

 91

"Vasile Alecsandri" University of Bacău

Faculty of Sciences

Scientific Studies and Research

Series Mathematics and Informatics

Vol. 24 (2014), No. 1, 91-104

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

DAN POPA

Abstract. In this paper the author is completing a gap in the style used by

SWI-Prolog programmers. Important notions and theorems from the field of

functional programming can now migrate to the logic programming

paradigm: foldl, foldr, the universality property, etc.

1. INTRODUCTION

Processing of lists and containers is usually performed using, especially :

1. loops or iterators (in C respectively C++),

2. recursive functions (C, C++, Pascal, Haskell and functional languages)

and recursive predicates (standard dialects of Prolog, other logic

programming languages),

3. recursive data types used “à la Prolog” (possible in Haskell due to the

Prolog like style of using Hindley-Milner type inference system),

4. foldl and foldr recursion operators are usable in some functional

languages (Haskell, ML, metaML, etc).

Keywords and phrases: fold, foldl, foldr, functional programming, logic

programming

(2010) Mathematics Subject Classification: 68N17, 68N18

92

D.POPA

In this paper we are using the techniques from the fourth position of the

above list to improve the set of tools available for the SWI-Prolog

programmers, by adding the folds and the related theorems into the

“backpack” of tools used in logic programming. Also note that this is

possible due to some extensions of the standard Prolog, available in SWI-

Prolog, which can facilitates crossing the border between functions and

predicates, i.e., specially declared, predicates can be used like functions and

conversely..

2. DEFINITIONS OF THE FOLDS

2.1. In the functional programming language Haskell, foldr and foldl are

the names of two high level functions, (i.e. functions which are using other

functions as arguments). There are many ways of introducing folds but a

good starting point can be found in [3], where is written in Gofer /Haskell

like style.

Definition 1. A fold is a common pattern of recursive processing on lists

(but some similar results can be achieved on other types of containers) being

defined as:

foldr :: (a->b->b) -> b-> [a]->b

foldr op v0 [] = v0

foldr op v0 (head:tail) = op head (foldr op v0 tail)

where op :: (a->b->b) is a not necessary associative operator.

Here (and the type/set a is not necessary identical with the type/set b, but

can be). The (head:tail) is simply the pattern of the lists, divided in head and

tail by the cons operator, noted in Haskell by a column (:).

During the computation, the above operator op is applied backwards,

starting from the tail and finishing with the head. There also exists another

fold, which is processing lists in reverse order, starting from the head of the

93

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

list:

foldl :: (a->b->a) -> a -> [b] -> a

foldl op vn [] = vn

foldl op vn (head:tail) = foldl op (op vn head) tail

During list processing the above operator op is applied started from the left

to the right, starting from the head to the tail.

The both folds operators are interesting because:

1. the recursion pattern is present in a lot of computations and a lot of

common used functions are in fact folds. The well known catenation of

strings and the map operator (from Lisp) are only two famous examples.

2. the function which should be “folded” to achieve a special effect can be

algorithmically deduced from the standard recursive definition of the

required effect.

3. proving the correctness of some programs, which is usually made by

induction, can be replaced with a simple check of two conditions.

All those aspects were studied in [3], so we are not repeating them, here..

2.2. The software platform: SWI-Prolog

The standard Prolog, as it was defined from the beginning by A.

Colmerauer and Ph. Rusell , as it is described in classic manuals like [6]

makes a clear distinction between functions and predicates. That is why we

have switched to a more versatile, modern, version of Prolog, the SWI-

Prolog, and also have a well documented manual [4]. It has some aditional

94

D.POPA

properties:

a) there exists a call predicate which can dynamically take a predicate and

try to prove it.

b) predicates can be converted into what the authors of SWI-Prolog have

called “arithmetic functions”.

Both those properties are interesting from the point of wiev of creating and

using folds in logic programming.

SWI-Prolog is a freely available Prolog System which can be downloaded

from the internet and is include in Linux distributions. It is based on some

Dec Prolog libraries, being an extension of Dec Prolog. It is hosted on [8]. It

is a product of the University of Amsterdam and its latest version of manual

is signed by Jan Wielemaker. In the next pages, even when just Prolog is

written, we mean SWI-Prolog.

2.3. Implementing metapredicates in SWI-Prolog
Metapredicates is a term which is describing predicates about predicates.

Because in SWI-Prolog predicates may become functions and folds operator

are accepting functions as arguments, makes sense to discus about

metapredicates implementation in SWI-Prolog. We are using the term

metapredicates in the same way that we have used the term high order

functions in functional programming.

Before the discussion about folds implementation in Prolog, may be a good

and simple enough challenge to implement the standard map operator from

Lisp. In functional languages like Haskell, Lisp, etc, a map is a function

which accepts a function of one argument and a list and applies the function

to all the values from that list. After a bit of search in the [4] the solution is

found:

/* How to define a metapredicate, episode I. */

/* using the SWI-Prolog predicate: call() */

/* Filename: metalogica3bv2.pl */

/* Here, mymap is doing the same thing as the maplist predefined predicate. */

/* He is receiving an arithmetic predicate and apply it over all the values from the

list. */

/* An other argument collects the results.*/

/*

Theory: "call" is an atom

95

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

system:call/6 is a built-in meta predicate defined in

 /usr/lib/swi-prolog/boot/init.pl:181

 Summary: ``Call with additional arguments''*/

/* Inspired by the SWI-Prolog 5.10 Reference Manual

 5.4. DEFINING A META-PREDICATE

 pg 187

 */

module(mymap, [mymap/3]).

meta_predicate mymap(2, ?, ?).

%% mymap(:Pred, +List1, ?List2)

mymap(_,[], []). /* Processing [] we will get an other [] */

mymap(Pred, [H0|T0], [H|T]) :-

 call(Pred, H0, H), /* Applying Pred to H0 we can get H, the head of

the result's list */

 mymap(Pred,T0, T). /* The tail T is obtaining applying mymap

on the tail */

 /* of the argument, T0 .*/

The first call is applying the predicate Pred to the head H0 obtaining H,

the head of the new computed list. The tail of this list is obtained applying

Pred, using mymap to the tail of the first given list,T0.

We describe how it works. The above file can be loaded using: swpl -f

<filename>. After that, you can launch interogations from the SWI-Prolog

prompter. Let's rise the integer 2 at some different powers, for example:

?- mymap(pow(2),[1,3,4,11,10],Result).

Result = [2, 8, 16, 2048, 1024] ;

false.

After pressing the semi-column key “;”, the system is answering: “false”.

This mean there is no other solution available. This is a normal behavior for a

list processing function. Also, it means that Prolog actually did not need to

backtrack in order to find more solutions.

96

D.POPA

2.4. Defining foldl as a metapredicate

Having the above experience with mymap we are ready to define a first fold, the foldl

operator:

We are following the above model, the reader will probably see how.

/* How to define foldl as a metapredicate. Metapredicates, episode II */

/*In the example below fold is a metapredicate which

 receive an arithmetic predicate (2 inputs, one output)

 and begin to compute (..(V0 + V1) + ...)+ Vn, where

 V0 and the list [V1, ... Vn] are the last two arguments of foldl

 and the “ +” operator can be any one selected by the user, from the

 list of arithmetic predicates, even user defined.

 */

/* (c) Dan Popa inspired by The SWI-Prolog 5.10 Reference Manual

, 5.4. DEFINING A META-PREDICATE, pp 187

 and Graham Hutton's paper[3] concerning folds.

*/

module(foldl, [fold/4]).

meta_predicate foldl(0, 0, ?, ?).

%% foldl(:Pred, +V0, +List1, ?Rez)

foldl(Pred, V0, L1, R) :- fold_(V0, L1, R, Pred),!. /* changing the order and cut */

fold_(_, [], [], _).

fold_(V0,[H0],Rezultat,Pred) :- call(Pred, V0,H0,Rezultat). /* Base of induction. */

fold_(V0, [H0|T0], R, Pred) :- call(Pred, V0, H0, RezPart),

 fold_(RezPart, T0, R, Pred).

Let's see how it works. You should put a dot after the interrogation in order to avoid

backtracking .

?- foldl(plus,0,[1,2,3],L).

L = 6 .

foldl(plus,0,[1,2,3],L), writeln(L).

97

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

6

L = 6 .

?- foldl(pow,2,[1,2,3],L).

L = 64 .

?- foldl(pow,2,[2,3,4],L).

L = 16777216 .

?- foldl(plus,0,[2,5,7],Rez).

Rez = 14.

?- foldl(pow,2,[2,2,2],Rez).

Rez = 256.

?- foldl(pow,9,[9,9],Rez).

Rez =

19662705047555291361807590852691211628310345094421476692731541553796639119

6809.

3. IMPLEMENTING FOLDR IN PROLOG

The main difference between foldl and foldr is the direction of scanning

the list of values to be processed. Entering a reverse (which is reversing the

list) in the program should transform foldl in a foldr. The new module of

Prolog may looks like this:

/* How to define foldr as a metapredicate. Metapredicates, episode III .

*/

/* Filename: metalogica5foldr.pl */

/*In the example below foldr is a metapredicate which

 receive an arithmetic predicate (2 inputs, one output)

98

D.POPA

 and begin to compute V1 x ...(... (Vn x V0)..), where

 V0 and the list [V1, ... Vn] are the last two arguments of foldl

 and the “x” operator can be any one selected by the user, from the

 list of arithmetic predicates, even user defined.

 In the end we will notice that cons then reverse are defined in terms of

foldl.

 And foldr can also be defined.

*/

/* (c) Dan Popa inspired by The SWI-Prolog 5.10 Reference Manual

, 5.4. DEFINING A META-PREDICATE, pp 187

 and Graham Hutton's paper[3] concerning folds.

*/

module(foldr, [foldr/4]).

meta_predicate foldr(0, 0, ?, ?).

%% foldr(:Goal, +V0, +List1, ?Rez)

/* The first argument is the binary arithmetic predicate, then

 the first value comes,

 folowed by the list of values to be processed.

 The final variable is used to collect the answer. */

foldr(Goal, V0, L1, R) :- reverse(L1,LR), fold_(V0, LR, R, Goal).

/* reversing the list */

fold_(V0,[H1],R,Goal) :- call(Goal, H1,V0,R),!.

fold_(V0, [Hn|Tn], R, Goal) :- call(Goal, Hn, V0, RezPart),

 fold_(RezPart, Tn, R, Goal).

After the loading the program we can ask SWI-Prolog, for example, to

evaluate the following folds (the use of the built in predicate reverse is

shown, too):

? - foldr(plus,0,[1,2,3,4],R).

R = 10.

?- foldr(plus,0,[1,2,3,4],R),writeln(R).

10

99

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

R = 10.

?- reverse([1,2,3],[]).

false.

?- reverse([1,2,3],L).

L = [3, 2, 1].

?- explain(reverse).

"reverse" is an atom

lists:reverse/2 is a predicate defined in

 /usr/lib/swi-prolog/library/lists.pl:276

lists:reverse/4 is a predicate defined in

 /usr/lib/swi-prolog/library/lists.pl:279

 Referenced from 1-th clause of lists:reverse/2

 Referenced from 2-th clause of lists:reverse/4

true.

Remark 1: If the final cut (!) is missing, this implementation of foldr will

finish by returning false.

?- foldr(plus,0,[1,2,3,4],R).

R = 10 ;

false.

?- foldr(plus,0,[1,2,3,4],R),writeln(R).

10

R = 10 ;

false.

Remark 2: In Haskell, the reverse function is itself a foldl.

reverse = foldl (\ xs x -> x:xs) []

This leads us to the idea of defining foldl, then reverse, then foldl. In this

way, foldr is defined using foldr, without the predefined function reverse.

100

D.POPA

Remark 3: In SWI-Prolog, the following predicate may be the considered

the equivalent of the cons operator:

cons (A,As,R) :- R is [A|AS].

So, the cons (:) from the above definition of reverse can be implemented in

SWI-Prolog, too, as a predicate and, if needed, can be appealed by using the

call predicate.

4. THE FOLDR OPERATOR DEFINED BY USING ONLY FOLDL

In[3] the reverse function is defined, as is noted in the above Remark 2,

also as a fold. That means we can use this kind of definition inside of foldl,

before the processing of the list, in order to transform the foldl in a foldr. We

begin by defining a sort of cons operator, but simpler that those from Remark

3. Let rename it as lambda. (This new name should work if the above cons is

already included in our source.)

lambda (XS,X,[XS])

Now, we can use this, from SWI-Prolog, in order to reverse lists, with the

help of a foldl. Here is an example:

? foldl (lambda,[], [1,2,3], Rez).

Rez=[3,2,1]

As a consequence, we can define a little different version of foldr by

simply changing the standard reverse predicate with the above foldl. This

makes our folds a bit more independent of the standard libraries.

foldr(Pred, V0, L1, R) :- foldl(lambda, [], L1, Reversed)

 fold_(V0, Reversed, R, Pred),!.

Where fold_ and foldl are the same as above. Now all the results from [3]

can be also used by SWI-Prolog programmers. This kind of fold based in

Prolog is not appearing in any of the manuals of Prolog, [1], [2], [4], [6], [7]

(see a selection of them in the references).

5. THE USE OF FOLDR

In order to test one of our implementations of the foldr operator in SWI-

Prolog we have reconsider the examples of foldr use from[3]. As you can se

below, all the folds were successfully computed. The fact that a lot of

101

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

common used functions are in fact folds was clearly stated in[3]. The reader

can easy recognize: the factorial n!, catenation, etc.

/* Folds in Graham Hutton's style */

/* DP */

/* Filename: metalogica8foldrGH.pl */

arithmetic_function(foldr/3). /* Not absolutely necessary, but may help. */

arithmetic_function(mult/3).

arithmetic_function(and/3).

arithmetic_function(or/3).

arithmetic_function(cons/3).

arithmetic_function(f1/3).

arithmetic_function((++)/3).

arithmetic_function(f2/3).

foldr(_,V, [],V2) :- V2=V,!.

foldr(F,V,[X|XS],Rez) :- foldr(F,V,XS,RezPart),

 call(F,X,RezPart,Rez).

mult(A,B,C) :- C is A*B.

and(A,B,true) :- A, B.

or(A,_,true) :- A,!.

or(_,B,true) :- B,!.

cons(A,B,C) :- C = [A|B].

f1(_,B,C) :- plus(1,B,C). /* Te reader may also try: C is 1+B */

++(A,B,C) :- foldr(cons, B,A,C).

f2(A,B,C) :- ++(B,[A],C).

And let's ask SWI-Prolog to compute some common functions, sum or

product, && and disjunctions (on list of booleans), factorial, lists's catenation

, or even fold some user-defined functions like f1 and f2.

?- foldr(plus,0,[1,2,3],Rez).

Rez = 6.

?- foldr(mult,1,[1,2,3,4,5],NFact).

NFact = 120.

?- and(true,true,X).

102

D.POPA

X = true.

?- and(true,false,X).

false.

?- and(false,true,X).

false.

?- and(false,false,X).

false.

?- foldr(and,true,[true,true,true],Rez).

Rez = true.

?- foldr(and,true,[true,false,true],Rez).

false.

?- or(true,true,X).

X = true.

?- or(true,false,X).

X = true.

?- or(false,false,X).

false.

?- or(false,true,X).

X = true.

?- foldr(or,false,[true,true,true],Rez).

Rez = true.

?- foldr(or,false,[true,false,true],Rez).

Rez = true.

103

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

?- foldr(or,false,[true,false,false],Rez).

false.

?- foldr(or,false,[false,false,false],Rez).

false.

?- foldr(cons,[2,3,4],[1,2],Rez).

Rez = [1, 2, 2, 3, 4].

?- foldr(f1,0,[1,3,5,9,1],Rez).

Rez = 5.

?- ++([1,2,3],[4,5,6],Rez).

Rez = [1, 2, 3, 4, 5, 6].

?- foldr(f2,[],[2,1,1,2,6,9],Rez).

Rez = [9, 6, 2, 1, 1, 2].

6. HISTORY AND PRESENT

We have taught our students about foldl, foldr and fold based

programming in Prolog since 2012, the year when the author had to create a

mixed course of Functional and Logic Programming. Nowadays, the latest

SWI-Prolog Reference manual (6.6.2) is actually including a reference to an

implementation of only one operator, the foldl, in the section A.2. LIBRARY

(apply): Apply predicates on a list pp 332-333:

foldl(:Goal, +List, +V0, -V)

foldl(:Goal, +List1, +List2, +V0, -V)

foldl(:Goal, +List1, +List2, +List3, +V0, -V)

foldl(:Goal, +List1, +List2, +List3, +List4, +V0, -V)

The library is including also an other well known Haskell function scanl

reimplemented for SWI-Prolog but no implementation of foldr, yet.

104

D.POPA

REFERENCES

[1] P. Blackburn, J. Bos, K. Striegnitz - Learn Prolog Now!,

http://www.learnprolognow.org/ (on line resource)

[2] D. Diaz, GNU PROLOG, A Native Prolog Compiler with

Constraint Solving over Finite Domains,Edition 1.31, for GNU Prolog

version 1.4.1, June 6, 2012,

http://people.sju.edu/~jhodgson/clp/manualgp.pdf , (on line resource)

[3] G. Hutton, - A tutorial on the universality and expressiveness of

fold, Journal of Functional Programming, vol. 9, Issue 04, July 1999, 355-

372 and J.F.P 1(1)-000 January 1993 - Cambridge University,

http://www.cs.nott.ac.uk/~gmh/bib.html#fold (on line resource)

[4] J. Wielemaker - SWI-Prolog 5.10 Reference Manual Updated for

version 5.10.0, April 2010 -University of Amsterdam, The Netherlands, (on

line resource)

[5] J. Wielemaker - SWI-Prolog 6.6.2 Reference Manual Updated for

version 6.6.2, March 2014, (on line resource)

[6] A.L. Johanson, A. Eriksson-Granskog, A. Edman – Prolog versus you

– An introduction to Logic Programming – Springer Verlag, 1989. ISBN

3-540-17577-6, ISBN 0-387-17577-6

[7] Lu James, Mead Jerud J. -Prolog - A Tutorial Introduction -

Computer Science Department, Bucknell University (on line resource)

[8] The SWI-Prolog website http://www.swi-prolog.org

“Vasile Alecsandri” University of Bacău

Faculty of Sciences

Department of Mathematics, Informatics and Education Sciences

157 Calea Mărăşeşti, Bacău, 600115, ROMANIA

 e-mail: popavdan@yahoo.com

http://www.cs.nott.ac.uk/~gmh/bib.html#fold
http://www.swi-prolog.org/

