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ON {CLAW,ANTENNA,NET}-FREE GRAPHS

MIHAI TALMACIU

Abstract. In this article, we give a characterization of {claw,
antenna, net}-free graphs, a characterization of claw-free graphs, us-
ing weakly decomposition. Also, we give a O(n(n + m)) recognition
algorithm for {claw, antenna, net}-free graphs, but using weakly de-
composition.

During the last three decades, different types of decompositions have
been processed in the field of graph theory. Among these we mention:
decompositions based on the additivity of some characteristics of the
graph, decompositions where the adjacency law between the subsets
of the partition is known, decompositions where the subgraph induced
by every subset of the partition must have predeterminate properties,
as well as combinations of such decompositions.

In various problems in graph theory, for example in the construc-
tion of recognition algorithms, frequently appears the so-called weakly
decomposition of graphs.

1. INTRODUCTION

During the last decades, numerous studies have been undertaken
on the classes of net-free graphs, claw-free graphs, the relationship
between them.
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On www.graphclasses.org/classes/AUTO-4.html it is said that net-
free graph recognition is in polynomial time.

The interval graphs [19], permutation graphs [14] and co- compa-
rability graphs [16] have a linear structure. Each of these classes is a
subfamily of the asteroidal triple graphs (AT-free graphs, for short).
An independent set of three vertices is called an asteroidal triple if be-
tween any pair in the triple there exists a path that avoids the neigh-
borhood of the third. AT-free graphs were introduced by Lekkerkerker
and Boland [19]. Corneil, Olariu and Stewart showed a number of re-
sults on the linear structure of AT-free [7, 8, 9.

A maximal subclass of a class of net-free graphs is the class (claw,net)-
free graphs (CN-free graphs, for short). Also note that CN-free graphs
are exactly the Hamiltonian-hereditary graphs[12] (was cited in [3]).
CN-free graphs turn out to be closely related to AT-free graphs form
their structure properties [3]. There are, however, few results about
the structure of these graphs [3]. In [3] the authors give results on
the linear and circular structure of CN-free graphs. AT-free graphs
can be generalized in a manner obvious to admit circular structure
[3]. CN-free graphs were introduced by Duffus [13]. Although CN-free
graphs seems to be quite restrictive, it contains a couple of families of
graphs that are interesting in their own right.

Throughout this paper, G = (V, E) is a connected, finite and undi-
rected graph [2], without loops and multiple edges, having V' = V(G)
as the vertex set and £ = E(G) as the set of edges. G (or c— @) is the
complement of G. If U C V', by G(U) we denote the subgraph of G
induced by U. By G — X we mean the subgraph G(V — X)), whenever
X C V, but we simply write G — v, when X = {v}. If e = zy is
an edge of a graph G, then x and y are adjacent, while x and e are
incident, as are y and e. If zy € E, we also use z ~ y, and = ¢ y
whenever z, y are not adjacent in GG. A vertex z € V distinguishes the
non-adjacent vertices v,y € Vifzx € Fand zy ¢ E. If A, B CV are
disjoint and ab € F for every a € A and b € B, we say that A, B are
totally adjacent and we denote by A ~ B, while by A «¢ B we mean
that no edge of GG joins some vertex of A to a vertex from B and, in
this case, we say that A and B are non-adjacent.

The neighbourhood of the vertex v € V' is the set Ng(v) ={u eV :
wv € E}, while Ng[v] = Ng(v)U{v}; we simply write N(v) and Nv],
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when G appears clearly from the context. The neighbourhood of the
vertex v in the complement of G will be denoted by N(v).

If N[v] =V, then v is called a dominating vertex in G. If D C V
and every vertex from V' — D has at least one neighbour in D, then
D is called a dominating set of G. If D C V and Ng(D) # (), then D
is a non-dominating set of G.

The neighbourhood of S C V' is the set N(S) = UyesN(v) — S and
N[S] = SUN(S). A clique is a subset @ of V' with the property that
G(Q) is complete. The clique number of G, denoted by w(G), is the
size of the maximum clique.

By P,, C,, K, we mean a chordless path on n > 3 vertices, a
chordless cycle on n > 3 vertices, and a complete graph on n > 1
vertices, respectively.

A graph is called triangulated if it does not contain chordless cycles
having the length greater or equal to four.

A antenna graph is isomorphic to G = ({a,b,c,d.e.f}, {af, fd, fe,
db, ec,bc}).

Let F' denote a family of graphs. A graph G is called F-free if none
of its subgraphs is in F. The Zykov sum of the graphs G, G5 is the
graph G = G + G5 having:

V(G) =V(G1) UV(Ga),
E(G)=E(G))UE(Gy)U{uwv :u € V(Gy),v € V(Gs)}.

The structure of the paper is the following. In Section 2 we re-
call the notion of weakly decomposition, we recall a characteriza-
tion of net-free graphs, a characterization of claw-free graphs, using
weakly decomposition. In Section 3 we establish a characterization of
{claw, antenna, net}-free graphs, we give a recognition algorithm for
{claw, antenna, net }-free graphs, using weakly decomposition.

2. PRELIMINARIES

At first, we recall the notions of weakly component and weakly
decomposition.

When searching for recognition algorithms, frequently appears a
type of partition for the set of vertices in three classes A, B, C, which
we call a weakly decomposition, such that: A induces a connected
subgraph, C'is totally adjacent to B, while C' and A are totally non-
adjacent.
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Definition 1. ([?], [?], [?]) A set A C V(G) is called a weakly set of
the graph G if Ng(A) # V(G)— A and G(A) is connected. If A is a
weakly set, mazimal with respect to set inclusion, then G(A) is called
a weakly component. For simplicity, the weakly component G(A) will
be denoted with A.

Definition 2. ([?], [?], [?]) Let G = (V, E) be a connected and non-
complete graph. If A is a weakly set, then the partition {A, N(A),V —
AUN(A)} is called a weakly decomposition of G with respect to A.

Below we remind a characterization of the weakly decomposition of
a graph.

The name of ” weakly component” is justified by the following result.

Theorem 1. ([?], [?], [?]) Every connected and non-complete graph
G = (V,E) admits a weakly component A such that G(V — A) =
G(N(A)) + G(N(A)).

Theorem 2. ([7], [?]) Let G = (V,E) be a connected and non-
complete graph and A C V. Then A is a weakly component of G if
and only if G(A) is connected and N(A) ~ N(A).

The next result, that follows from Theorem 1, ensures the existence
of a weakly decomposition in a connected and non-complete graph.

Corollary 1. If G = (V, E) is a connected and non-complete graph,
then V' admits a weakly decomposition (A, B,C), such that G(A) is a
weakly component and G(V — A) = G(B) + G(O).

Theorem 2 provides an O(n + m) algorithm for building a weakly
decomposition for a non-complete and connected graph.

Algorithm for the weakly decomposition of a graph ([?])
Input: A connected graph with at least two nonadjacent vertices,
G=(V,E).

Output: A partition V' = (A, N, R) such that G(A) is connected,
N =N(A), A R=N(A).

begin
A := any set of vertices such that
AUN(A)#V
N := N(A)

R:=V —-AUN(A)
while (In € N, Ir € R such that nr € £ ) do
begin
A:=AU{n}
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N:=(N—-{n})U(N(n)NR)

R:=R—(N(n)NR)
end

end

The notion of weakly decomposition (a partition of the set of vertices
in three classes A, B, C such that A induces a connected graph and C'
is totally adjacent to B and totally non-adjacent to A) and the study
of its properties allow us to obtain several important results such as:
characterization of cographs, {P,, C4}-free and paw-free graphs.

A new characterization of net-free graphs, using weakly decomposi-
tion, is given below.

Theorem 3. (24| Let G = (V, E) be a connected and non-complete
graph. Let (A, N, R) be a weakly decomposition with G(A) a weakly
component. G = (V, E) is net-free if and only if:

i) does not exist Py in G(A) and n in N such that n is adjacent with
the middle vertices of the Py specified;

i) (does not exist Py, with extremities in A and the middle vertices in
N) or (does not exist t in N such that his neighbors t are not in P,
specified);

iii) G(V — R), G(V — A) are net-free.

Some interesting properties of claw-free graphs have been estab-
lished in ([1], [6], [15], [18], [20], [21]).

In [4] the authors consider the algorithmic problem of finding a
Hamiltonian path or a Hamiltonian cycle efficiently.

In what follows we recall a characterization of the claw-free graphs.

A similar result is found in ([?])

Theorem 4. [24] Let G = (V, E) be a connected and non-complete
graph. Let (A, N, R) a weakly decomposition with G(A) a weakly com-
ponent. G = (V, E) is claw-free if and only if:

i) R and N(n) N A are cliques, Yn € N
ii) GV —R), G(V — A) are claw-free.

3. A NEW CHARACTERIZATION OF {claw, antenna, net}-FREE
GRAPHS USING THE WEAKLY DECOMPOSITION

A graph is chordal if it contains no induced Cy, k > 4. A graph is
nearly chordal if for each of its vertices, the subgraph induced by the
set of its non-neighbors is a chordal graph. More generally, if P is a
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graph property then a graph is nearly P if for each of its vertices, the
subgraph induced by the set of its nonneighbors has the property P.

In [5] is given:

Connected (claw, antenna, net)-free graphs are nearly chordal.

In www.graphclasses.org/classes/problemgecognition.html it is said
that there are polynomial algorithms for recognition (Ss, claw, net)-
free graph recognition. Also, in www.graphclasses.org/classes/gc137.html
it is said that there are polynomial algorithms for recognition (claw, net)-
free graph recognition.

A new characterization of {claw, antenna,net}-free graphs, using
weakly decomposition, is given below.

Theorem 5. Let G = (V,E) be a connected and non-complete
graph. Let (A, N, R) be a weakly decomposition with G(A) a weakly
component. G = (V, E) is {claw, antenna, net}-free if and only if:

i) GV —R), G(V — A) are {claw, antenna, net}-free;

ii) R and N(n) N A are cliques, Vn € N;

iii) does not exist Py in G(A) and n in N such that n is adjacent with
the middle vertices of the Py specified;

iv) (does not exist Py, with extremities in A and the middle vertices
in N ) or (does not exist t in N such that his neighbors t are not in P,
specified);

v) (does not exist Py, with extremities in A and the middle vertices in
N) or (does not exist t in N such that his neighbors t are an extremity
of Py specified);

vi) (does not exist Py in G(AU N), with an extremity in N and rest
the vertices in N ) or (does not exist n in N such that n is adjacent
with the middle vertices of the Py specified);

vii) AUN — N(n) N A is chordal, ¥n € N;

viti) A — N(n) N A is chordal, Vn € N .

Proof. Let G be {claw, net, antenna}-free. Since the property of
being {claw, net, antenna}-free is hereditary as follows G(V — A) and
G(V — R) {claw,antenna,net}-free graphs, so i) holds.

If there would be r,75 € R such that riry € E, because R ~ N,
Vn € Nanda € N(n)NA (N(n)NA # 0,Vn € N according to his N),
G({a,n,r1,re}) is isomorphic to claw. If there would be In € N such
that Jaj,ay € AN Ng(n) with ajas € E, because R ~ N, Vr € R,
G({r,n,ay,as}) is isomorphic to claw. So ii) holds.
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If 3n € N, 3Py C G(A) such that n is adjacent to the middle
vertices in Py, so 4P, : a,b,c,d with a,b,c,d € A, ab,bc,cd € E,
ac,ad,bd ¢ E and nb,nc € E, then, because N ~ R, it follows that
Vr € R: G({a,b,c,d,n,r}) is net, a contradiction. So iii) holds.

If 9P, : ab,bc,cd with a,d € A, b,c € N and It € N with
ta,th,tc,td ¢ E then G({a,b,c,d,r t}) is net Vr € R, a contradic-
tion. So iv) holds.

If (3P, : a,b,c,d, with extremities a,b in A and the middle vertices
in N) and (3t in N such that his neighbors ¢ are an extremity of P,
specified) then, Vr € R, G({a,b,c,d,t,r}) is antenna, a contradiction.
So v) holds.

If (3Py : a,b,c,d, with an extremity d in N and the rest ver-
tices in A) and (In in N such that nb,nc € E) then, Vr € R,
G({a,b,c,d,n,r}) is antenna, a contradiction. So vi) holds.

If (3Cy : a,b,c,d in G(AU N), with two adjacent vertices in A
and rest the vertices in N) and (3¢ in N such that his neighbors ¢
are not in Cjy specified) then, Vr € R, G({a, b, c,d,t,r}) is antenna, a
contradiction. So vii) holds.

If 3Cy : a,b,¢,din G(A) and n in N such that n is adjacent with two
adjacent vertices of the Cy specified then, Vr € R, G({a,b,c,d,n,r})
is antenna, a contradiction. So viii) holds.

Conversely, we suppose that i), ii), iii), iv), v), vi), vii), viii) holds
and to show that G is {claw, antenna, net}-free graph.

We assume that there are {z,a, b, c} a claw with center in x. From
i) results that G(A U N) and G(N U R) are claw-free graphs. So
x € AUR, that is z € N. From ii), two of the vertices a,b,c are
necessarily in N, that is {z,a,b,c} are in AUN or in N U R, thereby
contradicting with i).

Suppose, however, that there is H = G({a, b, ¢, 1,2,3}) an subgraph
net, with the vertices a, b, ¢ of the degree 1, the vertices 1, 2, 3 of
degree 3, and al, b2,c3 € E.

Case 1. Let |[V(H)N R| = 1. We assume 1.1. V(H)N R = {a}.
1.2. V(H)N R = {1}. 1.1. From R ~ N it follows V(H)N N = {1}.
So V(H)NA={c3,2,b}. But G({c,3,2,b}) is Py and 1 is adjacent
with the middle vertices in Py, thereby contradicting with iii). 1.2.
From R ~ N it follows V(H)N N = {a,2,3}. So V(H)N A = {b,c}.
P=G({b,c,2,3}) is an P, with extremities b,c € A and the middle
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vertices 2,3 € N. For t = a we have N(t) N V(P) = (), thereby
contradicting with iv). So, Case 1 holds not.

Case 2. Let |V(H) N R| = 2. There are subcases 2.1. V(H)N R =
{a,1}; 22, V(H)Nn R = {1,2}; 23. V(H)N R = {a,2}; 24.
V(H)N R = {a,b}.
2.1.cannot hold because the vertices a and 1 have no common neigh-
bors. 2.2. cannot hold because the vertices 1 and 2 not have only
common neighbors. 2.3. cannot hold because the vertices a and 2 not
have only common neighbors. 2.4. cannot hold because the vertices a
and b have no common neighbors.

Case 3. |V(H)NR| = 3 cannot hold because the vertices in {a, 1,2}
and in {a, 1,b} not have only common neighbors.

Case 4. Let |[V(H) N R| = 4. Any subset X C V(H) with | X| =4
has the property that its vertices are not only common neighbors, that
is Ju € V' — X such that v is adjacent some of the vertices of X, and
with the rest of them, v it is not adjacent.

|[V(H)N R| € {5,6} it is not possible, because V(H) N A # () and
V(H)NN # .

Suppose that there is F' = G({a, b, z,y,1,j}, {ab, bx, by, xy, xi,yj,ij})
an subgraph antenna.

Case 1. Let |[V(F)NR| =1. We assume 1.1. V(F)NR = {a}. 1.2.
V(IF)NR={b}. 1.3. V(F)NR={z}. 1.4. V(F)N R = {i}. From
1.1be N, z,y,j,i € A, G({x,vy,7,i}) is Cy, a contradiction (viii) does
not hold). From 1.2. a,z,y € N, i,j € A, a contradiction (vii) does
not hold). From 1.3. b,y,i € N, a,j € A, a contradiction (v) does
not hold). From 14. z,j € N, a,b,y € A, a contradiction (vi) does
not hold).

Case 2. Let |[V(F)N R| = 2 (we suppose V(F)N R = {u,v}). Case
2 does not hold because either N(u) NN (V) =0 or 3s € N(u) — N(v)
or Jw € N(v) — N(u).

Case 3. Let |V(F) N R| = 3. Because N ~ R, only {a,z,y} ~ {b},
soa,x.y € R,be N. Soi,j € A, acontradiction (A o R does not
hold).

Case 4. Let |V(F) N R| = 4. Because R ~ N and Av € V(F) with

[V(F)N R| € {5,6} does not hold because V(F) N A # 0 and
V(F)NN #0.
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Theorem 5 provides the following recognition algorithm for net-free
graphs.

Algorithm Recognition

Input: A connected, non-complete graph G = (V, E).

Output: An answer to the question: "Is G {claw, antenna, net }-free”?
begin

2. while Lg # 0 do
3. extract an element H in L

4. determine the weakly decomposition (A, N, R) with [A] g weakly
component
5. if { ii) does not take place} then

G is not {claw, antenna, net}-free else
6. if { iii) does not take place} then

G is not {claw, antenna, net}-free else
7. if { iv) does not take place} then

G is not {claw, antenna, net}-free else
8. if { v) does not take place} then

G is not {claw, antenna, net}-free else
9. if { vi) does not take place} then

G is not {claw, antenna, net}-free else
10. if { vii) does not take place} then

G is not {claw, antenna, net }-free else
11. if { viii) does not take place} then

G is not -free else

12. enter in L subgraphs [V — R, [V — A]
13.  Return: G is {claw, antenna, net}-free

14. end

EndRecognition

Determine the degree each the vertex from G(A U N), G(AU R),
G(NUR), G(A), G(N), G(R). R is clique if and only if dgaur)(r) =
|N| = dgr)(r), Vr € R. For each n € N : Ng(n) N A is a clique if
and only if dgauny(n) — davy(n) = |Ng(n) N Al (for each vertex a
in A; a € Ng(n) 7). For the recognition chordal graphs is necessary
O(n+m) ([25]) time. Theorem 2 provides an O(n + m) algorithm for
building a weakly decomposition for a non-complete and connected
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graph. Because for the recognition Pj-free graphs is necessary O(n +
m) ([17]) time, it follows that, in total, the algorithm is run in O(n -
(n+m)) time.

4. CONCLUSIONS AND FUTURE WORK

In this paper we give a recognition algorithm for {claw, net, antenna}-
free graphs. Our future work concerns giving some applications of
{claw, antenna, net }-free graphs.
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