
”Vasile Alecsandri” University of Bacău
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REMARKS ON THE EXPONENT FUNCTION
ASSOCIATED TO A FINITE GROUP

MARIUS TĂRNĂUCEANU

Abstract. This note deals with the exponent function associated to a
finite group. Some classes of finite groups determined by basic properties
of this function are investigated.

1. Introduction

The relation between the structure of a group and the structure of
its lattice of subgroups constitutes an important domain of research in
group theory. The topic has enjoyed a rapid development starting with
the first half of the ’20 century. Many characterizations and classifications
have been obtained for groups for which the subgroup lattice has certain
lattice-theoretic properties. We refer to [6, 8] for more information about
this theory.

In the following, given a finite group G of order n, we will denote
by L(G) the subgroup lattice of G and by Ln the lattice of divisors of
n. Recall that L(G) is a complete bounded lattice with respect to set
inclusion, having initial element the trivial subgroup 1 and final element
G, and its binary operations ∧,∨ are defined by

H ∧K = H ∩K, H ∨K = 〈H ∪K〉, ∀H,K ∈ L(G).

————————————–
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Several integer valued functions on L(G) have been studied. From
these the most important is probably the order function

ord : L(G) −→ Ln, H 7→ |H|, ∀H ∈ L(G),

whose basic properties are strongly connected with the structure of G.
For example, it is well-known that the following conditions are equivalent:

(o1) ord is injective;
(o2) ord is a semilattice homomorphism from (L(G),∧) to (Ln, gcd);
(o3) ord is a semilattice homomorphism from (L(G),∨) to (Ln, lcm);
(o4) ord is a lattice isomorphism from (L(G),∧,∨) to (Ln, gcd, lcm);
(o5) G is cyclic.

Recall also that the surjectivity of ord leads to an interesting class of
finite groups: the CLT groups, i.e. finite groups satisfying the Converse
of Lagrange’s Theorem (see e.g. [1, 4, 5]). Notice that CLT groups are
solvable and that supersolvable groups are CLT.

The main goal of the current note is to investigate similar properties for
another integer valued function on L(G), namely the exponent function

exp : L(G) −→ Ln, H 7→ exp(H), ∀H ∈ L(G).

In this case (o1), (o2), (o4) and (o5) remain equivalent, while (o3) induces
a new class of finite groups that has the same intersection with p-groups
as the class CP2, studied in [9]. We also determine the finite groups for
which exp is surjective, namely the ZM-groups. A more natural version
of the exponent function and some related open problems will be also
presented.

Most of our notation is standard and will usually not be repeated here.
Elementary notions and results on group theory can be found in [3, 7].

2. Main results

Let G be a finite group of order n. First of all, we recall that exp(H) |
ord(H), ∀H ∈ L(G). Moreover, if H is abelian, then we have exp(H) =
ord(H) if and only if H is cyclic. We easily infer that the functions exp
and ord associated to a finite abelian group G coincide if and only if G is
cyclic. Notice that there are also finite non-abelian groups G for which
the functions exp and ord coincide, such as S3.

Clearly, exp is order-preserving, i.e. if H,K ∈ L(G) satisfy H ≤ K,
then exp(H) | exp(K). Another easy but very important property of exp
is that it is a multiplicative function: if Hi, i = 1, 2, ..., k, are subgroups
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of coprime orders of G and if the product
∏k

i=1Hi is also a subgroup of
G, then

exp(
k∏

i=1

Hi) =
k∏

i=1

exp(Hi).

In particular, this equality shows that the study of the exponent function
for finite nilpotent groups is reduced to p-groups.

Our first result proves that the above conditions (o1), (o2), (o4) and
(o5) remain also equivalent by replacing ord with exp.

Theorem 1. For a finite group G of order n the following conditions
are equivalent:

(e1) exp is injective ;
(e2) exp is a semilattice homomorphism from (L(G),∧) to (Ln, gcd);
(e4) exp is a lattice isomorphism from (L(G),∧,∨) to (Ln, gcd, lcm);
(e5) G is cyclic .

Proof. If G is cyclic, then exp coincides with ord and so this is a lattice
isomorphism between L(G) and Ln, i.e. (e4) is satisfied. On the other
hand, it is obvious that (e4) implies both (e1) and (e2). Therefore we
must show only that (e1) implies (e5) and (e2) implies (e5).

Assume that exp is injective. Then G has a unique Sylow p-subgroup
Sp for every prime p, because Sylow p-subgroups are of the same expo-
nent. In other words, G is nilpotent. We also infer that every Sp possesses
exactly one subgroup of order p. Thus, it is either cyclic or a generalized
quaternion 2-group by (4.4) of [7], II. If Sp

∼= Q2k for some k ≥ 3, then
it contains at least two distinct isomorphic maximal subgroups, contra-
dicting our assumption. Hence G is cyclic, as a direct product of cyclic
Sylow p-subgroups.

Finally, assume that exp is a ∧-homomorphism. One obtains again
that G has a unique subgroup of order p, for all p ∈ π(G). Consequently,
the Sylow p-groups of G are cyclic for p odd, while the Sylow 2-subgroups
of G are either cyclic or generalized quaternion. Since in each Q2k , k ≥ 3,
there are distinct cyclic subgroups of order 4 and for two such subgroups
H and K the condition exp(H ∧K) = gcd(exp(H), exp(H)) is obviously
not verified, it follows that all Sylow subgroups of G must be cyclic. Let
S ∈ Sylp(G). Then for all x ∈ G we have

ord(S ∧ Sx) = exp(S ∧ Sx) = gcd(exp(S), exp(Sx)) =
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= gcd(ord(S), ord(Sx)) = ord(S),

which implies Sx = S. In this way, the Sylow subgroups of G are also
normal and hence G is cyclic. This completes the proof.

In the following let us denote by C1 the class consisting of all finite
groups G whose exponent function satisfies the condition (e3), that is

(1) exp(H ∨K) = lcm(exp(H), exp(K)), ∀H,K ∈ L(G).

We observe that (1) can be rewritten equivalently as

(2) exp(〈x, y〉) = lcm(exp(〈x〉), exp(〈y〉)) = lcm(o(x), o(y)), ∀ x, y ∈ G,
because the subgroups of G are the join of their cyclic subgroups.

It is clear that C1 contains all finite abelian groups, but some non-
abelian groups, asQ8, also belong to C1. Therefore it must be investigated
more carefully.

Lemma 2. C1 is contained in the class of finite nilpotent groups.

Proof. Let G be a group in C1 and S be a Sylow p-subgroup of G. For
every x ∈ G, we have exp(S∨Sx) = exp(S) and so S∨Sx is a p-subgroup
of G. Since S ⊆ S ∨ Sx, we infer that S ∨ Sx = S. Clearly, this leads to
Sx = S, i.e. S is normal in G. Hence G is nilpotent.

Lemma 2 allows us to restrict the study to p-groups. The containment
of these groups to C1 can be easily characterized.

Lemma 3. For a finite p-group G the following conditions are equivalent:

i) G belongs to C1;
ii) o(xy) ≤ max{o(x), o(y)}, ∀ x, y ∈ G;

iii) Ωn(G) = {x ∈ G | xpn = 1}, ∀ n ∈ N.

Proof. By (2) we infer that G belongs to C1 if and only if

exp(〈x, y〉) = max{o(x), o(y)}, ∀ x, y ∈ G,
and it is a simple exercise to show that this condition is equivalent with
ii). In other words, G belongs to C1 if and only if it belongs to the class
CP2 defined by ii). The equivalence of ii) and iii) follows from Theorem
D of [9].
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Clearly, the above two results lead to a characterization of groups in
C1.

Theorem 4. A finite group is contained in C1 if and only if it is a
nilpotent group all of whose Sylow subgroups belong to CP2.

In [9] we proved that large classes of p-groups, such as regular p-groups,
modular p-groups or powerful p-groups for p odd, are contained in CP2.
Consequently, they are contained in C1, too.

Corollary 5. Every finite nilpotent group whose Sylow subgroups are
either regular, modular or powerful p-groups for p odd belongs to C1. In
particular, every finite abelian group belongs to C1.

Remark. The classes C1 and CP2 are distinct, even they have the same
intersection with p-groups. Indeed, C1 contains only nilpotent groups,
while in CP2 there are certain non-nilpotent groups, as A4.

Next we will investigate the surjectivity of the exponent function. This
also leads to a well-known class of finite groups.

Theorem 6. For a finite group G of order n the following conditions
are equivalent:

1. exp : L(G) −→ Ln is surjective;
2. G is a ZM-group, that is all Sylow subgroups of G are cyclic.

Proof. Assume first that exp is surjective, take a prime divisor p of n
and put n = pkm with p - m. Then G contains a subgroup H of the
exponent pk. We infer that H is a p-subgroup and so there is x ∈ H such
that o(x) = pk. Clearly, one obtains H = 〈x〉, i.e. H is cyclic.

Conversely, assume that G is a ZM-group. By [3] such a group is of
type

ZM(u, v, r) = 〈a, b | au = bv = 1, b−1ab = ar〉,
where the triple (u, v, r) satisfies the conditions

gcd(u, v) = gcd(u, r − 1) = 1 and rv ≡ 1 (mod u).

The subgroups of ZM(u, v, r) have been completely described in [2]. Set

L =

{
(u1, v1, s) ∈ N3 | u1 | u, v1 | v, s < u1, u1 | s

rv − 1

rv1 − 1

}
.
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Then there is a bijection between L and the subgroup lattice L(ZM(u, v, r))
of ZM(u, v, r), namely the function that maps a triple (u1, v1, s) ∈ L into
the subgroup H(u1,v1,s) defined by

H(u1,v1,s) =

v
v1⋃
k=1

α(v1, s)
k〈au1〉 = 〈au1 , α(v1, s)〉,

where α(x, y) = bxay, for all 0 ≤ x < v and 0 ≤ y < u. Remark also that

(3) exp(H(u1,v1,s)) =
uv

u1v1
, for any s such that (u1, v1, s) ∈ L.

It is obvious that if G = ZM(u, v, r), then n = uv and therefore all
divisors of n are of the form uv

u1v1
with u1 | u and v1 | v. Hence the

equality (3) completes the proof.

Since every ZM-group is supersolvable, and consequently a CLT group,
an unexpected implication follows from Theorem 6.

Corollary 7. Let G be a finite group of order n and ord, exp : L(G) −→
Ln be the order function and the exponent function associated to G, re-
spectively. If exp is surjective, then so is ord.

We end this note by indicating two open problems concerning the
exponent function.

Problem 1. Let G be a finite group and m = exp(G). Denote by C2
the class consisting of all finite groups G for which exp : L(G) −→ Lm is
surjective. Obviously, C2 contains C1. We observe that if G has elements
of order m, then it belongs to C2. In other words, C2 also contains the
class C studied in [10]. These remarks make it natural to ask for a precise
description of the groups in C2.

Problem 2. It is a usual technique to consider an equivalence relation
∼ on an algebraic structure and then to study the factor set with re-
spect to ∼, partially ordered by certain ordering relations. Following
this technique, let P be the set of equivalence classes of subgroups of G
with respect to the kernel of exp, that is

P = {[H] | H ∈ L(G)}, where [H] = {K ∈ L(G) | exp(K) = exp(H)},
and define

[H1] ≤ [H2] if and only if K1 ⊆ K2 for some K1 ∈ [H1] and K2 ∈ [H2].
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Determine the finite groups G for which (P,≤) is a poset and study its
properties. When is (P,≤) a lattice?
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