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Abstract. Price’s remarkable theorem on Gaussian random vari-
ables was published in 1958 and distinguished by the “Information
Theory Society Golden Jubilee Paper Award” in 1988. Nowadays,
this theorem remains an important tool used extensively in a wide
spectrum of engineering problems, such as those appearing in signal
processing, radio and space sciences, as well as information theory and
astrophysics. In this paper, Price’s theorem is applied to the inves-
tigation of possible uncorrelatedness for powers of Gaussian random
variables. For zero-mean Gaussian variables the only two possible
uncorrelatedness sets has been identified and presented.

The study aims to bring into spotlight the celebrated theorem usu-
ally disregarded in standard Probability and Statistics courses as well
as to initiate further interest in the theorem by demonstrating a series
of new applications.
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1. Introduction

In 1958, Robert Price (7 July 1929 - 3 December 2008) published
his famous paper “A Useful Theorem for Nonlinear Devices Having
Gaussian Inputs” [8] introducing an attractive and applicable result
known today as ‘Price’s Theorem’, which has turned out to be an
important tool in the investigation of random processes and statistics
occurring in such areas as signal processing, software engineering, ra-
dio physics, and others (see, for example, [3] and [13]). In 1988, this
paper received the “Information Theory Society Golden Jubilee Paper
Award” which paid tribute to this celebrated discovery. Nowadays, the
theorem is still used extensively in various investigations ranging from
electrical engineering to space research.

The aim of the present paper is to shed light on this important
theorem which is usually not covered in traditional Probability and
Statistics courses for engineers and, in addition, to demonstrate its
application in problem-based learning (PBL) (as recommended, for
example, in [7]) by solving open problems related to Gaussian random
variables.

Let us recall the theorem. For the purpose of clarity, we present
only a simplified version of the theorem satisfying the needs of this
paper.

Price’s Theorem. Let ξ1 and ξ2 be Gaussian random variables -
that is, random variables with joint probability density:
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(1)

where r is a correlation coefficient of ξ1 and ξ2. By u, we denote the
covariance of ξ1 and ξ2, that is:

u = Cov(ξ1, ξ2) = rσ1σ2.

For a polynomial g(x, y), consider the expected value

E [g(ξ1, ξ2)] = f(u).
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Then

(1) f (n)(u) = E

[
∂(2n)g(ξ1, ξ2)

∂ξn1 ∂ξ
n
2

]
.

The proof can be found in [8] or in the textbook [6], Section 7-2, p.
161.

It should be emphasized that not only had R. Price proved the
theorem for a wider class of functions g(x, y), but he also showed that
(1) holds only for Gaussian random variables ξ1 and ξ2 if g(x, y) is
allowed to be arbitrary. However, his considerations require notions
beyond the scope of this paper and, hence, are omitted.

In this paper, we present a new application of this theorem to the
study of possible uncorrelatedness for powers of Gaussian random vari-
ables.

2. Uncorrelatedness sets

Since the concept of independence is fundamental in Probability
Theory, Mathematical Statistics, and their applications, generaliza-
tions of independence have been studied widely from different per-
spectives. We recall the classical Bohlmann and Bernstein examples
of 3 random events that are pairwise but not mutually independent
(exhibited, for example, in [11], Section 3.2, p. 13). Further research
on the notion of independence has resulted in the definitions of m-wise
independent random variables, independence on the k-th level, inde-
pendence/dependence structure, total dependence, along with other
rather specific independence properties (see, for example, [9] - [12]).
The general problem to construct n random events with a prescribed
independence/dependence structure was stated by J. Stoyanov, and
called by him “The Italian Problem”. Its solution presented in [10]
provides a far-reaching generalization of Bernstein’s example.

For random variables, the earliest and mostly used generalization is
uncorrelatedness of two random variables described by the property:

(2) E (ξ1ξ2) = E (ξ1) E (ξ2) ,

provided that all of the expected values exist. It is commonly known
that if ξ1 and ξ2 are independent random variables, then they satisfy
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(2) and, therefore, they are uncorrelated. However, random variables
may be uncorrelated without being independent. Consider the follow-
ing simple example:

Example 1. Let Ω = [0, 2π] be a sample space with the probability
P(A) = 1

2π
length(A), and let ξ1, ξ2 be random variables on Ω given

by:

ξ1(x) = sin x, ξ2(x) = cos x.

The expected values of these random variables can be found easily:
E (ξ1) = E (ξ2) = 0. The calculation of the expected value of their
product ξ1ξ2 yields: E (ξ1ξ2) = 0, whence we see that (2) holds - that
is ξ1 and ξ2 are uncorrelated. However they cannot be independent
because they are connected with the well-known identity:

sin2 x+ cos2 x = 1.

In general, uncorrelatedness is a much weaker condition than inde-
pendence, see, for a example, a paper by David [1] for some historic
information. Nevertheless, it is an important concept of Probability
Theory and Statistics, especially in regression analysis. Uncorrelat-
edness is measured with the help of a correlation coefficient r taking
values from −1 to 1 with r = 0 if and only if random variables are un-
correlated. Although many different approaches have been developed
(see, for example, [4] and [9]), there is no universal way of measuring
whether random variables are “more independent” or “less indepen-
dent.” Here, we make one more attempt to compare the degrees of
relationship between random variables, usually when they are depen-
dent.

Our approach takes into consideration the uncorrelatedness of not
only random variables ξ1 and ξ2 themselves but also of their positive
integer powers ξj1 and ξl2. It is customary to denote the set of all positive
integers by N, that is N = {1, 2, 3, . . . }. We take j and l to be numbers
from N. The collection of points in the Cartesian plane whose both
coordinates are positive integers is usually denoted by N2 or N× N.

Given random variables ξ1 and ξ2, we check for which of their powers
condition (2) holds. The following definition can be reached.

Definition. Let us have random variables ξ1 and ξ2. The collection
of pairs (j, l) in N2 so that ξj1 and ξl2 are uncorrelated constitutes an
uncorrelatedness set of ξ1 and ξ2.
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We denote the uncorrelatedness set of ξ1 and ξ2 by U(ξ1, ξ2). The
definition above means that

(j, l) ∈ U(ξ1, ξ2)⇔ E
(
ξj1ξ

l
2

)
= E

(
ξj1
)
E
(
ξl2
)
.

An uncorrelatedness set shows which exactly powers of random vari-
ables are uncorrelated. Random variables ξ1 and ξ2 are uncorrelated
in the usual sense (2) if and only if (1, 1) ∈ U(ξ1, ξ2).

Example 2. Let us find the uncorrelatedness set for random vari-
ables ξ1 and ξ2 considered in the Example 1. It has already been
demonstrated that (1, 1) ∈ U(ξ1, ξ2). The behavior of sine and cosine
implies that if j is odd, then E

(
ξj1
)

= 0 as well as E
(
ξj1ξ

l
2

)
= 0, whence

all points with odd j are in the uncorrelatedness set. Similarly, we see
that all points with odd l are also in the set. Then, what about points
(j, l) with both j and l being even? Let us take (j, l) = (2, 2). Then,
E (ξ21) = E (ξ22) = 1

2
, while E (ξ21ξ

2
2) = 1

8
, which shows that ξ21 and

ξ22 are not uncorrelated - that is, (2, 2) /∈ U(ξ1, ξ2). Similar but more
tedious calculations show that (j, l) /∈ U(ξ1, ξ2) whenever both coor-
dinates are even. We have therefore obtained the following answer:

(j, l) ∈ U(ξ1, ξ2)⇔ either j or l or both are odd.

If random variables ξ1 and ξ2 are independent, then so are their
powers and we have

E
(
ξj1ξ

l
2

)
= E

(
ξj1
)

E
(
ξl2
)

for all (j, l) ∈ N2.

In other words, for independent random variables U(ξ1, ξ2) = N2.
Warning! It should be pointed out that, in general, the condition

U(ξ1, ξ2) = N2 does not imply independence of ξ1 and ξ2 (see, for
example, [4], Theorem 2).

One may think that uncorrelatedness sets provide a measure of in-
dependence for random variables in the sense that the wider an un-
correlatedness set is, the more independent random variables become.
The following general theorem concerning uncorrelatedness sets has
been proved in [5], Section 2.

Theorem A. For any subset U ⊆ N2, there exist random variables
ξ1 and ξ2 such that U(ξ1, ξ2) = U - that is U is the uncorrelatedness
set of ξ1 and ξ2.
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Theorem A shows that, in general, an uncorrelatedness set of two
random variables may be an arbitrary subset of N2. In other words,
the uncorrelatedness of any set of powers of random variables does
not imply uncorrelatedness of any other powers. For example, we fix
any (j0, l0) ∈ N2 and set U = N2 \ (j0, l0). Theorem A guarantees that
there exist random variables ξ1 and ξ2 so that

E
(
ξj1ξ

l
2

)
= E

(
ξj1
)
E
(
ξl2
)
⇔ (j, l) 6= (j0, l0).

Put in other terms, all points of N2 except one are in the uncorrelat-
edness set of ξ1 and ξ2.

The statement of Theorem A does not remain true if we prescribe
the distributions of random variables. For example, if ξ1 and ξ2 are
Gaussian random variables, then their uncorrelatedness given by r = 0
in formula (??) implies independence. In terms of uncorrelatedness
sets, we may write for such random variables:

(1, 1) ∈ U(ξ1, ξ2)⇒ U(ξ1, ξ2) = N2.

This shows that uncorrelatedness sets of Gaussian random variables
are by no means arbitrary, and we face the problem of describing
possible uncorrelatedness sets for them.

3. Results of Applying Price’s Theorem

Throughout this section, ξ1 and ξ2 are Gaussian random variables
with density (??) and a covariance of u. Since the Gaussian distribu-
tion plays a profound role in statistical theory and applications, the
properties of those variables are of great importance for researchers.
The results below provide new information on such random variables.
To begin with, we prove the following fact:

Theorem 1. For Gaussian random variables ξ1 and ξ2, the expected
value E(ξj1ξ

l
2) is a polynomial in u of degree ≤ max{j, l}.

Proof. We denote f(j,l)(u) = E(ξj1ξ
l
2). Let us take a positive integer

n > max{j, l} and apply Price’s Theorem:

f
(n)
(j,l)(u) =

∫ ∫
R2

∂(2n)xjyl

∂xn∂yn
· ρ(x, y) dxdy = 0,

because the partial derivative in the integrand equals zero identically.
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Therefore, all the derivatives of f(j,l)(u) of order greater than max{j, l}
equal zero whence f(j,l)(u) is a polynomial of degree at most max{j, l}.

2

It can be readily seen that

(3) (j, l) ∈ U(ξ1, ξ2)⇔ f(j,l)(u) = f(j,l)(0),

since u = 0 implies the independence of ξ1 and ξ2. Condition (3) re-
veals one way of using the properties of the polynomials f(j,l)(u) for
describing uncorrelatedness sets. Although the expected values of ran-
dom variables in the forthcoming theorems can be evaluated directly
with the help of integration, the relevant calculations are immensely
cumbersome while the application of Price’s Theorem makes all rea-
soning very elegant and transparent.

Theorem 2. Let ξ1 and ξ2 be Gaussian random variables, and let
U(ξ1, ξ2) denote their uncorrelatedness set. If (j, l) ∈ U(ξ1, ξ2) and j+
l is even, then ξ1 and ξ2 are independent and, thus, U(ξ1, ξ2) = N2.

Proof. (i) Let both j and l be odd. Applying Price’s Theorem
with n = 1, we obtain the following expression for the first derivative
of f(u) :

f ′(j,l)(u) =

∫ ∫
R2

jlxj−1yl−1ρ(x, y) dxdy > 0,

since the integrand is positive for all (x, y) 6= (0, 0). Therefore, f(j,l)(u)
is a strictly increasing function for all u and, hence, f(j,l)(u) = f(j,l)(0)
implies u = 0. It appears that, if both j and l are odd and (j, l) ∈
U(ξ1, ξ2), then ξ1 and ξ2 are independent.

(ii) Let both j and l be even. Clearly, in this case f(j,l)(u) > 0 for all
u 6= 0. Taking f ′(j,l)(u) by Price’s Theorem, we conclude that f ′(j,l)(0) =

0. To investigate the behavior of the polynomial f(j,l)(u), we take the
second derivative by applying Price’s Theorem once more. It can be
seen that f ′′(j,l)(u) > 0 for all u, which means that the polynomial

f(j,l)(u) is a convex function with a single point of absolute minimum
at 0. What we have is, f(j,l)(u) = f(j,l)(0) ⇔ u = 0. That is, if
(j, l) ∈ U(ξ1, ξ2), then ξ1 and ξ2 are independent.

2
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Theorem 3. Let ξ1 and ξ2 be zero-mean Gaussian random vari-
ables - that is µ1 = µ2 = 0 in formula (??) - and let U(ξ1, ξ2) denote
their uncorrelatedness set. If j + l is odd, then (j, l) ∈ U(ξ1, ξ2).

Proof. Using Price’s Theorem, we conclude that f
(k)
(j,l)(0) = 0 for

all k = 0, 1, 2 . . . Yet, a polynomial with all zero derivatives at 0
equals 0 identically, implying f(j,l)(u) ≡ 0 or f(j,l)(u) = E

(
ξj1ξ

l
2

)
= 0 =

E
(
ξj1
)
E
(
ξl2
)

for all u.
2

Summarizing the last two theorems, we obtain a complete identi-
fication of admissible uncorrelatedness sets for zero-mean Gaussian
random variables. Namely, there are exactly two possible uncorrelat-
edness sets: N2 (in which case random variables are independent); and
the set of pairs (j, l), where j + l is odd.
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