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GRAVITATIONAL FIELD OF LAGRANGIAN NONHOLONOMIC
MECHANICAL SYSTEM

VALER NIMINET

Abstract. One associates to a Lagrangian nonholonomic mechanical system

2. a canonical semispray S" on the phase space TM, which has the integral
curves given by the evolution equations of X . The Lagrange geometry of the

system X is the geometry of semispray S'. We study h- and v-
electromagnetic tensors and then we apply the Ricci identities for the
gravitational potentials.

1. INTRODUCTION

The geometrization of holonomic mechanical systems was done by Levi-
Civita, while, in 1926, Gh. Vranceanu, by introducing the notion of
Riemannian honholonomic space realized a first geometric model for the
nonholonomic mechanical system.

In this paper, we study the gravitational field of Lagrangian nonholonomic
mechanical systems:

(1.1 2=(M.L(xY).F (xY).Qs (xY)).

where L" :(M L%, y)) is a Lagrange space, F (X,X) are external forces and
the Pfaff equations Qg(X,dx)= ag, (x) dx' = 0, (6=m+1,..,n) are the
kinematic constrains of the system.
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The equations of evolution of the system 2. are Lagrange equations:

d(aLJ L _ i 2 (02 (D4R 00y ol

(1.2) dt{ gy’ e,
Qo (x.0X) = 2, (x)&X =0,

where A° (X) are Lagrange multipliers.

X o=m+l y =

We study only scleronomic systems associating to them a canonical
semispray s , whose integral curves are given by the evolution equations (1.2).

The vector field S isa dynamical system on TM.
We denote with gjj (x,y) the fundamental tensor of the Lagrange space

L" :(M JL(X y)) and with gij (X,y) its contravariant part. As it is known,

gj = 18_'- anng,J H =n on TM \{0} and g;; has constant signature.
2 ay'ay’
External forces F (X, y) determine a d-covariant vector field and
oF;
(13) N i
ay' oy

is an antisymmetric d-tensor field, named elicoidal tensor of system .
The functions that determine the constrains of the system

Qs (% y)=ag, (X)Y
are scalars with respect to the changes of the coordinates on TM.
So, 8, (X) are n-covariant fields on M and

, (o=m+1,..,n)

(1.4) Z A% (X)Qs (X% Y)

o=+l
is also a scalar function on TM. The functions kc(x) are the Lagrange

multipliers.
In [7] and [8] we studied the canonical semispray and nonlinear connection
of system X.

The canonic semispray S of the system will be determined by a vector field

S on the phase space

(1.5)) S =y 0 _)G" (X, y)i..
ox' a9y’
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The integral curves of the canonic semispray S are given by the evolution
equations of the system .
We defined Lagrange geometry of system X as being Lagrange geometry on

the phases space TM of the canonic semispray s

The nonlinear connection N° of S° is called canonical nonlinear
connection of system .

Theorem 1.1. The canonical nonlinear connection N* of system X, has the
coefficients:

) *i ] i i
(1.6.) NT =98 N L[ 56 0% |
ay’ 4\ oy’ ay’
Let “;” and “|” h and v covariant derivates defined by N" - linear connection.

Theorem 1.2. [2]. There exists only one N'- linear connection
CF(N) (le, )vvithouthandv—torsions, having the properties:
. =0,0; |, =0
(1.7) ik % I
* WA
Th=Lj-Li =0,S} =Cji—-Cy{ =0,

h
where gIHk ™ k

Theorem 1.3. The connection CF(N*) has the coefficients given by
generalized Christoffel symbols:

L*i lglh[a gh] 6 ghk 0 g]k}

9g; N N
gs; |k —0Ois Jk’gljlk ay gqclks gstIf'

K722 1ok oxl X"

(1.8)
C*i . l ih (aghj aghk agjk )

K725 Loyk Tyl oy"
This N*- linear connection CF(N*) will be called the N* - canonical

metrical connection of Lagrangian nonholonomic mechanical system 2.
Now, we can use the h- and v-covariant derivatives with respect to

connection CF(N*). Also, we observe that in the particular case of

nonholonomic mechanical systems, which have the properties:

g (% y)=9; (x),F (xy)=F(x).
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2. GRAVITATIONAL FIELD AND H- AND V-ELECTROMAGNETICS TENSORS

The canonical metrical connection CF(N*) of the nonholonomic

mechanical system 2 allows to determine the h- and v-deflection tensor fields:
: ) hos B
DIJ :y,! =y |_hIJ—NJI
(2.1) v
i s h
dj=y |;=8;+yC

Using the formulas of the coefficients Lﬁj and C,in- we obtain

fo[o T 004
=yl +— ysg'h{Kgaag;;5+K's gh’—KL gﬂ:

ayl ayl

=y |—' + ysglh[Klehg + Klschjl - KLCst]

and
i _ s s~ _si Snih
dj=98;+yCq=08;+y g Cq-
Then, the covariant deflection tensors are given by:

(2.2) DlJ:girDr g|ry|—I +y(K CsI"'KCuI KiICSjI)

d; = girdjr =g;ty °C
But, these tensors satisfy fundamental identities for Liouville vector field yi .

Then, we have:
Theorem 2.1. h- and v-covariant deflection tensors D;; and dj; satisfy

Djj k= Dik | = ysRs|jk _dierli

(2.3.) Djj [k —dix [ = Puk DisCii _dist*kS
d;j  —dix [j= ¥*Sgjk-

These identities give the Lorentz equations for electromagnetic tensorial
fields for Lagrangian nonholonomic mechanical system ..
Definition 2.1. The following d-tensors

1
'J 2(D -Dj; )

2.4) :
fi :g(dij ~dj)

are h- and v-electromagnetic tensors of 2.
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From (2.2) we see that v-deflection tensor dj is symmetric. Therefore we

have:

Proposition 2.1. The v-electromagnetic tensor f of nonholonomic
mechanical system X vanishes.

We study only h-electromagnetic tensor Fj for determining the Lorentz

equations that are satisfied.

We observe that the d-tensor Fj; do not coincide with the elicoidal tensor F;

from (3.1).
So, from (2.2), Fj; is given by
1
(2.5.) F; :5{(9” Ly — 9 Lg ) ys+2(K|jCisl ~KjCjg ) ys} :
We deduce:

. j j
4 ayl ayl
and we obtain

1 1 s|(oF' ., oa oF 09
Fj :Eys(girl‘rﬂ'_gerrSi)+ZyS|:($+}\' a;;‘;]cig _(a_yi”‘ a;;f Cis

where F' =g"F and Cq = g”CQ and we obtain

1 1|( oF' 0al oF! o4

From Theorem 2.1, (2.4) and Bianchi identities for CF( N*) we have

Theorem 2.2. The h-electromagnetic tensor F; of nonholonomic
mechanical system X with respect to CF( N*) satisfies the following
generalized Maxwell equations:

c
2.7) TR =_§ YRi
Fij |« +F i +Fi [j=0.
We remark that, if the electromagnetic tensor Fj; does not depend of K and

a,, it is given by

1
(2.8.) Fij zzys(girLrsj _gjrl—rsi)'
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Then, we have N? = Nij and the Maxwell equations are those that appear, in
general, in Lagrange spaces theory.
The nonholonomic mechanical system 2= ( M,L(Xy),F(xY),Q(x, y))
has the gravitational potentials given by the system of functions
« 1 9L
gij =530 i
2 dy'oy
We remark that this field do not depend on the external forces F (x,y) and

(2.9.)

on the nonholonomic constrains Q(X,y)=2a; (Y) y'. So that, the gravitational

potentials g; (%, y) do not depend on the  Lagrange
multipliersA} (o= p+1L,...,n).
These fact results from
(2.10.) g =9; (%)
where g (X, y) is the fundamental tensor of the Lagrange space associates to

system 2, L" :(M,L(X, y))

The Theorem 1.2. shows that the canonical metrical connection
CF( N*) = ( Lﬂ}ik, Cijk) has the properties
(2.11.) g - =0,0; k=0
ij |k
and it is unique in the following conditions:
Ty =0,Sj, =0.

We rewrite the coefficients of the connection CF( N*) :

o] gih(s*gjh +8*gkh _S*QJKJ

A &< o) X"
(2.12.)
. _ 1 _in[99h 99w 99
k™ kK T30 3un
2 ay" dy' oy
where LTk is given by
*jik = Lijk + UJi'k

(2.13.) i ih (! | |
Uix=9 (KkChjk +KiChyi —KpCiy )
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We apply the Ricci identities to the fundamental tensor ¢ and we use
(2.11.):
0= R?kh + RTikh =0

(2.14.) ] .
Rikn + Piikn = 0; Sjin + Sjikn =0
where
* *| * *|
(2.15) Rjkh =gl Rins Piikh =0j Bihs

Sikn = 9j Sk
We must calculate the curvature tensors RTLh, PJ-*kih with the tensors of the
connection CI'(N).
So, we suppose that CI'(N) is the metrical connection of the associate

Lagrange space L". Therefore we have:

i = 1 gih(aghk +891h _ngk]

k™ o &xk ax"
(2.16.)
i 1 _in[ 99 ., 99h 995k
k=359 i TS0k T 3on
2 ay! a9y oy
and
(2.17.) Gijk =0, 05 [k=0
(2.18.) T =0,§'=0
o+ Ry =0, P + Py =0
(2.19.) Rjkh jikh ijkh jikh
Siknh * Sjikn =0-
The Ricci tensors of CI'(N) are:
(2.20.) R; =R B =Rh. R =PRi

and the curvature scalars are:

(2:21.) R=g'R;,S=4d"Ss;.
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