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Abstract. This paper presents an efficient embryonic hybrid genetic 
algorithm for finding a minimum cost Hamiltonian circuit for a variable weight 
transportation problem. Prior work addresses the design of different heuristic 
methods, pure genetic algorithms or some hybridizations of genetic algorithm 
with greedy methods. The proposed algorithm includes a combination between 
a genetic algorithm, a branch and bound method and a dynamic-programming-
inspired method. The basic components of the embryonic genetic algorithm are 
defined, the ways of using dynamic programming as a hypermutation operator 
and the realization of the fusion between the branch and bound approach and 
the basic genetic algorithm are described. The experimental results are 
compared to those given by other existing methods. The originality of this 
paper results from a combination of exact techniques - branch and bound 
method and dynamic programming and genetic algorithm. Except a better 
solving method for the delivery problem, this new solving technique has 
design implications on the creation of new methods for solving other difficult 
practical problems. 
 

1. INTRODUCTION 
 

This paper aims to optimize a special type of delivery. In this problem, a 
vehicle leaving a warehouse, charged with the total demand, reaches once each 
client satisfying its demand and returns at the departure point.  

 
 

Keywords and phrases: delivery problem, embryonic genetic algorithm, 
branch and bound, dynamic programming. 
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The transportation cost between two successive locations is a linear function 
on the transported charge. The problem consists in the finding order to supply 
the clients that minimizes the transportation cost. Since this problem 
generalizes traveling salesmen problem (TSP) it is called generalized traveling 
salesman problem (GTSP). 

Approaches to solving this problem can be grouped into two classes: exact 
methods class - dynamic programming algorithm, branch-and-bound 
algorithms, and algorithms that use techniques of linear programming type and 
heuristics and evolutionary algorithms class – constructive heuristics, iterative 
improvement techniques and randomized improvement algorithms: genetic 
algorithm, simulated annealing, Tabu search, ant colony optimization, and the 
cross entropy method.  

The novelty of this paper is the fusion between the branch and bound 
approach and a genetic algorithm on which dynamic programming is grafted as 
a hypermutation operator. 

Section 2 formulates the problem, section 3 describes B&B technique, 
section 4 presents dynamic programming method, section 5 describes the main 
components of the embryonic algorithm and the results of the experiments and 
some conclusive remarks are present in the last section. 
 

2. STATEMENT OF PROBLEM 
 

Let ( )A,VG =  be a complete and directed graph, where { }n,...,,V 10=  is the set 
of vertices, node 0  represents the warehouse, and nodes n,...,1  represent the 
customers, A  is the arcs set. The integer ( )iq  is the demand of the 
consumer n,...,,i,i 21= . The total demand is ( ) ( )nq...qQ ++= 1 . The unitary cost 
of the transportation charge from node i  to node j  is ( )j,ia . The positive 
integer ( )0q  represents the empty vehicle mass. The cost of moving charge r  
from i  to j  is given by ( ) ( )( ) ( )j,ia*qrj,i,rg 0+= . 

Let us denote by [ ],0,...,i0,ic n1=  a Hamiltonian circuit in G  starting from 
“0”, passing through }{\Vi,...,i n 01 ∈ and ending at “0”. The cost of this circuit 
is 
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If H  is the set of all Hamiltonian circuits in G , then GTSP refers to finding 
H*c ∈ so that ( ) ( ) ( ) Hc,c*c ∈∀≤ costcost . 

Because the TSP is NP-complete [1],[2], the GTSP complexity is also NP-
complete. 
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3. OUTLINE OF B&B TECHNIQUE  
 

B&B method organizes the space solution as a tree ( )E,NT  where N  is the 
set of nodes and E .is the edges set. The root of the tree corresponds to the 
whole set of solutions H . A nonterminal node z  on the level k of this tree 
corresponds to a simple path ( )kz,...,z1  in G . The set ( ) HzS ⊂ contains all 
solutions that start with ( )kz,...,z1 . A terminal node in T  corresponds to 
complete solution of the problem. The exploration of T is done using an 
estimate function that associates a lower edge of bound costs of routes in ( )zS , 
to each node. Search strategy is the least cost, which means the nonterminal 
node, which has the smallest value of the estimation function, is branched. The 
method stops when the minimum is reached for a terminal nod. 

In Figure 1 is represented a part of the T  tree.   
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Figure 1 The search space for B&B and Genetic algorithms 
 

The branch techniques are: first, the level one contains the node labels that 
can be touch from Root node and the second, the descendants of a node 

{ } 21 −=∈ n...k,kz  are ky,...y1  where [ ]{ }pathz,...,rootfromnodes\Vy j ∈ . 
As a common feature, both B&B and GA explore the T  tree. The difference 

is that B&B examines the whole T  tree while GA is recruiting its population 
only from terminal nodes ofT . 

For the kz  node, the B&B estimation function has two terms, 
( ) ( ) ( )kpkck zezeze += . The value ( )kc xe is the cost of the path ( )k...,zRoot,  and 

( )kp ze  is a lower bound of the costs that correspond to all extension of kz  to 
complete solutions.  
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4. OUTLINE OF DYNAMIC PROGRAMMING INSPIRED METHOD 
 

This method was obtained by considering that constructing the solution of the 
problem appears as a Markov decision process with finite horizon approach 
[3][4].  

We make the following notations:  
● i stage index, i = 0,1,…,n+1; 
● Xi set of vertices that candidate for position i in the final solution, i = 1,…,n; 
● Ai(x) set of predecessors of x∈Xi belonging to Xi-1, i = 1,…,n; 
● Bi(x) subset of Ai(x) containing those vertices that use x as an optimal 
decision in a previous stage; 
● Di(x) set of vertices considered as feasible decisions to reach x, Di(x) = 
Ai(x)-Bi(x)  ; 
●Gi(x) minimal cost of accessing x∈Xi from a vertex belonging to Di(x); 
● di*(x) vertex of Di(x) that leads to Gi(x); 
● ri(x) remaining charge after arriving at x∈Xi from di*(x) 
●  [0, x1*,…, xn*,0] final solution given by the heuristic. 
 

Algorithm is described below:  
1. Initialization: 
 1.1. Determine the set  X1={i|(0,i) ∈U}. 
 1.2. For each x1∈X1, compute G1(x1) = g(Q; 0,x1), r1(x1) = Q- q(x1) and take 

d1
*(x1) = 0. 

2. For i=2,3,…,n do: 
 2.1. For each x∈X-{0} perform: 
  2.1.1. Determine the set Ai(x) = {j | j∈Xi-1-{x}, (j, x) ∈U}. 
  2.1.2. Determine the set Bi(x) containing the vertices j∈Ai(x) for which 

there exists a path from x to j, [x,y1,…,yk, j] so that di-1
*(j)=yk, di-2

*(yk)=yk-1, 
…, di-k-1

*(y1)=x (using j a premature circuit’s closing is produced). 
  2.1.3. Determine the set  Di(x) = Ai(x)-Bi(x). 
 2.2. Determine the set Xi={x | Di(x) ≠ ∅ } 
 2.3. For each xi∈Xi compute: Gi(xi) =  Gi-1(di*)+g(ri-1(di*); di*,xj) = min{Gi-

1(di) + g(ri-1(di); di,xj) | d∈Di(xi)} and take di*(xi) = di* (optimal decision to 
reach xi). 

 2.4. Determine the sequence [xi, xi-1*,..., x2*], where xi-1*= di*(xi), xi-2*= di-
1*(xi-1*), …, x2* = d3*(x3*) and ri(xi) = ri-1(xi-1*) -q(xi). 

3. Final selection: 
 3.1. Take Xn+1 = {0}, Dn+1(0) = {j | j∈Xn, (j,0) ∈U}. 
 3.2. Compute Gn+1(0) = Gn(dn+1

*) + g(rn(dn+1
*); dn+1

*,0) = min{Gn(dn+1) + g(rn(dn+1); 
dn+1,0) | dn+1∈Dn+1(0)} and take dn+1

*(0) = dn+1
*. 

4. Output solution: 
 4.1. Compute xn

* = dn+1
*(0), xn-1

*=  dn
*( xn

*),…, x1
*= d2

*( x2
*). 

 4.2. Output the circuit [0, x1
*,…, xn

*, 0] and its cost  Gn+1(0). 
5. Stop. 
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The basic step is illustrated in Figure 2. This heuristic is further used for a 
delivery problem where the source can be different from the destination. The 
algorithm can be used in the context where the prefix and/or the suffix of the 
permutation are fixed and a portion of it, forming a contiguous area, is to be 
given as at output of this algorithm. 
 

stage
i-k-2 i-k-1 i-2 i-1 i

di-1 (di (x))* *

x=d*i-k-1 (y1)

y1=d i-k(y2)*

yk=d i-1(j)*

x

Di(x)

Bi(x)

Ai(x)
… ……

…

j

d1*(x)

 
Figure 2. The basic step of heuristic algorithm 

 
 

V. BASIC COMPONENTS OF THE HYBRID GENETIC ALGORITHM  
 

First, the B&B technique is combined with GA [4], resulting in an embryonic 
GA. The second hybridization is done with the dynamic-programming-inspired 
heuristic that acts as a hypermutation operator. 
 
5.1 Solution representation 

A chromosome is a sequence ( )kx,...,xx 1=  of vertices in G with nk ≤≤1 , 
where [ ]kx,...,x, 10  represents a simple path in G . If nk < , x  is an embryo, 
otherwise ( nk = ) x is an adult (complete solution). 
 
5.2 Population management 

During all the evolution stages the population size is constant.  
The initial population P  is composed of %90  embryos ( )kx,...,x1  where k  is 

a random number ]n,[k 2∈ . The remaining  %10  solutions from initial 
population are solutions provided by dynamic-programming-inspired heuristic 
applied on GTSP instances that correspond at random sequences of k nodes 
from G. 

The selection of individuals at the end of each stage is elitist, the  P  best 
fitness chromosome being selected for the next stage. 
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The hybrid GA stops if the ratio ε<
− −

k

kk

m
mm 1  where km is the average of the 

fitness at k stage,ε  is the tolerance, and the algorithm executes at least  
iterations_nr*%10  with complete solutions where iteration_nr  is the number 

of stages with embryos.  
 
5.3 Fitness function  

In fact, the fitness function is the B&B estimation function (Figure 3). For 
( )kx,...,xx 1=  ( ) ( ) ( )xexexe pc += . The term ( )xep  includes a transport from kx to 

a node that does not exist in prefix, the moving on the simple path among the 
location in ( ) }{ kx...,x\VxR 1=  and the return from node that are not in prefix to 

""0 : ( ) ( ) ( ) ( )xexexexe p 321 ++= .  
If the chromosome is adult ( )nk = then ( ) ( )xextcos c=  

 
Figure 3. Components of fitness function 
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( )xe1  and ( )xe3  are defined by 
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the following steps: 
Take the first 1−− kn smallest unitary cost of the arcs ( )v,u  with ( )xRv,u ∈ , 

1kn21 ... −−≤≤≤ ααα  
Sort in descending order the demands of the vertices in ( )xR , 
( ) ( ) ( )kn21 yq...yqyq −≥≥≥  
 Calculate ( ) ( ) ( )∑ ∑
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Numerical example. The matrix of unitary cost are: 
a 0 1 2 3 4 5 6 7 8 9 10 q(i) 
0 0 1 10 1 10 10 1100 1000 110 1000 10 20 
1 10 0 10 9 1 511 1100 1000 1000 5000 1 3 
2 110 1 0 2000 999 110 5 6 1 19 1 7 
3 2 1 1 0 1 176 10 110 4 5 4 10 
4 1 10 10 100 0 1 10 1 10 6 8 8 
5 3 1 111 1 1 0 10 1 6 1e+10 1 3 
6 2 10 10 1 10 7000 0 1 10 5 10 67 
7 1 1 3 200 10 4 50 0 10 189 1 3 
8 9 10 110 2 2 25 4 90 0 40 1 56 
9 1 5 4 2 30 5 48 4 5 0 10 100 
10 3 3 10 2 9000 4005 5000 6000 600 70 0 12 

 
Consider ( )962101 ,,,,x = , the term ( ) ( )++= 10128610289 ,a*,a*)x(ec  

( ) ( ) ( ) 56509620062267210274 =++++ ,a*,a*,a* .  
Now, ( ) ( ) ( ) ( ) ( ) ( ){ } 20089795949391001 == ,a,,a,,a,,a,,amin*xe  and 
( ) ( ) 2004203 == ,a*xe  
For ( )xe2 , the remaining demands in descending order are { }3381056 ,,,,   and 

the first smallest cost of the arcs having both ends in the ( )xR  are { }1111 ,,, . It 
result that  

( ) ( ) ( ) ( ) ( ) 1271381056100181056100110561001561002 =−−−−+−−−+−−+−= ****xe
Finally, ( ) 5997201272005650 =+++=xe  
 
5.4 Mutation operator 

For each chromosome from population is generated a random number 
[ ]10,nr ∈  and if mpnr ≤  where mp  is mutation probability, then to this 

chromosome is applied the mutation operator. 
Let )x,...x(x k1=  be a chromosome on which one can apply mutation 

operator. It randomly generates two cuts 1p  and 2p , kp,p ≤21 . Let t  be a 
randomly generated integer so that 12 ppt −< . Run t  circular permutations of 
the genes in the interval ( ) ( )( )2121 p,pmax,p,pmin . As an example, consider: 

( )91082753 ,,,,,,x = , 61 =p  and 22 =p . The offspring is ( )92751083 ,,,,,,'x =  
 

5.5 Crossover operator 
The crossover operator is applied on chromosomes selected from the entire 

population with the probability cp . Let two chromosome be ( )kx,...,xx 1= , 
( )hy,...,yy 1=  and t a random number with ( )h,kmint <  The offspring will be 
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composed from  t length intervals,  filled alternately with genes from both 
parents, without duplicates. For the second offspring, the roles of parents are 
interchanged.  

Numerical example. Consider ( )91082753 ,,,,,,x = , ( )9651028 ,,,,,y =  and 3=t . 
The offspring are: 

( )6910287531 ,,,,,,,x =  and ( )9675310281 ,,,,,,,y =  
Since the content of the offspring is the reunion of parents’ genes, the 

crossover operator acts as a growing operator. 
 

5.6 Growth operator 
It consists in extending the embryo x  with the node ( )xRu ∈   where 

( )
⎭
⎬
⎫

⎩
⎨
⎧

∈∈= Au,x),x(Rv,
)v,x(a

)v(qmax
)u,x(a

)u(q
k

kk
 . 

Numerical example. Consider ( )91082753 ,,,,,,x = . { }641 ,,)x(R = . The extension 
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⎩
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,a
q . Thus, x  is replaced with 

( )691082753 ,,,,,,,'x =  
 

5.7 Hypermutation operator 
The hypermutation is applied with the probability hp . Consider a 

chromosome ( )kx,...xx 1=  and two cutting positions r  and s , with ksr ≤< . 
Consider a subgraph 'G  generated by { }sr x,...,xN = . The heuristic method 
applied to 'G , returns the solution { }'x'...,x sr  which is a permutation of N . 
Finally, 'x'...,x sr  replace the vertices sr x,...,x i.e. the offspring is 

[ ]kssrr x,...,x,'x,...,'x,x,...,x'x 111 +−=  
Numerical example. Consider ( )98102753 ,,,,,,x =  with ( ) 211638cost =x . 

Assume that 2=r   and 5=s . The offspring is ( )98210753 ,,,,,,'x =  with 
( ) 61290cost ='x . 

 
5.8 Performance evaluation 

In experiments the benchmarks found at www.misp.tuiasi.ro/it/ 
benchmark_GTSP are used.  The experiments were organized in three phases. 

In the first, various probability values { }ghcm p,p,p,p  were tested in order to 
find adequate fitness values. For this, the hybrid GA was run 20 times for each 
combination of probabilities { }2015010 .,.,.pm = , 

{ }35020 .,.pc = { }2015010 .,.,.ph = { }3020 .,.pg = .Observe that two classes of 
probabilities provide relatively good solutions with good variances (table 1). 
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Table 1. Probability classes used into second experimental phase 

Classes mp  cp  hp gp Average  Deviation Average
Deviation

Minimum 

I 0.1 0.35 0.2 0.3 83670.23 2233.15 0.026690 80009 
II 0.1 0.2 0.1 0.2 84328.27 2382.81 0.028245 78599 
 
 

The second series of the experiments were done in order to compare the 
results provided by four algorithms: GA, GA with hypermutation (GAh), GA 
with B&B (GAb&b) and GA with hypermutation and B&B (GAhb&b). Table 
2 shows the average (avg) of the best fitness, the standard deviation (σ) and 
coefficient of variation σ /avg obtained in 30 runs for these algorithms. 

 

Table 2. Statistical values for algorithms 
Algorithm Average Deviation σ /avg Best fitness 
GA 159263.22 12874.08 0.080835 138681 
GAh 79514.23 518.33 0.006519 78420 
GAb&b 90723.90 2427.85 0.026761 86685 
GAhb&b 83670.23 2233.15 0.026690 80009 

 
 

Best value is obtained for GAh from the heuristic solution injected into initial 
population on which mutation, crossover and hypermutation operators are 
applied.  This is normal, because besides the fact that the heuristic method 
gives a very good solution as a global solution, this also has good sequences of 
genes which are propagated by the operators of mutation, crossover and 
hypermutation. Except GAh, GAhb&b provides good solutions in terms of best 
fitness, variance and coefficient of variation. 

The third set of experiments studies the behavior of embryonic GA. In this 
context the influence of hypermutation operator was watched; the results are 
represented in Figure 4. 
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Figure 4. Hypermutation operator influence 

 

The effect of hypermutation operator is a better final solution (80009 vs 
86685) and a slow convergence (1180 iterations vs 440 iterations). 
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In Figure 5 is presented the variation of cost function of the best chromosome 
to the end of each stage (principal axis OY), and the length of the best 
chromosome in terms of cost function based on the number of iterations 
(secondary axis OY’) (Figure 5) 
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Figure 5. Fitness and length of the best chromosome depending  

on the number of iterations 
The next two charts are zooms on two periods of evolution of the embryonic 

GA, observing the synchronization between fitness and length of the best 
chromosome. Notice that the cost function reaches a maximum before the 
iterations in which all chromosomes are adults (Figure 6 (b)). This 
phenomenon is explained by the fact that the predictive component of the cost 
function provides results close to the real cost function (the lengths of 
chromosomes are approximately equal with the size of the problem) and the 
crossover operator is able to provide greater length chromosomes with a better 
fitness.  
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Figure 6. Fitness and length of the best chromosome depending  
on the number of iterations 
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In Figure 6 (a) is presented the behavior AGhb&b when the hypermutation 
operator was applied with different probabilities pH=0, 0.05, 0.08, 0.1, 0.15, 
0.2 
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Figure 7. Influence of hypermutation probability 

 

In Figure 7 is observed the beneficial role of the hypermutation operator, 
which leads to the good quality result in terms of the final solution when it is 
more present in the evolution algorithm (higher probability). There is still an 
upper limit of this increase in the value of hypermutation probability; for 
example, for a class I of probabilities ).p,.p,.p( gcm 3035010 === , an increase 
in value over 0.2 will lead to unacceptable calculation times and even to the 
termination of the program execution in local minimum points - incomplete 
chromosomes with a very good fitness. 

 
6. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS 

 

A new and efficient hybrid method resulted from the grafting of two 
techniques, branch & bound and dynamic programming on a genetic algorithm 
for solving a variable weight transportation problem was presented. Specific 
genetic operators including a new type of growing operator acting on partial 
representations of the solutions are proposed.  

The evolving mechanism operates with subsets of solutions and has very 
good capabilities to locate the better potential zones of the search space early 
and thus better exploit them.  

The efficiency of grafting the B&B method on a genetic algorithm and using 
dynamic programming method as genetic operator led to an efficient tool due 
to an appropriate tradeoff between exploration and exploitation.  

Experimental investigation has shown that the performances of this new 
hybrid method are good and are better than those of the basic genetic 
algorithms.  
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The impact of these results is larger because these design elements can be 
used to combine other variants of such algorithms within transportation 
paradigm as well as for other optimization problems. This type of hybrid GA 
can also be used in more sophisticated genetic algorithms, like cellular or 
segregative GA. This is the subject of some further research directions. More 
accurate fitness evaluation of embryos is also of real interest. 
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