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EINSTEIN EQUATIONS IN LIE ALGEBROIDS

MIHAI ANASTASIEI AND MANUELA GÎRŢU

Abstract. A Lie algebroid endowed with a Riemannian metric has
a canonical connection of Levi-Civita type. We associate to it the
Einstein tensor field and using it we construct the Einstein equations.
Some particular cases are discussed.

Introduction

When the physical space-time is modeled by a four Lorentz manifold
(M, g), the Einstein equation Ric− 1/2Rg = 8kπT , where Ric means
the Ricci tensor and R is the scalar curvature, provides a relationship
between the geometry of space-time given by g and the matter and
energy encoded by the tensor T . The Einstein equation can be writ-
ten for any dimension and any signature. Moreover, there are a lot of
other generalizations of it obtained replacing the Levi-Civita connec-
tion with a connection with torsion or replacing M with the manifold
TM in the so-called Finsler-Lagrange field theories ( [6] ) or with the
total space of a vector bundle,[1].
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In the construction of the Einstein equation the main ingredient is
a linear connection ∇ in TM compatible with g i.e. ∇g = 0 and
without torsion. When one tries to extend this construction to any
vector bundle E endowed with a pseudo-Riemannian metric g, the
compatibility condition ∇g = 0 does not uniquely determine ∇ since
is not possible to associate to ∇ a torsion. This difficulty is overcame
if we confine ourselves to a particular class of vector bundles : Lie
algebroids.

The notion of Lie algebroid had appeared in several contexts, see [5]
and the various geometrical structures associated to it were studied,
for instance, in [3, 4, 7].

In this paper we describe the construction of the Einstein equation
for any Lie algebroid and we discuss some particular cases. Although
of geometrical interest, the simplicity of this construction diminishes
the hope for strong applications to Physics. More elaborate construc-
tions applied to particular Lie algebroids with supplementary struc-
tures proved to be more useful to this aim, see [8], [9]

1. Lie algebroids

1.1. Preliminaries on vector bundles. Let ξ = (E, π,M) be
a vector bundle of rank m. Here E and M are smooth i.e. C∞

manifolds with dimM = n, dimE = n + m, and π : E → M is a
smooth submersion. The fibres Ex = π−1(x), x ∈M are linear spaces
of dimension m which are isomorphic with the type fibre Rm.

Let {(Uα, ψα)}α∈A be an atlas on M . A vector bundle atlas is
{(Uα, ϕα,Rm)} with the bijections ϕα : π−1(Uα) → Uα × Rm in the
form ϕα(u) = (π(u), ϕα,π(u)), where ϕα,π(u) : Eπ(u) → Rm is a bijec-
tion. The given atlas on M and a vector bundle atlas provide an atlas
{(π−1(Uα),Φα)}α∈A on E.
Here Φα : π−1(Uα)→ φα(Uα)× Rm is the bijection given by Φα(u) =
(ψα(π(u)), ϕα,π(u)(u)). For x ∈ M , we put ψα(x) = (xi) ∈ Rn and
if (Uβ, ψβ) is another local chart such that x ∈ Uα ∩ Uβ 6= φ, we set
ψβ(x) = x̃i and then ψβ ◦ ψ−1α has the form

(1.1) x̃i = x̃i(x1, · · · , xn), rank

(
∂x̃i

∂xj

)
= n.

Let (ea) be the canonical basis of Rm. Then ϕ−1α,x(ea) := εa(x) is a
basis of Ex and u ∈ Ex has the form u = yaεa(x).
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We take (xi, ya) as coordinates onE. For the bundle chart (Uβ, ϕβ,Rm)
we put ϕ−1β,x(ea) = ε̃a(x) and then u = ỹaε̃a(x). If we set εa(x) =

M b
a(x)ε̃b with rank(M b

a(x)) = m it follows that ỹa = Ma
b (x)yb. Thus

the mapping Φβ ◦ Φ−1α has the form

(1.2)
x̃i = x̃i(x1, · · · , xn), rank

(
∂x̃i

∂xj

)
= n

ỹa = Ma
b (x)yb, rank(Ma

b (x)) = m.

The indices i, j, k, ... and a, b, c... will take the values 1, 2, ...n and
1, 2, ...m, respectively. The Einstein convention on summation is im-
plied.

We denote by F(M),F(E) the ring of real functions on M and
E respectively, and by χ(M), respectively Γ(E), χ(E) the module of
sections of the tangent bundle of M , respectively of the bundle ξ and of
the tangent bundle of E. We recall that the vertical bundle V E → E
is the union of the fibres VuE = kerπ∗,u over u ∈ E, where π∗,u is
the differential of π. A basis of local section of V E → E is given by(

∂

∂ya

∣∣∣∣
u

)
.

1.2 Lie algebroids.
Let be ξ = (E, π,M) a vector bundle and let us assume that

(i) The space of its sections Γ(ξ) is endowed with a Lie algebra
structure [, ];

(ii) There exists a bundle map ρ : E → TM (called the anchor
map) and this induces a Lie algebra homomorphism (also de-
noted by ρ) from Γ(ξ) to χ(M).

(iii) For any smooth functions f on M and any sections s1, s2 ∈
Γ(ξ) the following identity is satisfied

[s1, fs2] = f [s1, s2] + (ρ(s1)f)s2.

Definition 1.1. The triplet A = (ξ, [, ], ρ) with the properties (i),
(ii) and (iii) is called a Lie algebroid.

Examples:

(1) The tangent bundle (TM, τ,M)with the usual Lie bracket and
ρ equal to the identity map form a Lie algebroid.

(2) Any integrable subbundle of TM with the Lie bracket defined
by restriction and ρ the inclusion map is a Lie algebroid.
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(3) Let (F, q,M) be any vector bundle. On F we have the vertical
distribution u −→ VuF =Kerq∗,u, u ∈ F , where q∗ denotes the
differential of q. This distribution is integrable. If we regard it
as a subbundle of TF , accordingly to Example 2 a Lie algebroid
is obtained.

Locally, we set

(1.3) ρ(sa) = ρia(x)
∂

∂xi
, [sa, sb] = Lcab(x)sc.

A semispray S for the tangent bundle τ : TM → M is a vector
field on TM which at the same time is a section in the vector bundle
τ∗ : TTM → TM , that is we have τTM(S(u)) = u and τ∗,u(S(u)) = u,
∀u ∈ TM , where τTM is the vector bundle projection TTM → TM .
It follows that τ∗,u(S(u)) = τTM(S(u)), ∀u ∈ TM .

This equation suggests the following
Definition 1.2. Let A = (ξ = (E, p,M), [, ], ρ) be a Lie algebroid.

A vector field S on E will be called a semispray if

(1.4) p∗,u(S(u)) = (ρ ◦ τE)(S(u)), ∀u ∈ E
where τE : TE → E is the natural projection.

Let c : I → M , I ⊆ R be a curve on M and let c̃ : I → E be any
curve on E such that p ◦ c̃ = c. Denote by ˙̃c the vector field that is
tangent to c̃.

Definition 1.3. We say that c̃ is admissible if

π∗(˙̃c) = ρ(c̃).

An admissible curve will be also called an A− path. Its projection
on M will be called the base path of it. The A−path c̃ is called vertical
if ρ(c̃(t)) = 0. In this case the curve c reduces to a point and the curve
c̃ is contained in the fibre in that point.

In local charts onM and E, we have c(t) = (xi(t)), c̃(t) = (xi(t), ya(t))

and ˙̃c(t) =
dxi

dt

∂

∂xi
+
dya

dt

∂

∂ya
, t ∈ I.

It results
Lemma 1.1. The curve c̃ is admissible if and only if

(1.5)
dxi

dt
(t) = ρia(x(t))ya(t), ∀t ∈ I

and it is a vertical A−path if and only if
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(1.6) ρia(x(t))ya(t) = 0, t ∈ [0, 1].

Again in local charts, let be S = X i ∂

∂xi
+ Y a ∂

∂ya
a vector field on

E.
This is a semispray if and only if

(1.7) X i(x, y) = ρia(x)ya.

By (1.7) and Lemma 1.1 easily follows that a vector field on E is a
semispray if and only if all its integral curves are admissible curves.

2. Connections in Lie algebroids

Let A = (ξ, [, ], ρ) be a Lie algebroid with ξ = (E, p,M) and let
(F, q,M) be any vector bundle.

Definition 2.1 An A−connection in the bundle (F, q,M) is a map-
ping D : Γ(E)× Γ(F ) −→ Γ(F ), (s, σ) −→ Dsσ with the properties:

1) Ds1+s2σ = Ds1σ +Ds2σ,
2) Dfsσ = fDsσ,
3) Ds(σ1 + σ2) = Dsσ1 +Dsσ2,
4) Ds(fσ) = ρ(s)fσ + fDsσ,

for s, s1, s2 ∈ Γ(E), σ, σ1, σ2 ∈ Γ(F ), f ∈ F(M).

Notice that a TM−connetion in the vector bundle (F, q,M) is noth-
ing but a linear connection in this vector bundle. And a TM−connetion
in the tangent bundle is a linear connection on M .

Definition 2.2 An A−connection in the bundle ξ = (E, p,M) is
called a linear connection in the Lie algebroid A.

Let (σα), α, β, γ, . . . = k :=rank of (F, q,M), a local basis in Γ(F ).
Then a local section σ has the form σ = zασα and (zα) are the coor-
dinates in the fibres of (F, q,M).

For s = yasa and σ = zασα, by the Definition 2.1 we have Dsσ =

ya
(
ρia
∂zα

∂xi
+ zαDsaσα

)
and if we put

(2.1) Dsaσα = Γβαaσβ,

we get

(2.2) Dsσ = ya(Daz
β)σβ, Daz

β = ρia
∂zβ

∂xi
+ Γβαaz

α.
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For a linear connection D in the Lie algebroid A = (ξ, [, ], ρ) we get

(2.3) Dsσ = ya(Dazb)sb, Dazb = ρia
∂zb

∂xi
+ Γbcaz

c.

3. Riemannian metrics in Lie algebroids

Let A = (ξ, [, ], ρ) be a Lie algebroid with ξ = (E, p,M) and a
vector bundle (F, q,M) endowed with an A− connection D whose
local coefficients are (Γαβa).

A Riemannian metric in (F, q,M) is a mapping g that assigns to
any x ∈ M a scalar product gx in Fx such that for any local section
σ1, σ2 ∈ Γ(F ), the function x → gx(σ1, σ2) is smooth. Locally, we

set gx(σα, σβ) = gαβ(x) and so gx(σ1, σ2) = gαβ(x)zα1 z
β
2 if σ1 = zα1 σα,

σ2 = zβ2σβ.
The operator of covariant derivative D can be extended to the tensor

algebra of (F, q,M) taking Dσf = ρ(σ)f , assuming that it commutes
with the contractions and behaves like a derivation with respect to ten-
sor product. It comes out that if ω is a section in the dual (F ∗, q∗,M)
then

(Dsω)(σ) = ρ(s)ω(σ)− ω(Dsσ), s ∈ Γ(E), σ ∈ Γ(F )

and if g is a section in L2(F,R), then

(Dsg)(σ1, σ2) = ρ(s)g(σ1, σ2)− g(Dsσ1, σ2)− g(σ1, Dsσ2),

s ∈ Γ(E), σ1σ2 ∈ Γ(F ).
(3.1)

Definition 3.1. We say that the Riemannian metric g is compatible
with the A−connection D if Dsg = 0 for every s ∈ Γ(E).

By (3.1) the condition of compatibility between g and D is equiva-
lent to

ρ(s)g(σ1, σ2) = g(Dsσ1, σ2) + g(σ1, Dsσ2),

s ∈ Γ(E), σ1, σ2 ∈ Γ(F ).
(3.2)

Locally, (3.2) is written as follows

(3.3) ρia(x)
∂gαβ
∂xi

= Γγαa(x)gγβ(x) + Γγβa(x)gαγ(x).

If (F, q,M) coincides with (E, p,M) we have
Theorem 3.1. There exists an unique linear connection ∇ in the

Lie algebroid A such that

(i) ∇sg = 0,
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(ii) ∇s1s2 −∇s2s1 = [s1, s2], s, s1, s2 ∈ Γ(E).

It is given by the formula

2g (∇s1s2, s3) =ρ(s1)g(s2, s3) + ρ(s2)g(s1, s3)− ρ(s3)g(s1, s2)

+ g([s3, s1], s2) + g([s3, s2], s1) + g([s1, s2], s3)
(3.5)

and its local coefficients are given by
(3.6)

Γabc =
1

2
gad
(
ρib
∂gcd
∂xi

+ ρic
∂gbd
∂xi
− ρid

∂gbc
∂xi

+ Ledcgeb + Ledbgec − Lebcged
)
.

Proof. In the condition (i) written for s1, s2, s3 ∈ Γ(E) we cyclically
permute s1, s2, s3 and so we obtain two new identities. We add these
and from the result we subtract the first. Using (ii) some terms cancel
each other and we get (3.5). Writing (3.5) in a local basis of sections
we find (3.6). The uniqueness follows by contradiction.

If we put

(3.7) T∇(s1, s2) = ∇s1s2 −∇s2s1 − [s1, s2], s1, s2 ∈ Γ(E)

we get a section in the bundle L(E,E;E) that may be called the
torsion of ∇.

The connection∇ given by the Theorem 3.1 is called the Levi-Civita
connection of A.

We stress that the Theorem 3.1 says that given g there exists and
is unique ∇ such that ∇g = 0 and T∇ = 0.

Now we give a different proof of this theorem.
Given g we may associate to it the energy function E : E → R,
E(s) = g(s, s), s ∈ E. Locally, E(x, y) = gab(x)yayb, s = yasa.

The energy function E is a regular Lagrangian on E i.e. det

(
1

2

∂2E
∂ya∂yb

)
=

det(gab(x)) 6= 0.
In [2], we associated to any regular Lagrangian L on a Lie algebroid

a semispray on E i.e. a vector field

S = ρiay
a ∂

∂xi
− 2Ga

L(x, y)
∂

∂ya

with

(3.8) Ga
L =

1

4
gab
(

∂2L

∂yb∂xi
ρicy

c − ρib
∂L

∂xi
− Lcbdyd

∂L

∂yc

)
,



12 MIHAI ANASTASIEI AND MANUELA GÎRŢU

where gab =
1

2

∂2L

∂ya∂yb
and (gab) is the inverse of the matrix (gab).

Taking L = E in (3.8), a direct calculation in which Lacdy
cyd = 0 is

used, shows that the semispray associated to E has the form

(3.9) S = ρiay
a ∂

∂xi
− Γacd(x)ycyd

∂

∂ya
,

with Γacd given by (3.6). These coefficients determines ∇. They are
symmetric in bottom indices, hence T∇ = 0. The uniqueness of ∇
follows by contradiction.

By (3.9) it follows
Theorem 4.2 The integral curves of S are just the geodesics of the

Levi-Civita connection ∇ in the Lie algebroid A.

4. Einstein equations in Lie algebroids

Let A = (ξ, [., .], ρ) be a Lie algebroid with ξ = (E, p,M) endowed
with a metric g which is non-degenerate but of arbitrary signature.
The Theorem 3.1 still holds for this metric (called pseudo- Riemannian
or semi-Riemannian) and we shall denote by ∇ the linear connection
given by (3.5) or equivalently by (3.6). The torsion of ∇ vanishes.
The curvature of ∇ is defined by
(4.1)
R(s1, s2)s3 = ∇s1∇s2s3 −∇s2∇s1s3 −∇[s1,s2]s3, s1, s2, s3 ∈ Γ(E).

The following properties of R∇ are immediate :

• R(s1, s2)s3 = −R(s2, s1)s3.
• R(s1, s2)s3 +R(s2, s3)s1 +R(s3, s1)s2 = 0.

In a local basis {σa} of sections in ξ, we obtain

(4.2) R(σa, σb)σc = R e
c abσe,

where

(4.3) R e
c ab = ρia

∂Γecb
∂xi
− ρib

∂Γeca
∂xi

+ ΓdcbΓ
e
da − ΓdcaΓ

e
db − LdabΓecd.

The contraction C(
e
b

) provides the Ricci tensor field Ric(s, σ)

whose local coordinates are given by

(4.4) Ric(σc, σa) = Ricca = R b
c ab.
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The function R locally given by

(4.5) R(σc, σa) = gcaRicca,

is called the scalar curvature of ∇.
Definition 4.1. The equation

(4.6) Ric− 1

2
Rg = 8πκT

is called the Einstein equation.
In the equation (4.6), the left hand side is the Einstein curvature

tensor E that is constructed using the metric g. On the right hand
side we have a tensor field T called the stress-energy-momentum tensor
and represents the matter and energy that generate the gravitational
field of potentials (gab). The constant κ is the gravitational constant.
Locally, (4.6) looks as follows

(4.6’) Ricab −
1

2
Rgab = 8πκTab.

In the empty space (no matter, no energy) we have Tab = 0. Contract-
ing (4.6’) with gab one yields R = 0 and so it simplifies to

(4.6”) Ricab = 0.

We set Eab = Ricab −
1

2
Rgab and Ea

b = gacEcb. The divergence of E

is defined by

(4.7) divE = Ea
b;a,

where ; denotes the covariant derivative and we have
Lemma 4.1. divE = 0.
The proof is standard. It is based on the second Bianchi identity

(∇s3R)(s1, s2) + (∇s1R)(s2, s3) + (∇s3R)(s3, s1) = 0,

written in a basis (σa) of local sections in E.
By Lemma 4.1 necessarily we must have

(4.8) divT = 0 (assuming the Einstein equation holds).

The equation (4.8) is called the continuity condition.
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Remarks.

(1) The standard framework of the theory of the gravitational field
is obtained when E = TM , ρ =identity, [, ] is the usual bracket
of vector fields and g is a pseudo-Riemannian (Lorentz) metric
on M .

(2) Let ξ = (V TM, τV , TM) be the vertical bundle over TM and
i : V TM → TTM the inclusion map. Then (ξ, i, [, ]), where
[, ] is the usual bracket of the vertical vector fields is a Lie
algebroid. A pseudo-Riemannian (Lorentz) metric g in it is
nothing but a generalized Lagrange metric as this was defined
in [6]. If (xi, yi) are local coordinates on TM , a local basis of

sections of ξ is

(
∂

∂yi

)
, i = 1, 2, ..., n and the components of g

are given by the matrix (gij(x, y)) :=

(
g

(
∂

∂yi
,
∂

∂yj

))
. By the

general formula (3.6), the local coefficients of the Levi-Civita
connection ∇ of g are given by

(4.9) Γijk =
1

2
gih
(
∂ghj
∂yk

+
∂ghk
∂yj
− ∂gjk
∂yh

)
.

The curvature S of ∇ remembers the vertical curvature from
the theory of generalized Lagrange metrics and the Einstein
equation derived from it refers to vertical part. When g is a
Finsler metric, the condition Ric= 0 implies the vanishing of
the curvature tensor i.e. ∇ is flat. Thus a Finslerian gravita-
tional theory using only the vertical curvature fails.

(3) Let E be a k− dimensional subbundle of TM . This is called
also a distribution of rank k on M . This distribution is involu-
tive if is closed under the usual bracket [.,,] of vector fields. In
this case A = (ξ, i, [., .]) with ξ = (E, π,M) and i : E 7→ TM
the inclusion as anchor is a Lie algebroid. By the Frobenius
theorem the involutive distribution E ⊂ TM is integrable and
so every point of M is contained in a leaf of dimension k of
it. A pseudo-Riemannian metric in the Lie algebroid A defines
a pseudo-Riemannian metric on each leaf. The Einstein equa-
tion is then living on such a leaf immersed in M . For instance,
in the dimension four if k = 3 the leaves could be the slices
t = constant and one gets a gravitational field theory in a three
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dimensional space. A kind of converse of the Kaluza-Klein pro-
cedure of extending the number of dimensions,appears.
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