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INVESTIGATIONS ON THE BISECTION PROBLEM 
 
 

MIHAI TALMACIU 

 

Abstract. In this paper we characterize threshold graphs using the weakly 
decomposition, give a recognition algorithm for this class of graphs and an 
algorithm for the bisection problem in threshold graphs. 
 

1. INTRODUCTION 
 

Let G = (V,E) be a graph with n vertices and m edges. Threshold graphs play 
an important role in graph theory as well as in several applied areas such as set-
packing problem (Chvatal and Hammer [3]), parallel processing (Henderson 
and Zalcstein [10]), allocation problems (Ordman [16]). 

The paper is organized as follows. In Section 2 we give notations and 
definitions. For the unity of the paper, in Section 3 we shortly remind the 
weakly decomposition [18]. In Section 4 we present the necessary and 
sufficient conditions for a graph to be a threshold, a recognition algorithm, an 
algorithm for the bisection problem. 
 

2. NOTATIONS AND DEFINITIONS 
 

Throughout this paper [1] G = (V,E) is a simple (i.e. finite, undirected, 
without loops and multiple edges) graph. Let co-G G=  denote the complement 
graph of G. For U ⊆ V let [U] (or G(U)) denote the subgraph of G induced by 
U. By G-X we mean the graph [V-X], whenever X ⊆ V, but we shall often 
denote it simply by G-v ( ∀ v∈V) when there is no ambiguity.  
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A set A is totally adjacent (non adjacent) with a set B of vertices (A ∩ B=φ ) 
if ab is (is not) an edge, for any a vertex in A and any b vertex in B; we denote 
by A B (A χ B). A graph G is F-free if none of its induced subgraphs is in F.  

 
3. THE WEAKLY DECOMPOSITION 

 

Here we recall the notions and the results (see [6], also [18]) that are 
necessary in the next section. For this we define the notion of weakly 
component and give a characterization for the weakly decomposition of a 
graph.  

Definition 1. ([6], also [18]) Let G=(V,E) be a graph. A set of vertices, A, is 
called weakly set if NG(A)=V-A  and the induced subgraph by A is connected. 
If A is a weakly set, maximal with respect to the inclusion, the subgraph 
induced by A is called weakly component. For simplification, the weakly 
component G(A) will be denoted with A.  

The name of "weakly component" is justified by the next result.  
Theorem 1. ([6], also [18]) Any connected and incomplete graph G=(V,E) 

admits a weakly component A such that ( ) ( ( )) ( ( ))G V A G N A G N A− = + .  
Theorem 2. ([6], also [18]) Let G=(V,E) be a connected and incomplete 

graph and A ⊂ V. Then A is a weakly component of G if and only if G(A) is 
connected and N(A)~N(A) .  

Definition 2. ([6], also [18]) A partition (A,N(A),V-A ∪ N(A)), where A is a 
weakly set, is called weakly decomposition of graph G in relation to A. We call: 
A the weakly component, N(A) the minimal cutset, and V-N(A) the remote set.  

The next result insures the existence of a weakly decomposition in a 
connected and incomplete graph.  

Theorem 3. ([6], also [18]) If G=(V,E) is a connected and incomplete graph 
then the set of vertices V admits a weakly decomposition (A,B,C) such that 
G(A) is a weakly component and G(V-A)=G(B)+G(C).  

Theorem 2 provides an O(n+m) algorithm for building a weakly 
decomposition for an incomplete and connected graph.  

 Algorithm for the weakly decomposition of a graph  
 Input: A connected graph with at least two nonadjacent vertices, G=(V,E).  
 Output: A partition V=(A,N,R) such that G(A) is connected, N=N(A), 

A~R=N(A) .  
begin  

A := any set of vertices such that  
A ∪ N(A) ⊂  V  

N:=N(A)  
R:=V-A ∪ N(A)  
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while (∃ n∈N, ∃ r∈R such that nr∉E ) do  
A:=A ∪ n  
N:=(N-{n}) ∪ (N(n) ∩ R)  
R:=R-(N(n) ∩ R)  

end  
One can observe that [ ]GA  is connected, ( )GN N A= , R ≠ φ  is an invariant of 

the algorithm.  
 

4. THRESHOLD GRAPHS 
 

4.1.    Basic properties 
  Threshold graphs 
In this subsection we remind some results on threshold graphs. 
A graph G is called threshold graph if N G (x) ⊆ N G [y] or N G (y) ⊆ N G [x] 

for any pair of vertices x and y in G. 
Threshold graphs were first introduced by Chvatal and Hammer ([4]). 
In [17], Ortiz and Villanueva-Ilufi give a structural characterization of 

threshold graphs for solving the following two difficult problems: enumeration 
of all maximal independent sets and the chromatic index problem. 

Theorem 4. ([3]) A graph G is a threshold graph if and only if G does not 
contain a C4, co- C4, P4 as an induced subgraph.  

Chvatal and Hammer also showed that threshold graphs can be recognizing 
in O(n2 ) time. 

Theorem 5. ([15], [3]) A graph G is a threshold graph if and only if G is a 
cograph and G is a split graph. 

In [5] (as well as in [8] and [14]) linear algorithms for recognizing a cograph 
can be found. 

Hammer and Simeone ([9]) give an O(n+m) algorithm for recognizing a split 
graph. 

Therefore, an algorithm that recognizes a threshold graph is O(n(n+m)). 
 

Characterization of a threshold graph using the weakly decomposition 
In this paragraph we give a new characterization of threshold graphs using 

the weakly decomposition, that leads to a recognition algorithm whose 
complexity is O(n(n+m)).  

Theorem 6. Let G=(V,E) be a connected graph with at least two 
nonadjacent vertices and (A,N,R) a weakly decomposition, with A the weakly 
component. G is a threshold graph if and only if: 

i) A∼N∼R 
ii)  N clique, S stable set 
iii) G(A)  is threshold graph. 
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Proof. Let G=(V,E) be a connected, incomplete graph and (A,N,R) a weakly 
decomposition of G, with G(A) as the weakly component.  

At first, we assume that G is threshold. Then N∼R and A∼N  also, as 
otherwise an in A, n in N would exists such that an∉E. Because N=N(A) it 
follows that there exists a1 in A such that n a1 ∈  E. As G(A) is connected, a 
path P

1aa  exists. On the path from a to a1 in P
1aa  , let a2 in A the last vertex with 

a2n∉E and a3 in A the first vertex with a3n∈E. Then  G({ a2, a3, n, r})~P4, for 
every r in R, so i) holds. 

 If N would not be a clique then (as A~N~R) an induced C4 would exists. 
This would be a contradiction, as G is threshold. So N is a clique and A~N~R. 
So ii) also holds. 

Suppose that R is not stable. Then an edge r1r2 (r1, r2 in R) exists such that 
G({ r1, r2, a1, a2})~2 K2, for every  a1 in A and every a2 in A, as 2≥A . Indeed, 

if  1=A then because R is not stable there exists R' ⊆ R such that G(R') is 
connected. Suppose that R' is maximal with respect to inclusion. Then G(R') is 
a weakly component as R' is a weakly set (NG(R')=N ≠ A ∪ N ∪ (R - R') = V - 
R', G(R') is connected) and R' is maximal with respect to inclusion. We have 
R′ > A , contradicting the maximality of A. As A φ≠ , it follows that 2≥A . 

So R is stable. 
As G is threshold we have that G(A) is threshold, so iii) holds, too. 
Conversely, we suppose that i), ii) and iii) hold. If we suppose that X ⊂ V  

exists such that G(X) ~2 K2 then, as A~N~R, N clique and R stable, it follows 
that X ⊂ A, contradicting that G(A) is threshold. If we suppose that G(X) ~ P4 
then X ⊆ A, contradicting iii). In a similar manner we can prove that G is C4-
free. So G is threshold. 

 

Trivially perfect graphs 
In this subsection we establish the necessary and sufficient conditions for a 

graph to be a  trivially perfect graph.  
Definition 3. ([12]) A graph G is trivially perfect if for each induced 

subgraph H of G, the number of maximal cliques of H is equal to the maximum 
size an independent set of H. 

Theorem 7. ([12]) A graph is trivially perfect if and only if it contains no 
vertex subset that induces P4 or C4.  

In [2], Brandstadt et al. establish: 
Theorem 8. ([19]) Let G=(V,E) be connected with at least two nonadjacent 

vertices and (A,N,R) a weakly decomposition with A weakly component. G is 
},{ 44 CP -free graph if and only if:  

 



INVESTIGATIONS ON THE BISECTION PROBLEM 
 

 

183 

 

i) A∼N∼R 
ii) N is clique 
iii) G(A), G(R)  are },{ 44 CP -free graphs. 
Theorem 9. Let G=(V,E) be connected with at least two nonadjacent vertices 

and (A,N,R) a weakly decomposition with A weakly component. G is },{ 44 CP -
free graph if and only if: 

1) A∼N∼R 
2) G(A),G(N), G(R)  are },{ 44 CP -free graphs. 
Proof. If G is },{ 44 CP -free  graph then G(A), G(N), G(R) are },{ 44 CP -free 

graphs and A∼N∼R.   
 We suppose that 1) and 2) holds. Since A∼N∼R and  G(A), G(N), G(R)  are 

4P -free graphs it  follows that G is 4P -free. If 4G C⊇ then, because A N R  and 
A Rχ  it follows that either 4 ( )C G A⊆  or 4 ( )C G N⊆ or 4 ( )C G R⊆ , in contradiction 
with 2). 
 
4.2.    The recognition algorithm 

Remark 1. G is threshold graph if and only if G and co-G are trivial perfect 
graphs. 

The above results (Remark 1) lead to the following recognition algorithm.  
Input: A connected graph with at least two nonadjacent vertices, G=(V,E).  
 Output: An answer to the question: is G a threshold graph 
begin  
L:={G}; //L a list of graphs 
While ( φ≠L ) 

Extrage an element H from L; 
Find a weakly decomposition (A,N,R) for H; 
If ( A χ N or N χ R) then  

Return: G is not threshold  
else introduce in L, the connected components of G(A), G(N), G(R) 

incomplete 
end; 
L:={co-G}; 
While ( φ≠L ) 

Extrage an element H from L; 
Find a weakly decomposition (A,N,R) for H; 
If ( A χ N or N χ R) then  

Return: co-G is not threshold  
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else introduce in L, the connected components of co-G(A), co-G(N), 
co-G(R) incomplete 

Return: G is threshold  
end 
 
Remark 2. The most time consuming operation inside the while loop is the 

determination of the weakly decomposition (A,N,R), namely O(n+m). As the 
while body executes at most n times, it follows that the total execution time is 
O(n(n+m)). 

 
4.3 An algorithm for the bisection problem in threshold graphs  

 A bisection of a graph G=(V,E) with an even number of vertices is a pair of 
disjoint subsets VVV ⊂21 ,  of equal size. The cost of a bisection is the number 
of edges ( ) Eba ∈,  such that 1Va ∈  and 2Vb ∈ . The problem of Graph 
Bisection takes as input a graph with an even number of vertices and return a 
bisection of minimum cost. 

The graph partitioning problem is a well known NP-hard problem that has 
been successfully applied to many layout problems such as circuit board 
design, computer program segmentation and designing of hardware/software 
system architectures (see, for example, [7, 11,13 ]). 

 Considering the above results, the following algorithm solves the bisection 
problem for threshold graphs.  

Input: G =(V, E), threshold graph with n vertices, n being even.  
   Output: Minimum cut size for the graph G  
 :X φ= ; 
 :Y φ= ; 

While (G φ≠ ) do 
If G is not complete then 
Determine a weakly decomposition (A,N,R) for G with G(A) 
weakly component; 

  If A R< then 
   :X X A= ∪ ; 
   : 'Y Y R= ∪  for 'R R⊂  with 'R A= ; 
   : ( ( '))G G N R R= ∪ −  {G remain threshold} 
  else 
   : 'X X A= ∪  for 'A A⊂  with 'A R= ; 
   :Y Y R= ∪ ; 
   : ( ( '))G G N A A= ∪ −  {G remains threshold} ; 
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 Divide V(G) in 1N  and 2N  with 1 2N N= ; 
 1:X X N= ∪ ; 
 2:Y Y N= ∪ ; 
 Display: (X,Y) is the bisection with minimum cut size.  

Remark 3. The most time consuming operation inside the while loop is the 
determination of the weakly decomposition (A,N,R), namely O(n+m). As the 
while body executes at most n times, it follows that the total execution time is 
O(n(n+m)). 
 

5. CONCLUSIONS AND FUTURE WORK. 
 

In this paper we characterize threshold graphs using the weakly 
decomposition, give a recognition algorithm for this class of graphs and an 
algorithm for the bisection problem in threshold graphs. Our future work 
concerns to give some applications of threshold. 
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