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DIFFERENTIABILITY OF MONOTONE
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Abstract. We prove a differentiability result for monotone Sobolev
functions on doubling metric measure spaces supporting a Poincaré in-
equality. This generalizes a result used by Rickman in proving the dif-
ferentiability of quasiregular mappings. Our main tools are a Stepanov
differentiability theorem in doubling metric measure spaces supporting
a Poincaré inequality, proved in 2004 by Balogh, Rogovin and Zürcher
and a Sobolev embedding theorem on spheres proved by Haj lasz and
Koskela.

As an application, it is shown that continuous quasiminimizers for
the p− energy integral with p > Q−1 are almost everywhere Cheeger
differentiable, where Q is the doubling exponent of the underlying
metric measure space.
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1. Introduction

The study of Sobolev spaces and p−harmonic functions on met-
ric measure spaces led to the definition of a concept of differentia-
bility in the setting of metric measure spaces. In his seminal paper
[2] Cheeger proved that every metric space with a doubling measure
supporting a Poincaré inequality admits a strong measurable differen-
tiable structure, with which Lipschitz functions can be differentiated
almost everywhere. We recall that quasiconformal theory and non-
linear potential theory have been successfully extended to doubling
metric measure spaces supporting a Poincaré inequality.

Balogh, Rogovin and Zürcher [1] used Cheeger’s extension of Rade-
macher differentiability theorem to prove a generalization of this re-
sult, the following extension of Stepanov’s differentiability theorem.

Theorem 1.1.[1] Let (X, d, µ) be a doubling metric measure space.
Assume that there exists a strong measurable differentiable structure
{(Xα, ϕα)} for (X, d, µ) with respect to LIP (X), such that the sets
Xα are mutually disjoint. Then each function f : X → R is µ−a.e.
differentiable in S(f) := {x ∈ X : Lip f(x) < ∞} with respect to the
structure {(Xα, ϕα)}.

We will assume that (X, d, µ) is a doubling metric measure space,
where the measure µ is Borel regular positive and finite on ball, Q ≥ 1
is a homogeneous dimension of X and 1 ≤ p <∞.

If a function u belongs to the Sobolev space W 1,p (Ω), where Ω ⊂ Rn
is a domain and p > n, then u is differentiable almost everywhere in Ω,
by Cesari-Calderón theorem [16, Lemma VI.4.1]. The applications of
Stepanov’s differentiability theorem given in [1] include the following
extension of Cesari-Calderón theorem to doubling metric spaces: if
u : X → R is a measurable function and g ∈ Lploc(X), with p > Q,
such that the pair (u, g) satisfies a weak (1, p)−Poincaré inequality,
then Lip u(x) < ∞ at every Lebesgue point of gp [1, Theorem 4.1].
In particular, u is differentiable almost everywhere in X. Moreover, u
has a locally (1−Q/p)−Hölder continuous representative.

The condition p > n is not necessary for the differentiability of func-
tions u ∈ W 1,p (Ω), where Ω ⊂ Rn is a domain. Rickman [16, Lemma
VI.4.4] proved that every monotone Sobolev function u ∈ W 1,p(Ω)
with p > n − 1 is differentiable almost everywhere, using a method
of Väisälä [19] which is an n−dimensional version of a technique used
by Gehring and Lehto [4]. An important consequence of this result is
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the differentiability a.e. of quasiregular mappings [16, Theorem I.2.4],
that was proved for the first time by Reshetnyak [14].

Onninen [13] proved a sharp integrability condition on the partial
derivatives of a weakly monotone Sobolev function on a domain in
Rn, that guarantees the differentiability a.e. of the function. Unfor-
tunately, the methods from the proofs of Rickman and Onninen are
unlikely to be extended to the setting of metric measure spaces.

In this paper we extend Rickman’s result to doubling metric mea-
sure spaces supporting a Poincaré inequality, using Theorem 1.1 and a
Sobolev embedding theorem on spheres proved by Haj lasz and Koskela
[6, Theorem 7.1].

2. Preliminaries

There are several definitions for the monotonicity of real functions
in domains in Rn, definitions that can be extended to the setting of
metric measure spaces.

Let Ω ⊂ Rn be a domain. A continuous function u : Ω→ R is said to
be monotone in the sense of Lebesgue if sup

D
u ≤ sup

∂D
u and inf

D
u ≥ inf

∂D
u

for every bounded domain D with D ⊂ Ω. The continuity of u implies
sup
D
u ≥ sup

∂D
u and inf

D
u ≤ inf

∂D
u for every set D with D ⊂ Ω. Every

continuous and open real function on a domain Ω ⊂ Rn is monotone
in the sense of Lebesgue.

Onninen [13] says that a continuous function u : Ω→ R is monotone
in the sense of Lebesgue if

(1) sup
B
u ≤ sup

∂B
u and inf

B
u ≥ inf

∂B
u.

for each ball B with B ⊂ Ω. This definition is less restrictive than
the above one.

For every real function u on a set B from a topological space, sup
B

u =

max

{
sup
B
u, sup

∂B
u

}
and inf

B
u = min

{
inf
B
u, inf

∂B
u
}

. Inequalities (1)

show that the restriction to B of a monotone continuous function u
satisfies a maximum principle and a minimum principle.
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Let u be a real function in a set X. For every nonempty set A ⊂ X,
the oscillation of u on A is defined by osc(u,A) = sup

x,y∈A
|u(x)− u(y)|.

Note that osc(u,A) = sup
A
u− inf

A
u.

In [16] a continuous function u : U → R in an open set U ⊂ Rn is
called monotone if

(2) osc (u,D) = osc (u, ∂D)

for every bounded domain D with D ⊂ U . Note that osc (u,D) ≥
osc (u, ∂D) for every continuous function u : U → R and each set D
with D ⊂ U .

If u : U → R is continuous and monotone in the sense of Lebesgue,
then u satisfies (2).

Let (X, d) be a metric space. The ball B (x, r) and the sphere
S (x, r) of center x ∈ X and radius r > 0 are defined by B (x, r) =
{y ∈ X : d (y, x) < r}, respectively S (x, r) = {y ∈ X : d (y, x) = r}.
By the continuity of the distance d(x, ·) on X, we have ∂B (x, r) ⊂
S (x, r). It is possible to have S (x, r) empty or to have S (x, r) differ-
ent from ∂B (x, r), for example in discrete spaces.

In [6, p. 34] it is said that a function u : X → R is monotone if

(3) osc (u,B (x, r)) ≤ osc (u, S (x, r))

for every x ∈ X and r > 0. It is implicitely assumed that S (x, r) is
non-empty.

We will say that the metric space (X, d) has the (NESS) property if
small spheres are nonempty, i.e. for each x0 ∈ X there exists R (x0) >
0 such that S (x, r) is nonempty wehenever 0 < r ≤ R (x0).

In the setting of metric spaces with (NESS) property we will replace
inequalities (1) by

(4) sup
B(x,r)

u ≤ sup
S(x,r)

u and inf
B(x,r)

u ≥ inf
S(x,r)

u,

where x ∈ X and 0 < r < R (x).
Definition 2.1. Assume that the metric space (X, d) has (NESS)

property. Let Ω ⊂ X be an open set and u : Ω → R. We say
that u is locally monotone (respectively, locally monotone in the sense
of Lebesgue) at x0 ∈ Ω if there exists a positive number R (u, x0)
such that (3) holds (respectively, inequalities (4) hold for all 0 < r <
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R (u, x0). We say that u : Ω → R is locally monotone (locally mono-
tone in the sense of Lebesgue) if it is locally monotone (locally mono-
tone in the sense of Lebesgue) at each point x0 ∈ X.

Obviously, every function that is locally monotone in the sense of
Lebesgue is also locally monotone.

We will need a connection between strong extremum principles and
the property of a function to be locally monotone in the sense of
Lebesgue.

Lemma 2.2. Let X be a proper metric space with (NESS) property.
Let Ω ⊂ X be an open set and u : Ω → R be a continuous function.
If the restriction of u to an arbitrary ball B ⊂ Ω has neither a global
maximum, nor a global minimum, then u : Ω→ R is locally monotone
in the sense of Lebesgue.

Proof. Let x0 ∈ X and let R = R (x0) be a positive number such
that, for each 0 < r < R, the sphere S (x0, r) is nonempty and the
closed ball D (x0, r) = B (x0, r)∪S (x0, r) ⊂ Ω, for . Since X is proper,
D (x0, r)is compact.

The restriction of the continuous function u to D (x0, r) has a global
maximum u (xM) and a global minimum u (xm). If xM ∈ B (x0, r),
then the restriction of u to B (x0, r) has a global maximum, namely
u (xM). This contradiction shows that xM ∈ S (x0, r), therefore

sup
B(x0,r)

u ≤ sup
D(x0,r)

u = u (xM) = sup
S(x0,r)

u.

Similarly, inf
B(x0,r)

u ≥ inf
S(x0,r)

u. �

In what follows, we assume that (X, d, µ) is a metric measure space,
i.e. the metric space (X, d) is equipped with a measure µ, that is
assumed to be Borel regular, positive and finite on balls. If B :=
B(x, r) and σ > 0 then σB stands for B(x, σr).

In order to describe the scaled oscillations of a function u : X → R
which is not necessarily Lipschitz, we use the upper Lipschitz constant
defined by

Lip u(x) = lim sup
r→0

1

r
sup

y∈B(x,r)

|u(x)− u(y)| .
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Note that Lip u(x) = lim sup
y→x
y 6=x

|u(x)−u(y)|
d(x,y)

if x is a limit point of X and

Lip u(x) = 0 if x is isolated ([2], [1]).

Let 1 ≤ p < ∞. The p−modulus of a family of paths Γ in X,
denoted by Modp(Γ), is the number inf

ρ

∫
X

ρpdµ, where the infimum is

taken over all non-negative Borel measurable functions ρ such that for
all rectifiable paths γ which belong to Γ we have

∫
γ

ρds ≥ 1 [17].

The concept of upper gradient is a basic one in the ”first-order
calculus” on metric measure spaces, playing the role of a substitute
for the length of the gradient of a real-valued C1−function on an
Euclidean domain. A non-negative Borel measurable function g is
said to be an upper gradient of u : X → R in X if for all rectifiable
paths γ : [a, b]→ X the following inequality holds

(5) |u(γ(a))− u(γ(b))| ≤
∫
γ

gds.

A non-negative Borel measurable function g is called a p−weak up-
per gradient of u if (5) holds for all rectifiable paths γ : [a, b] → X
except a family of zero p−modulus [17].

The Newtonian spaces N1,p(X), 1 ≤ p < ∞ [17] are Sobolev-type
spaces on metric measure spaces, based on the notion of (weak) upper

gradient. Let Ñ1,p(X) be the collection of all real-valued p−integrable
functions u on X that possess a p−integrable p−weak upper gradient.
This space can be endowed with the seminorm ‖u‖Ñ1,p := ‖u‖p +

inf ‖g‖p, where the infimum is taken over all p−integrable p−weak

upper gradients g of u. If u and v are functions in Ñ1,p, we set u ∼ v
if ‖u− v‖Ñ1,p = 0. Then ∼ is an equivalence relation. The quotient

space N1,p(X) := Ñ1,p(X)� ∼ equipped with the norm ‖u‖N1,p :=
‖u‖Ñ1,p , is the Newtonian space corresponding to the index p. Let Ω
be an open subset of X. The Newtonian space N1,p(Ω) is defined in an
obvious way. As in [11], we say that a function u : Ω→ R belongs to
the local Newtonian space N1,p

loc (Ω) if u ∈ Lploc (Ω) and u has a p−weak
upper gradient g ∈ Lploc (Ω).
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The metric measure space (X, d, µ) is said to be doubling if there is
a constant Cd ≥ 1 so that

(6) µ(B(x, 2r)) ≤ Cdµ(B(x, r))

for every ball B(x, r) in X. By the doubling condition (6) there
exist some constants Cb > 0 and Q ≥ 0 such that

(7)
µ(B(x, r))

µ(B(x0, r0))
≥ Cb

(
r

r0

)Q
whenever x ∈ B(x0, r0) and 0 < r ≤ r0. Every such Q is called
a homogeneous dimension (a doubling exponent) of the given metric
measure space.

The metric space (X, d) is said to be proper if every closed bounded
subset of X is compact. Under the assumption that µ is doubling, X
is proper if and only if it is complete [5, Theorem 4.5].

Let u ∈ L1
loc(X) and g be a measurable non-negative function on X.

Let p > 0. The pair (u, g) is said to satisfy a weak (1, p)−Poincaré
inequality if there exist some constants CP > 0 and τ ≥ 1 such that

(8)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP r

 1

µ(τB))

∫
τB

gpdµ

1/p

for every ball B = B (x, r) in X. Here uB = 1
µ(B)

∫
B

udµ [6, page 9].

We say that the metric measure space (X, d, µ) supports a weak
(1, p)−Poincaré inequality (for locally integrable functions) if there
exist some constants CP > 0 and τ ≥ 1 such that a pair (u, g) satisfies
(8) whenever u ∈ L1

loc(X) and g is an upper gradient of u.
If (X, d, µ) supports a weak (1, p)−Poincaré inequality and u ∈

L1
loc(X) has a p−integrable p−weak upper gradient g then (8) holds,

since g is the limit in Lp(X) of a sequence of upper gradients (gn) of
u and each pair (u, gn) satisfies (8).

Remark 2.3. If (X, d, µ) supports a weak (1, p)−Poincaré inequal-
ity for some p > 0 then (X, d, µ) supports a weak (1, q)−Poincaré
inequality for every q > p, by Hölder inequality.
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Remark 2.4. In a metric measure space supporting a Poincaré
inequality every ball whose complement is non-empty has a non-empty
boundary, in particular the metric space has (NESS) property [18, p.
25].

The essence of Cheeger’s study on the infinitesimal behavior of Lip-
schitz functions on doubling metric measure spaces can been syn-
thetized in the following theorem, that extends Rademacher diffe-
rentiability theorem.

Theorem 2.5. [8], [1] Let (X, d, µ) be a doubling metric measure
space supporting a weak (1, p)−Poincaré inequality for some 1 ≤ p <
∞. Then there exists a countable collection {(Xα, ϕα)}α∈Λ of mea-
surable sets Xα ⊂ X with positive measure and Lipschitz coordinates

ϕα = (ϕ1
α, ..., ϕ

N(α)
α ) : X → RN(α) , with the following properties:

(i) µ(X \
⋃
α∈Λ

Xα) = 0;

(ii) There exists a non-negative integer N such that N(α) ≤ N for
each α ∈ Λ;

(iii) If f : X → R is Lipschitz , then for each (Xα, ϕα) there exists a
unique (up to a set of zero measure) measurable bounded vector valued
function dαf : Xα → RN(α) such that

(9) lim
y→x
y 6=x

|f(y)− f(x)− dαf(x) · (ϕα(y)− ϕα(x))|
d(y, x)

= 0,

for µ−almost every x ∈ Xα, where ” · ” is the usual inner product
on RN(α) .

If a metric measure space (X, d, µ) satisfies the conclusion of Theo-
rem 2.5, it is said that the space admits a strong measurable differen-
tiable structure and the collection {(Xα, ϕα)}α∈Λ is said to be a strong
measurable differentiable structure for the space.

A function f : X → R (not necessarily Lipschitz) is said to be
Cheeger differentiable at x ∈ Xα, with respect to the strong mea-
surable differentiable structure {(Xα, ϕα)}α∈Λ if there exists a vector
dαf(x) ∈ RN(α) such that (9) holds for f at x [1].
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3. Differentiability of monotone Sobolev functions

The main tool we use in extending Rickman’s lemma to doubling
metric measure spaces is a Sobolev embedding theorem on spheres
proven by Haj lasz and Koskela ([6], Theorem 7.1):

Lemma 3.1. [6] Let (X, d, µ) be a doubling metric measure space,
with a homogeneous dimension Q. Assume that the pair (u, g) satisfies
a weak (1, p)−Poincaré inequality for some p > Q − 1, where u is
in L1

loc (X) and g is a measurable non-negative function on X. Let
x0 ∈ X and let r0 > 0 such that S(x0, r) is nonempty for every
0 < r ≤ r0. Then:

(i) The restriction of u to S(x0, r) is uniformly (1−(Q−1)/p)−Hölder
continuous for almost every 0 < r < r0;

(ii) There exist a constant C1 > 0, depending only on p,Q,CP , Cb, Cd
and a radius r0/2 < r < r0 such that:

(10)

|u(x)− u(y)| ≤ C1d(x, y)1−(Q−1)/pr
(Q−1)/p
0

 1

µ(B(x0, 5τr0))

∫
B(x0,5τr0)

gpdµ


1/p

for every x, y ∈ S(x0, r).

In what follows, we say that a function u : X → R is monotone if

osc(u,B(x0, r)) ≤ osc(S(x0, r)),

for every x0 ∈ X and every r > 0 such that S(x0, r) is non-empty (see
[6], page 36).

Theorem 3.2. Let (X, d, µ) be a doubling metric measure space,
with a homogeneous dimension Q. Assume that for every point x0 ∈
X there exists R(x0) > 0 such that S(x0, r) is non-empty for every
0 < r ≤ R(x0). Let u ∈ L1

loc (X) be a locally monotone function and
g ∈ Lploc(X) be a nonnegative function, where 1 ≤ p <∞. If p > Q−1
and the pair (u, g) satisfies a weak (1, p)−Poincaré inequality, then
Lip u(x) <∞ for µ− a.e. x ∈ X.

If X admits a strong measurable differentiable structure, then u is
differentiable µ− a.e. with respect to this structure.

Proof. Fix x0 ∈ X. If x0 is isolated, then Lip u(x0) = 0 < ∞.
Assume that x0 is a limit point of X.
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Let R := R(u, x0) be a positive number as in Definition 2.
For every z ∈ B(x0, R/2) there exists a positive integer k = k(z)

such that

(11) 2−k−1R ≤ d(z, x0) < 2−kR.

Apply to u Lemma 3.1 with r0 = 2−k+1R. There exists a radius r with
2−kR < r < 2−k+1R such that (10) holds for every x, y ∈ S(x0, r). It
follows that

(12) osc(u, S(x0, r)) ≤ 2C1r

 1

µ(B(x0, 5τr0))

∫
B(x0,5τr0)

gpdµ


1/p

.

Since u is a locally monotone function, |u(z)− u(x0)| ≤ osc(u,B(x0, r)) ≤
osc(u, S(x0, r)). Using this inequality together with (11) and (12) we
get

|u(z)− u(x0)|
d(z, x0)

≤ 22k+1C1

 1

µ(B(x0, 5τr0))

∫
B(x0,5τr0)

gpdµ


1/p

.

From (11) and the choice of r0 it follows that
B(x0, 5τr0) ⊂ µ(B(x0, λd(z, x0))) ⊂ B(x0, 10τr0), where λ = 20τ . By
the doubling property of µ we obtain µ(B(x0, λd(z, x0))) ≤ Cdµ(B(x0, 5τr0)).
Therefore,

(13)

|u(z)− u(x0)|
d(z, x0)

≤ C3

 1

µ(B(x0, λd(z, x0)))

∫
B(x0,λd(z,x0))

gpdµ


1/p

,

where C3 = 22k+1C1 (Cd)
−1/p.

Assume that x0 is a Lebesgue point of gp. Taking lim sup for z → x0,

z 6= x0 in (13) we obtain

Lip u(x0) ≤ C3g(x0) <∞.
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The second claim follows by Stepanov differentiability theorem,
Theorem 1.1. �

Corollary 3.3. Assume that (X, d, µ) is a doubling metric measure
space supporting a weak (1, p)−Poincaré inequality with 1 ≤ p < ∞.
Let Q be a homogeneous dimension of (X, d, µ). If p > Q − 1 then
every locally monotone function u ∈ N1,p

loc (X) satisfies Lip u(x) < ∞
for µ− a.e. x ∈ X, in particular it is differentiable µ−a.e. with
respect to any strong measurable differentiable structure for (X, d, µ).

Proof. Let u ∈ N1,p
loc (X), 1 ≤ p <∞. Then u ∈ Lploc (Ω) ⊂ L1

loc (Ω)
and there exists a weak p− upper gradient g ∈ Lploc(X) of u. Since
(X, d, µ) supports a weak (1, p)−Poincaré inequality, the metric space
(X, d) has the (NESS) property and the pair (u, g) satisfies a weak
(1, p)−Poincaré inequality. If, in addition, u is locally monotone and
p > Q− 1, then all the assumptions of Theorem 3.2 are met. �

4. On the regularity of quasiminimizers

If 1 < p < ∞ then each function u ∈ N1,p(X) has a minimal
p−integrable p−weak upper gradient in X, denoted by gu, in the sense
that if g is another p−weak upper gradient of u, then gu ≤ g µ−a.e.in
X [2, Theorem 2.18].

Let Ω be an open subset of X. If u ∈ N1,p
loc (Ω) with 1 < p < ∞,

then u has a minimal p−weak upper gradient gu in Ω, in the following
sense: whenever D is an open set with D ⊂ Ω, if gu,D is a minimal
p−weak upper gradient of u in D, then gu = gu,D µ−a.e.in D [10].

The p−capacity of a set E ⊂ X is defined by Cp(E) = inf
u
‖u‖pN1,p ,

where the infimum is taken over all functions u ∈ N1,p(X) with u = 1
on E. The Newtonian space with zero boundary values N1,p

0 (E) is
the set of functions u : E → R for which there exists a function
ũ ∈ N1,p(X) such that ũ = u µ−almost everywhere in E and

Cp({x ∈ X \ E : ũ(x) 6= 0}) = 0.

A representative in N1,p
loc (Ω) of a function u ∈ N1,p

loc (Ω) is obtained
by modifying u on a set of zero p−capacity.

In what follows, 1 < p <∞ and Ω ⊂ X is an open set.
A function u ∈ N1,p

loc (Ω) is said to be a quasiminimizer (for the
Dirichlet p− energy integral) on Ω if there exists a constant K ≥ 1
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such that for all bounded open sets Ω′ with Ω′ ⊂ Ω and for each
v ∈ N1,p(Ω′) with u− v ∈ N1,p

0 (Ω′) we have∫
Ω′∩{u6=v}

gpudµ ≤ K

∫
Ω′∩{u6=v}

gpvdµ,

where gu and gv are the minimal p−weak upper gradients of u and v
respectively.

In particular, every p−harmonic function is a quasiminimizer with
K = 1. A representative in N1,p

loc (Ω) of a quasiminimizer u ∈ N1,p
loc (Ω)

is also a quasiminimizer.

Kinnunen and Shanmugalingam [11] studied the regularity of quasi-
minimizers of the p−energy integral, under the assumptions that the
space (X, d, µ) supports a weak (1, q)−Poincaré inequality with 1 <
q < p. Kinnunen and Shanmugalingam proved that, for every quasi-
minimizer u ∈ N1,p

loc (Ω) in Ω, the functions u and (−u) belong to the
De Giorgi class DGp(Ω) [11, Proposition 3.3] and derived from this
result several regularity properties of quasiminimizers. Each function
u with u, (−u) ∈ DGp (Ω) is essentially locally bounded [11, Theo-

rem 4.3] and has a representative in N1,p
loc (Ω) that is locally α−Hölder

continuous for some 0 < α ≤ 1 not depending on u [11, Theorem 5.2].
Moreover, quasiminimizers satisfy the following strong extremum prin-
ciple [11, Corollary 6.4].

Lemma 4.1. Assume that the doubling metric measure space (X, d, µ)
supports a weak (1, q)−Poincaré inequality with 1 < q < p. Let Ω be
an open subset of X and suppose that u is a continuous non-constant
quasiminimizer for the p−energy integral in Ω. Then u does attain
neither its maximum nor its minimum in Ω.

Remark 4.2. A deep theorem by Keith and Zhong [9] shows that
for every metric measure space (X, d, µ) that is complete, doubling
and supports a weak (1, p)−Poincaré inequality for some 1 < p < ∞
there exists ε > 0 such that (X, d, µ) supports a weak (1, q)−Poincaré
inequality for every q > p − ε. Therefore, the results from [11] re-
main valid relaxing the assumption that (X, d, µ) supports a weak
(1, q)−Poincaré inequality with 1 < q < p to the assumption that
(X, d, µ) supports a weak (1, p)−Poincaré, but supposing that the
metric space (X, d) is complete.
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From Lemma 4.1 and Lemma 2.2 we obtain the following lemma.
Lemma 4.3. Assume that the doubling metric measure space X

is complete and supports a weak (1, p)−Poincaré inequality with 1 <
p < ∞. Let Ω ⊂ X be open. Every continuous quasiminimizer u ∈
N1,p
loc (Ω) of the p−energy integral is locally monotone in the sense of

Lebesgue.
Proof. Let u be a continuous quasiminimizer of the p−energy in-

tegral. If u is constant, then it is obviously locally monotone in the
sense of Lebesgue. Assume that u is non-constant. (X, d, µ) supports
a weak (1, q)−Poincaré inequality for some 1 < q < p, see Remark 4.2.
Then Lemma 4.1 implies that u does not attain neither its maximum
nor its minimum in Ω.
X is doubling and complete, hence X is proper. Since X supports a

weak (1, p)−Poincaré inequality, X has (NESS) property, see Remark
2.4. Then u is locally monotone in the sense of Lebesgue, according
to Lemma 2.2. �

In [12] it is proved a higher integrability property for the minimal
weak upper gradient of a quasiminimizer for the p−energy integral,
u-sing an extension of Gehring lemma to doubling metric measure
spaces, proved by Zatorska-Goldstein [20]. Assume that Q > 1/2, X
satisfies weak (1, q)−Poincaré inequality for some 1 < q <∞ and that
q < p ≤ 2Qq and, in addition, p < Qq/ (Q− q) when q < Q. Then
there exists a positive constant ε0 such that for every quasiminimizer
u ∈ N1,p

loc (X) and for each 0 ≤ ε < qε0 we have gu ∈ Lp+εloc (X) [12,
Theorem 5].

Assume that Q > 1 and X satisfies a weak (1, Q)−Poincaré inequal-
ity.We may assume that X satisfies a weak (1, q)−Poincaré inequality
for some q such that 1 < q < Q, see Remark 4.2. Then the above re-
sult for p = Q implies that for every quasiminimizer u ∈ N1,Q

loc (X) we

have gu ∈ LQ+ε
loc (X) for some ε > 0. By Cesari-Calderón-type theorem

[1, Theorem 4.1], Lip u(x) <∞ for µ−a.e. x ∈ X.

Obviously, every u ∈ N1,p
loc (X) with p > Q satisfies the condition

Lip u(x) <∞ for µ−a.e. x ∈ X.
It remains to consider the case p < Q. We will give a simple proof

for the fact that, when p > Q−1, every continuous quasiminimizer u ∈
N1,p
loc (X) of the p−energy integral satisfies the condition Lip u(x) <∞

for µ−a.e. x ∈ X.
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Proposition 4.4. Let (X, d, µ) be a complete doubling metric mea-
sure space, with a homogeneous dimension Q, and supporting a weak
(1, p)−Poincaré inequality, where 1 < p <∞. If p > Q− 1, then ev-
ery continuous quasiminimizer u ∈ N1,p

loc (X) of the p−energy integral
satisfies

(14) Lip (u) <∞ µ− a.e. in X.

In particular, u is differentiable with respect to any strong differen-
tiable structure on X.

Proof. By Lemma 4.3, u is locally monotone in the sense of
Lebesgue, hence it is locally monotone. Since p > Q − 1, the claim
follows from Corollary 4.3. �

Proposition 4.4 can be derived from a deeper known result. Very
recently, under the above assumptions on (X, d, µ), where 1 < p < Q,
Gong and Haj lasz [3, Theorem 3.1] proved that every quasiminimizer
u ∈ N1,p

loc (X) of a certain functional more general than the p−energy
functional satisfies (14).

Remark 4.5. For p = Q Proposition 4.4 gives [12, Corollary 6].
It would be interesting to extend Proposition 4.4 to the case when

u ∈ N1,p
loc (Ω), where Ω is an open subset of X.
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condition, Annals of Math., 167 (2008), 575-599

[10] J. Kinnunen and O. Martio, Potential theory of quasiminimizers, Ann.
Acad. Sci. Fenn. Math. 28 (2003), 459-490.

[11] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers
on metric spaces, Manuscripta Math., 105 (2001), 401-423.

[12] M. Mocanu, Some regularity properties of quasiminimizers in metric
measure spaces, Rev. Roum. Math. Pures Appl., LI (5-6), 2006, 723-734.

[13] J. Onninen, Differentiability of weakly monotone mappings, Real
Anal. Exchange 26 (2) (2000/2001), 761-772.

[14] Y. G. Reshetnyak, Space Mappings with Bounded Distortion (Russian),
Sibirsk. Math. Zh. 8 (1967), 629-659.

[15] Y. G. Reshetnyak, Space Mappings with Bounded Distortion, Transla-
tions of Mathematical Monographs, volume 73, AMS, Rhode Island, 1989.

[16] S. Rickman, Quasiregular mappings, Springer-Verlag, Berlin, 1993.
[17] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev

spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000),
no.2, 243-279.

[18] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev
spaces to metric measure spaces, Ph. D. dissertation, University of Michi-
gan at Ann Arbor, 1999.
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