
A

u dµ,

whenever A ⊂ X is a measurable set with 0 < µ (A) <∞.
For a Borel measurable function g : X → [0,∞] and 1 ≤ p < ∞,

the pair (u, g) is said to satisfy a weak (1, p)−Poincaré inequality if
there exist constants C > 0 and τ ≥ 1 such that

(1.3)
1

µ(B)

∫
B

|u− uB| dµ ≤ Cr

 1

µ(τB)

∫
τB

gp dµ

1/p

for every ball B = B(x, r) ⊂ X.
The space (X, d, µ) is said to support a weak (1, p)−Poincaré in-

equality if inequality (1.3) holds for every u ∈ L1
loc(X) and every upper

gradient g of u, with fixed constants C and τ .
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In this paper we give an unifying framework for two generalizations
of the weak (1, p)−Poincaré inequality, the Orlicz-Poincaré inequal-
ity introduced by Aı̈ssaoui [1] and the Poincaré inequality based on
Lorentz spaces, introduced by Costea and Miranda [5]. In our case the
role of Lp (X) is played by an abstract Banach function space, defined
as in [3].

Let (X,µ) be a complete and σ−finite measure space and letM+(X)
be the collection of all µ−measurable functions f : X → [0,∞].

Definition 1.1. [3] A function N : M+(X) → [0,∞] is called a Ba-
nach function norm if, for all f , g, fn (n ≥ 1) in M+(X), for all
constants a ≥ 0 and for all measurable sets E ⊂ X, the following
properties hold:

(P1) i) N(f) = 0 if and only if f = 0 µ−a.e.; ii) N(af) = aN(f);
iii) N(f + g) ≤ N(f) +N(g).

(P2) If 0 ≤ g ≤ f µ−a.e., then N(g) ≤ N(f).
(P3) If 0 ≤ fn ↑ f µ−a.e., then N(fn) ↑ N(f).
(P4) If µ(A) <∞, then N(χA) <∞.
(P5) If µ(A) < ∞, then

∫
A

f dµ ≤ CAN(f), for some constant

CA ∈ (0,∞) depending only on A and N .

Let E be the collection of the µ−measurable functions f : X →
[−∞,∞] for which N(|f |) <∞.For f ∈ E define

‖f‖E = N(|f |).
Then (E, ‖·‖E) is a seminormed space, that induces a normed space

via the equivalence of functions that coincide µ−a.e. The correspond-
ing normed space, that will be still denoted by (E, ‖·‖E), is complete
[3, Theorem I.1.6].

A real-extended valued function on a metric measure space is said to
be locally integrable if it is integrable on each ball. Note that property
(P5) implies E ⊂L1

loc (X).
The E−modulus of a family Γ of curves in X is defined by

ModE(Γ) = inf ‖ρ‖E , where the infimum is taken over all Borel
functions ρ : X → [0,∞] with

∫
γ

ρ ds ≥ 1 for all locally rectifi-

able curves γ ∈ Γ [17]. Note that, in the case E =Lp (X) we have

ModE(Γ) = (Modp (Γ))1/p for 1 ≤ p < ∞ and ModE(Γ) = Mod∞ (Γ)
for p = ∞. Here Modp (Γ) is the p−modulus of Γ [13], [7, Theorem
4.7]. A non-negative Borel function g on X is said to be a E−weak
upper gradient of u : X → R if inequality (1.1) holds for all rectifiable
curves γ except for a family Γ with ModE (Γ) = 0.
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Definition 1.2. [8, Definition 2.4] Fix 1 ≤ p ≤ ∞. We say that
X is p−thick quasiconvex if there is a constant C ≥ 1 such that
for every x, y ∈ X with x 6= y and each 0 < ε < d (x, y) /4, and
whenever E ⊂ B (x, ε) and F ⊂ B (y, ε) are measurable sets with
µ (E)µ (F ) > 0, we have

Modp (Γ (E,F,C)) > 0,

where Γ (E,F,C) denotes the collection of all curves γ in X connecting
E to F , with the length satisfying l (γ) ≤ Cd (x, y).

One shows that every p−thick quasiconvex is also quasiconvex, that
is, there is a constant C ≥ 1 such that whenever x, y ∈ X there exists
a curve γ connecting x to y with length l (γ) ≤ Cd (x, y).

The Newtonian space N1,E (X) based of a Banach function space

E was introduced in [17]. Let Ñ1,E (X) be the class of all functions

u ∈ E that have a E−weak upper gradient in E. For u ∈ Ñ1,E (X)
we define ‖u‖Ñ1,E(X) = ‖u‖E + inf ‖g‖E, where the infimum is taken
over all E−weak upper gradients g ∈ E of u. The quotient space

N1,E (X) = Ñ1,E (X) / ∼, where u ∼ v if and only if ‖u− v‖Ñ1,E(X) =

0, is a vector space, equipped with the norm ‖u‖N1,E(X) := ‖u‖Ñ1,E(X).

Note that for E = Lp (X) the space N1,E (X) is the Newtonian space
N1,p(X) introduced in [19].

The (1, p)−Poincaré inequality has several important implications
and is instrumental in the extensions of nonlinear potential theory
and quasiconformal theory to metric measure spaces. This inequality
plays an important role in the study of the Newtonian space N1,p(X).
Assume that (X, d, µ) is doubling and supports a (1, p)−Poincaré in-
equality, 1 ≤ p < ∞. Then Lipschitz functions are dense in N1,p(X)
[19] and X admits a measurable differentiable structure with which
Lipschitz functions can be differentiated a.e. [4]. Moreover, if 1 < p <
∞, then N1,p(X) is reflexive [4], the quasiminimizers of p−Dirichlet in-
tegral satisfy Harnack’s inequality, the strong maximum principle and
are locally Hölder continuous [15] and N1,p (X) = M1,p (X) isomor-
phically as Banach spaces [19]. Here M1,p (X) is the Haj lasz-Sobolev
space introduced in [10].

The aim of this paper is introduce the notion of weak
(1,E)−Poincaré inequality on a metric measure space (X, d, µ), where
(E, ‖·‖E) is a Banach function space over (X,µ). This Poincaré in-
equality extends the Orlicz-Poincaré inequality introduced by Aı̈ssaoui
[1] and the Poincaré inequality based on Lorentz spaces, introduced
by Costea and Miranda [5], that in turn generalize the well-known
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weak (1, p)−Poincaré inequality [12], [13]. We check that the weak
(1,E)−Poincaré inequality is a special case of first order Poincaré
inequality for F = N1,∞ (X), in the sense from [8].

It is easy to see that every metric measure space supporting a weak
(1,E)−Poincaré inequality, for some Banach function space E, also
supports a weak ∞−Poincaré inequality. This remark enable us to
use a very recent result of Durand-Cartagena, Jaramillo and Shan-
mugalingam [7, Theorem 4.7], showing that the validity of a weak
∞−Poincaré inequality to a complete metric space X, endowed with
a doubling measure is equivalent to the geometric property of∞−thick
quasiconvexity of X. It follows that a complete doubling metric mea-
sure space supporting a weak Poincaré inequality based on a Banach
function space is∞−thick quasiconvex, in particular it is quasiconvex.

We also prove that the validity of the Poincaré inequality based on
a Banach function space, on a doubling metric measure space, implies
a pointwise estimate involving an appropriate maximal operator.

2. Old and new Poincaré inequalities

For g ∈ Lploc (X) the weak (1, p)−Poincaré inequality (1.3) can be
written as

1

µ(B)

∫
B

|u− uB| dµ ≤ Cr
‖gχτB‖Lp(X)

‖χτB‖Lp(X)

.

With an abuse of notation, we still write the above inequality if∫
τB

gp dµ =∞, by taking ‖gχτB‖Lp(X) =∞.

By Hölder’s inequality, if an open set supports a weak
(1, p)−Poincaré inequality, then it supports a weak (1, q)−Poincaré
inequality for each p ≤ q < ∞. So, the strongest (1, p)−Poincaré
inequality with 1 ≤ p < ∞ is that with p = 1. Looking for
the weakest version of (1, p)−Poincaré inequality that still gives
enough information on the geometry of the metric space, Durand-
Cartagena, Jaramillo and Shanmugalingam [7] introduced the follow-
ing ∞−Poincaré inequality.

Definition 2.1. A metric measure space (X, d, µ) is said to support a
weak∞−Poincaré inequality if there exist constants C > 0 and τ ≥ 1
such that, for every Borel measurable function u : X → R∪{∞} and
every upper gradient g : X → [0,∞] of u, the pair (u, g) satisfies the
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inequality

(2.1)
1

µ(B)

∫
B

|u− uB| dµ ≤ Cr ‖gχτB‖L∞(X)

for every ball B = B(x, r).

If (X, d, µ) supports weak (1, p)−Poincaré inequality for some 1 ≤
p <∞, then it supports the weak ∞−Poincaré inequality.

The following two versions of Orlicz-Poincaré inequality on metric
measure spaces have been introduced by Tuominen in [20], respec-
tively by Aı̈ssaoui in [1]. Let Ψ : [0,∞)→ [0,∞) be a strictly increas-
ing Young function. The space (X, d, µ) is said to support a weak
(1,Ψ)−Poincaré inequality if there exist some constants C > 0 and
τ ≥ 1 such that for every function u ∈ L1

loc (X) and every upper
gradient g of u, the pair (u, g) satisfies the inequality

(2.2)
1

µ(B)

∫
B

|u− uB| dµ ≤ C rΨ−1

 1

µ(τB)

∫
τB

Ψ(g)dµ

 ,

respectively

(2.3)
1

µ(B)

∫
B

|u− uB| dµ ≤ C r ‖gχτB‖LΨ(X) Ψ−1
(

1

µ (τB)

)
,

for every ball B = B (x, r) ⊂ X.

Note that Ψ−1
(

1
µ(τB)

)
= 1
‖χτB‖LΨ(X)

. For Ψ (t) = tp with 1 ≤ p <∞
inequalities (2.2) and (2.3) become inequality (1.3).

On the other hand, Costea and Miranda [5] defined the following
weak Poincaré inequality based on a Lorentz space Lp,q (X), where 1 <
p <∞ and 1 ≤ q ≤ ∞. The space (X, d, µ) is said to support a weak
(1, Lp,q)−Poincaré inequality if there exist some constants C > 0 and
τ ≥ 1 such that for all balls B = B (x, r) ⊂ X, for all µ−measurable
functions u on X and all upper gradients g of u we have

(2.4)
1

µ(B)

∫
B

|u− uB| dµ ≤ C r
1

µ(τB)1/p
‖gχτB‖Lp,q(X,µ) .

Note that, assuming 1 ≤ q ≤ p, the quasinorm ‖·‖Lp,q(X,µ) is a

norm and 1

µ(τB)1/p
= c (p, q) 1

‖χτB‖Lp,q(X)
. For p = q the inequality (2.4)

becomes inequality (1.3).
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Remark 2.2. Let Ψ be a strictly increasing Young function. As-
sume that there exist some positive constants C1 and C2 such that
Ψ (C1st) ≥ C2Ψ (s) Ψ (t) for all s, t ∈ [0,∞). Then every space sup-
porting a (1,Ψ)−Poincaré inequality in the sense of Aı̈ssaoui also sup-
ports a (1,Ψ)−Poincaré inequality in the sense of Tuominen. The
converse holds true if we assume that Ψ satisfies, besides the above
condition, the so-called ∆′− condition, i.e. there is some positive con-
stant C such that Ψ (st) ≤ CΨ (s) Ψ (t) for all s, t ∈ [0,∞).

We introduce an extension of Poincaré-type inequalities (2.3) and
(2.4), based on a Banach function space E over (X,µ).

Definition 2.3. The space (X, d, µ) is said to support a weak
(1,E)−Poincaré inequality if there exist some constants C > 0 and
τ ≥ 1 such that for all balls B = B (x, r) ⊂ X, for all locally inte-
grable functions u on X and all upper gradients g of u we have

(2.5)
1

µ(B)

∫
B

|u− uB| dµ ≤ Cr
‖gχτB‖E
‖χτB‖E

.

Here ‖gχτB‖E stands for N (gχτB), even in the case N (gχτB) =∞.
If (X, d, µ) supports a weak (1,E)−Poincaré inequality, then (2.5)

holds whenever g is a E−weak upper gradient of u, since for every
E−weak upper gradient g of a function u on X there is a sequence
(gi)i≥1 of upper gradients of u, such that lim

i→∞
‖gi − g‖E = 0 [17, Propo-

sition 2].

As in the case of (1, p)−Poincaré inequality, we can easily obtain
some topological implications of the validity of a weak (1,E)−Poincaré
inequality.

Lemma 2.4. Assume that (X, d, µ) supports a weak (1,E)−Poincaré
inequality for some Banach function space E. Then X is connected.
Moreover, every sphere S(x, r) := {y ∈ X : d (x, y) = r} with r > 0 is
non-empty whenever B (x, r) 6= X.

Proof. If X is not connected, there exist two disjoint non-empty open
sets U and V such that X = U ∪ V . Then U is pathwise discon-
nected from V , hence χU has the zero function as an upper gradi-
ent. Applying the weak (1,E)−Poincaré inequality for u = χU we
see that u is constant µ−a.e. on every ball B ⊂ X, which means
that either µ (B ∩ U) = 0 or µ (B ∩ V ) = 0 for all balls B ⊂ X.
Let x0 ∈ U and let ρ > 0 such that B (x0, ρ) ⊂ X. Writing
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X =
∞⋃
n=1

B (x0, n) we see that there is an integer n0 ≥ 1 such that

B (x0, n)∩ V is non-empty for all n ≥ n0. For all n ≥ bρc+ 1 we have
µ (B (x0, n) ∩ U) ≥ µ (B (x0, ρ)) > 0, therefore µ (B (x0, n) ∩ V ) = 0.
Consequently, µ (B (x0, n) ∩ V ) = 0 for all n ≥ 1, whence we get
µ (V ) = 0, which is false, since V is an non-empty open set and balls
have positive measure.

Assume now that there is an empty sphere S (x1, r) with r > 0,
such that B (x1, r) 6= X. Then B = B (x1, r) is pathwise disconnected
from X \ B, hence χB has the zero f unction as an upper gradient.
Reasoning as above, we deduce that µ (X \B) = 0. This conclusion is
false, since for every y ∈ X\B we have B (y, d (y, x1)− r) ⊂ X\B. �

Let B = B (x, r) ⊂ X be a fixed ball. Let u ∈ L1
loc(X) and let g

be an upper gradient of u. If gχτB is not essentially bounded, we take
‖gχτB‖L∞(X) =∞ and (2.1) holds. Assuming that ‖gχτB‖L∞(X) <∞,
it follows that

N (gχτB) ≤ ‖gχτB‖L∞(X)N (χτB) <∞,

by (P2), (P1) and (P4) from Definition 1.1. Then gχτB ∈ E and
‖gχτB‖E
‖χτB‖E

≤ ‖gχτB‖L∞(X), therefore inequality (2.5) implies inequality

(2.1). We obtain the following

Lemma 2.5. If a metric measure space supports a weak
(1,E)−Poincaré inequality, for some Banach function space E, then
it supports a weak ∞−Poincaré inequality.

The validity of a weak∞−Poincaré inequality has some remarkable
geometric implications. Durand-Cartagena, Jaramillo and Shanmu-
galingam showed in [7, Proposition 3.4] that every complete doubling
metric space supporting a weak∞−Poincaré inequality is quasiconvex.
Moreover, they proved in [7, Theorem 4.7] that a complete doubling
metric space supports a weak ∞−Poincaré inequality if and only if it
is ∞−thick quasiconvex. By [7, Theorem 4.7] and Lemma 2.5, we get

Corollary 2.6. If a complete doubling metric measure space supports
a weak (1,E)−Poincaré inequality, for some Banach function space
E, then it is ∞−thick quasiconvex.

Very recently, Durand-Cartagena, Jaramillo and Shanmugalingam
[8] studied first order Poincaré inequalities in metric measure spaces,
following an approach that was considered for the first time in [9]. Let
F be a family of locally integrable functions on X.
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Definition 2.7. [8, Definition 3.1] Let B be the collection of all balls
in X. It is said that (X, d, µ) supports a first order Poincaré inequality
for F if for each function f ∈ F there exists af : B → [0,∞] such that

(2.6)
1

µ (B)

∫
B

|f − fB| dµ ≤ af (B)

for each ball B ∈ B.

In [8, Definition 3.2], some geometric properties of the functional
f 7→ af (B) are stated. If this functional satisfies the conditions from
the above definition for F = N1,∞ (X), it is said that f 7→ af (B)
has a modulus of continuity if there exists a constant C > 0 such
that whenever f ∈ F and gf is an upper gradient of f such that
‖gf‖L∞(X) ≤ 1, then af (B) ≤ Crad (B) for all B ∈ B.

We shall see that if (X, d, µ) supports a weak (1,E)−Poincaré in-
equality for some Banach function space E, then it supports a first
order Poincaré inequality for F = N1,∞ (X), where the functional
f 7→ af (B) has a modulus of continuity. Assume that the conditions
from Definition 2.3 hold. Given f ∈ N1,∞ (X), consider af defined by

af (B) = Crad(B)inf
g

‖gχτB‖E
‖χτB‖E

,

for each ball B ∈ B, where the infimum is taken over all upper gra-
dients g of f . Here C and τ are the constants from Definition 2.3.
Let B ∈ B. Clearly, af (B) ∈ [0,∞] is well-defined. If g0 ∈ L∞ (X)

is an upper gradient of f , then 0 ≤ ‖g0χτB‖E
‖χτB‖E

≤ ‖g0χτB‖L∞(X) < ∞,

therefore af (B) < ∞. Moreover, if gf is an upper gradient of f

such that ‖gf‖L∞(X) ≤ 1, then
‖gfχτB‖

E

‖χτB‖E
≤ ‖gfχτB‖L∞(X) ≤ 1, hence

af (B) ≤ Crad (B).
Note that Corollary 2.6 can be regarded as a consequence of the

generalization of [7, Proposition 3.4], namely Theorem 3.6 from [8],
that guarantees the quasiconvexity of every complete doubling metric
measure space (X, d, µ) supporting a first order Poincaré inequality
for F = N1,∞ (X) or for F = Lip∞ (X), such that the functional
f 7→ af (B) has a modulus of continuity.

3. A pointwise estimate implied by a Poincaré inequality
based on a Banach function space

The purpose of this section is to find a bound for |u(x)−u(y)|
d(x,y)

, where

x and y are distinct points of X, in terms of a maximal function of g,
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provided that the pair (u, g) satisfies a weak Poincaré inequality on a
doubling metric measure space.

The classical Hardy-Littlewood maximal operator is defined by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f | dµ.

Some variants of the Hardy-Littlewood maximal operator are the
restricted maximal operator MRf(x) = sup

0<r<R

1
µ(B(x,r))

∫
B(x,r)

|f | dµ,

where R > 0 and the noncentered maximal operator M∗f(x) =
sup
B

1
µ(B)

∫
B

|f | dµ, where the supremum is taken over all balls B ⊂ X

containing the point x. Here f is any µ−measurable function.
Let E be a Banach function space over (X,µ). We will consider an

analogue of the maximal operator from [2], which was defined in the
case X = Rn. Assume that f is a µ−measurable function. If fχB /∈ E
for some ball B, then N (fχB) =∞ and we write ‖fχB‖E =∞.

Definition 3.1. The noncentered maximal operator associated with
the Banach function space E is defined by

MEf(x) = sup
B

‖fχB‖E
‖χB‖E

,

where the supremum is taken over all balls B ⊂ X containing the
point x. Here f is any µ−measurable function.

Note that in the case when E =Lp (X), 1 ≤ p <∞, we haveMEf =

(M∗ (|f |p))1/p.
Haj lasz and Koskela proved in [12, Theorem 3.2] that a pointwise

estimate is implied by the validity of the weak (1, p)−Poincaré in-
equality with p > 0 on a doubling metric measure space. If a pair
(u, g) satisfies (1.3), then

|u(x)− u(y)| ≤ C ′d (x, y)
(

(MRg
p (x))1/p + (MRg

p (y))1/p
)

for almost every x, y ∈ X, where R = 2τd (x, y). Here C ′ is some
constant depending only on the constant C associated with the weak
(1, p)−Poincaré inequality (1.3) and on the constant Cd from the dou-
bling condition (1.2) on µ. This result was used as a tool in proving
the quasiconvexity of a complete doubling metric measure space sup-
porting a weak (1, p)−Poincaré inequality with 1 ≤ p <∞ [12, Propo-
sition 4.4].



POINCARÉ INEQUALITIES BASED ON BANACH FUNCTION SPACES 73

Tuominen has shown that [12, Theorem 3.2] admits a generaliza-
tion to the case when the (1, p)−Poincaré inequality is replaced by a
(1,Ψ)−Poincaré inequality [20, Lemma 5.15]. If a pair (u, g) satisfies
(2.2), then

|u(x)− u(y)| ≤ C ′d (x, y)
(

Ψ−1 (MR (Ψ ◦ g) (x)) + (MR (Ψ ◦ g) (y))1/p
)

for almost every x, y ∈ X, where R = 2τd (x, y).
We extend Theorem 3.2 from [12] to show that the validity of a

(1,E)−Poincaré inequality implies a pointwise estimate.

Proposition 3.2. Let (X, d, µ) be a doubling metric measure space
and let E be a Banach function space over (X,µ). Assume that the
pair (u, g) satisfies a weak (1,E)−Poincaré inequality with constants
C and τ . Then

(3.1) |u(x)− u(y)| ≤ C ′d (x, y) (MEg (x) +MEg (y))

for almost every x, y ∈ X. Here C ′ is some constant depending only
on C and Cd.

Proof. By Lebesgue’s differentiation theorem [13] almost every point in
X is a Lebesgue point for the locally integrable function u. Let F ⊂ X
be a set with µ (F ) = 0 such that all points in X \ F are Lebesgue
points for u. We will show that (3.1) holds for all x, y ∈ X \ F ,
with some constant C ′ > 0 depending only on C and Cd. We use
a ball chaining argument. Consider Bi (x) := B (x, 2−id (x, y)) and
Bi (y) := B (y, 2−id (x, y)) for each i ∈ N. Since u (x) = lim

i→∞
uBi(x), we

have u (x) − uB0(x) =
∞∑
i=0

(
uBi+1

(x)− uBi(x)
)
. Then

∣∣u (x)− uB0(x)

∣∣ ≤
∞∑
i=0

∣∣uBi+1
(x)− uBi(x)

∣∣.
By the inequality

∣∣uB(x,s) − k
∣∣ ≤ 1

µ(B(x,s))

∫
B(x,s)

|u− k| dµ and the

doubling property of µ, it follows that∣∣uB(x,s) − uB(x,r)

∣∣ ≤ Cd
1

µ(B (x, r))

∫
B(x,r)

∣∣u− uB(x,r)

∣∣ dµ
whenever 0 < r

2
≤ s ≤ r.

Let i ∈ N. Since
∣∣uBi+1

(x)− uBi(x)
∣∣ ≤

Cd
1

µ(Bi(x))

∫
Bi(x)

∣∣u− uBi(x)∣∣ dµ, using the weak (1,E)−Poincaré
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Poincaré inequality, it follows that∣∣uBi+1
(x)− uBi(x)

∣∣ ≤ 2−iCdCd (x, y)
‖gχBi‖E
‖χτBi‖E

.

By the definition of the maximal operatorME, the above inequality
implies ∣∣uBi+1

(x)− uBi(x)
∣∣ ≤ 2−iCdCd (x, y)MEg(x).

We obtain

(3.2)
∣∣u (x)− uB0(x)

∣∣ ≤ 2CdCd (x, y)MEg(x).

Similarly,
∣∣u (y)− uB0(y)

∣∣ ≤ 2CdCd (x, y)MEg(y).

On the other hand,
∣∣uB0(x) − uB0(y)

∣∣ ≤ ∣∣uB0(x) − u2B0(x)

∣∣ +∣∣u2B0(x) − uB0(y)

∣∣. As above,
(3.3)∣∣uB0(x) − u2B0(x)

∣∣ ≤ 2CdCd (x, y)
‖gχ2τB0‖E
‖χ2τB0‖E

≤ 2CdCd (x, y)MEg(x).

Note that B0 (y) ⊂ 2B0 (x), hence∣∣u2B0(x) − uB0(y)

∣∣ ≤ 1

µ(B0 (y))

∫
B0(y)

∣∣u− u2B0(x)

∣∣ dµ
≤ 1

µ(B0 (y))

∫
2B0(x)

∣∣u− u2B0(x)

∣∣ dµ.
We also have B0 (x) ⊂ 2B0 (y), therefore µ (2B0(x)) ≤
(Cd)

2 µ (B0 (y)). It follows that

(3.4)
∣∣u2B0(x) − uB0(y)

∣∣ ≤ (Cd)
2Cd (x, y)MEg(x).

Using (3.2) and its analogue, as well as (3.3) and (3.4), we get (3.1)
with C ′ = CdC (4 + Cd), q.e.d. �
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POINCARÉ INEQUALITIES BASED ON BANACH FUNCTION SPACES 75
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145 (2000), no. 688, x+101.

[13] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag,
New York, 2001.

[14] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with
controlled geometry, Acta Math., 181 (1998), 1-61.

[15] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on
metric spaces, Manuscripta Math. 105 (2001), 401-423.
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Faculty of Sciences
Department of Mathematics, Informatics and Education Sciences
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