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ON CERTAIN CLASS OF STARLIKE ANALYTIC
FUNCTIONS ASSOCIATED WITH A DIFFERENTIAL

OPERATOR

ENTISAR EL-YAGUBI AND MASLINA DARUS

Abstract. The aim of this paper is to introduce a new class of
analytic functions in the unit disk, with negative coefficients, via a new
generalized derivative operator. We prove coefficient inequalities for
the new class of functions and for a subclass of it, as well as distortion
theorems for functions in this subclass and for their derivatives. We
determine the extreme points of the newly introduced subclass.

1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑
n=2

anz
n,

which are analytic in the unit disk U = {z : z ∈ C, |z| < 1}.

For x ∈ N, denote by A(x) denote the class of functions of the form

(1.2) f(z) = z +
∞∑

n=x+1

anz
n,

————————————–
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which are analytic in the unit disk U. Here N is the set of positive
integers.

Also let T (x) denote subclass of A(x) consisting of functions f of
the form

(1.3) f(z) = z −
∞∑

n=x+1

|an|zn, x ∈ N.

A function f ∈ T (x) is called a function with negative coefficients.
Silverman investigated in (7) the subclasses of T (1) denoted by S∗

T (α)
and CT (α) for 0 ≤ α < 1, that are, respectively, starlike functions of
order α and convex functions of order α.

For complex parameters ai, bj, (i = 1, . . . , r, j = 1, . . . , s, bj ∈ C\{0,−1,−2,
. . .}), we shall use the generalized hypergeometric function rΦs(ai, bj; z)

rΦs(ai, bj; z) =
∞∑
n=0

(a1)n · · · (ar)n
(b1)n · · · (bs)n

zn

n!
,

where r ≤ s + 1; r, s ∈ N0 = N ∪ {0}; z ∈ U,N denotes the set of
positive integers and (x)n is the Pochhammer symbol defined in terms
of the Gamma function Γ, by

(x)n =
Γ(x+ n)

Γ(x)
=

{
1, n = 0,
x(x+ 1) · · · (x+ n− 1), n = {1, 2, 3, . . .}.

Corresponding to a function rGs(ai, bj; z) defined by

(1.4) rGs(ai, bj; z) = z rΦs(ai, bj; z).

Dziok and Srivastava (8) introduced a convolution operator on A
such that

Hr,s(ai, bj) : A → A,

is defined by

Hr,s(ai, bj)f(z) =r Gs(ai, bj; z) ∗ f(z)

= z +
∞∑
n=2

(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1

anz
n

(n− 1)!
,
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For λ2 ≥ λ1 ≥ 0,m, b ∈ N0 = {0, 1, 2, ...}, ai ∈ C, bj ∈ C\{0,−1,−2, . . .},
(i = 1, . . . , r, j = 1, . . . , s), and r ≤ s + 1; r, s ∈ N0, we define the fol-

lowing operator Dm,b
λ1,λ2

(ai, bj)f : A → A by the following Hadamard
product:

D0,b
λ1,λ2

(ai, bj)f(z) =r Gs(ai, bj; z) ∗ f(z),

(1.5)

(1+b)D1,b
λ1,λ2

(ai, bj)f(z) = (1−(λ1+λ2)+b)(φb
λ2
∗rGs(ai, bj; z)∗f(z))

+ (λ1 + λ2)z(φ
b
λ2

∗r Gs(ai, bj; z) ∗ f(z))′,

(1.6) Dm,b
λ1,λ2

(ai, bj)f(z) = Db
λ1,λ2

(Dm−1,b
λ1,λ2

(ai, bj)f(z)),

where φb
λ2

= z +
∑∞

n=2
zn

1+λ2(n−1)+b
.

From (1.5) and (1.6) we may easily deduce the following formula

(1.7) Dm,b
λ1,λ2

(ai, bj)f(z) =

z +
∞∑
n=2

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1

anz
n

(n− 1)!
.

It should be remarked that the linear operator (1.7) is a general-
ization of many operators considered earlier. Let us see some of the
examples:

For m = 0 the operator Dm,b
λ1,λ2

(ai, bj)f reduces to the well-known
Dziok- Srivastava operator (8).
For λ2 = b = 0, we get the Selvaraj derivative operator (3).
For m = 0, r = 2 and s = 1 we obtain the Hohlov derivative operator
(9).
For r = 1, s = 0, a1 = 1, λ1 = 1 and λ2 = b = 0, we get the Salagean
derivative operator (6).
For r = 1, s = 0, a1 = 1 and λ2 = b = 0, we get the generalized
Salagean derivative operator introduced by Al-Oboudi (5).
For m = 0, r = 1, s = 0 and a1 = δ + 1 we obtain the Ruscheweyh
derivative operator (14).
For r = 1, s = 0 and a1 = δ + 1 we obtain the El-Yagubi and Darus
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derivative operator (4).
For m = 0, r = 2 and s = 1 and a2 = 1 we obtain the Carlson and
Shaffer derivative operator (2).
For r = 1, s = 0, a1 = 1 and λ2 = 0 we get the Cátás derivative oper-
ator (1).

By making use of the generalized derivative operatorDm,b
λ1,λ2

(ai, bj)f(z),
we introduce a new subclass as follows:

Definition 1.1. For f be defined by (1.2), 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0
and m, b ∈ N0 = {0, 1, 2, ...}, ai ∈ C, bj ∈ C\{0,−1,−2, . . .}, (i =

1, . . . , r, j = 1, . . . , s), and r ≤ s + 1; r, s ∈ N0, let Mm,b
λ1,λ2

(ai, bj, x, α)
be the subclass of A(x) consisting of functions f which satisfy

(1.8) Re

(
z(Dm,b

λ1,λ2
(ai, bj)f(z))

′

Dm,b
λ1,λ2

(ai, bj)f(z)

)
> α, (z ∈ U),

where x ∈ N and Dm,b
λ1,λ2

(ai, bj)f(z) ̸= 0 for every z ∈ U.

Note that if f given by (1.3), then we can see that

(1.9) Dm,b
λ1,λ2

(ai, bj)f(z) =

z −
∞∑

n=x+1

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1

|an|zn

(n− 1)!
,

where λ2 ≥ λ1 ≥ 0,m, b ∈ N0 = {0, 1, 2, ...},
ai ∈ C, bj ∈ C\{0,−1,−2, . . .},
(i = 1, . . . , r, j = 1, . . . , s), and r ≤ s+ 1; r, s ∈ N0, x ∈ N.

In addition, we define the class T Mm,b
λ1,λ2

(ai, bj, x, α) by

(1.10) T Mm,b
λ1,λ2

(ai, bj, x, α) = Mm,b
λ1,λ2

(ai, bj, x, α) ∩ T (x).

Note that various subclasses of Mm,b
λ1,λ2

(ai, bj, x, α) and

T Mm,b
λ1,λ2

(ai, bj, x, α) have been studied by many authors by suitable
choices of m, b, λ1, λ2 and x. For example:

whenm = 0, r = 1, s = 0, a1 = 1, x = 1, then T Mm,b
λ1,λ2

(ai, bj, x, α) ≡
S∗
T (α), and when m = 1, λ1 = b = 0, r = 1, s = 0, a1 = 1, x =

1, then T Mm,b
λ1,λ2

(ai, bj, x, α) ≡ CT (α), where the classes S∗
T (α) and
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CT (α) were studied by Silverman (7), for m = 1, λ1 = b = 0, r =

1, s = 0, a1 = 1, then T Mm,b
λ1,λ2

(ai, bj, x, α) ≡ S∗
T (x, α), and when

m = 0, r = 1, s = 0, a1 = 1, then T Mm,b
λ1,λ2

(ai, bj, x, α) ≡ CT (x, α),
where the classes S∗

T (x, α) and CT (x, α) were introduced by Chat-
terjea (15), when m = 1, λ2 = b = 0, r = 1, s = 0, a1 = 1, then

T Mm,b
λ1,λ2

(ai, bj, x, α) ≡ P(x, λ1, α), (0 ≤ λ1 < 1), and for m = 1, λ2 =

b = 0, r = 1, s = 0, a1 = 1, then T Mm,b
λ1,λ2

(ai, bj, x, α) ≡ C(x, λ1, α),
where the classes P(x, λ1, α) and C(x, λ1, α) were, respectively, studied
by Altintas (12), Kamali and Akbulut (11). When m = 0, r = 1, s = 0

and a1 = δ + 1 in the class Mm,b
λ1,λ2

(ai, bj, x, α), we have the class
Rδ(x, α) introduced and studied by Ahuja (13). Finally we note that
when m = 1, λ2 = b = 0, r = 1, s = 0, a1 = δ + 1 in the class
Mm,b

λ1,λ2
(ai, bj, x, α) we have the class Mδ

λ1
(x, α) introduced and stud-

ied by Al-Shaqsi and Darus (10).

2. Coefficient Inequalities

In this section we provide two conditions in terms of coefficient in-
equalities, namely a sufficient condition for a function f ∈ A(x) to be-

long to the class Mm,b
λ1,λ2

(ai, bj, x, α) and a necessary and sufficient con-

dition for a function f ∈ T (x) to belong to the class T Mm,b
λ1,λ2

(ai, bj, x, α).

Theorem 2.1. Let f be defined by (1.2). For 0 ≤ α < 1, λ2 ≥ λ1 ≥
0, m, b ∈ N0, x ∈ N, ai ∈ C, bj ∈ C\{0,−1,−2, . . .}, (i = 1, . . . , r, j =
1, . . . , s), and r ≤ s+ 1; r, s ∈ N0. If

(2.1)
∞∑

n=x+1

(n−α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ 1−α,

then f ∈ Mm,b
λ1,λ2

(ai, bj, x, α).

Proof. Suppose that (2.1) holds true. It suffices to show that

(2.2)

∣∣∣∣∣z(D
m,b
λ1,λ2

(ai, bj)f(z))
′

Dm,b
λ1,λ2

(ai, bj)f(z)
− 1

∣∣∣∣∣ ≤ 1− α.

We have
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∣∣∣∣∣z(D
m,b
λ1,λ2

(ai, bj)f(z))
′

Dm,b
λ1,λ2

(ai, bj)f(z)
− 1

∣∣∣∣∣ =
∣∣∣∣∣z(D

m,b
λ1,λ2

(ai, bj)f(z))
′ −Dm,b

λ1,λ2
(ai, bj)f(z)

Dm,b
λ1,λ2

(ai, bj)f(z)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑∞

n=x+1(n− 1)
[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
anz

n

z +
∑∞

n=x+1

[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
anzn

∣∣∣∣∣∣ , |z| < 1,

(2.3) ≤

∑∞
n=x+1(n− 1)

[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
|an|

1−
∑∞

n=x+1

[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
|an|

.

This expression (2.3) is bounded by (1− α). We have

∞∑
n=x+1

(n−1)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an|

(2.4)

≤ (1−α)

[
1−

∞∑
n=x+1

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an|

]
,

which is equivalent to

∞∑
n=x+1

(n−α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ (1−α),

by (2.1). Thus f ∈ Mm,b
λ1,λ2

(ai, bj, x, α).

Theorem 2.2. Let f be defined by (1.3). Then f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α)
if and only if (2.1) is satisfied.

Proof. We only prove the necessity, since the sufficiency can be
obtained by using similar arguments in proof of Theorem 2.1. Let
f ∈ T Mm,b

λ1,λ2
(ai, bj, x, α) by condition (1.8), we have the

ℜ

(
z(Dm,b

λ1,λ2
(ai, bj)f(z))

′

Dm,b
λ1,λ2

(ai, bj)f(z)

)
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(2.5)

= ℜ

z −
∑∞

n=x+1 n
[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
|an|zn

z −
∑∞

n=x+1

[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
|an|zn

 > α.

Choose values of z on real axis so that
z(Dm,b

λ1,λ2
(ai,bj)f(z))

′

Dm,b
λ1,λ2

(ai,bj)f(z)
is real. Let-

ting z → 1 through real values, we have

(2.6)
1−

∑∞
n=x+1 n

[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
|an|

1−
∑∞

n=x+1

[
1+(λ1+λ2)(n−1)+b

1+λ2(n−1)+b

]m
(a1)n−1···(ar)n−1

(b1)n−1···(bs)n−1(n−1)!
|an|

> α.

Thus we obtain

∞∑
n=x+1

(n−α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ 1−α,

which is (2.1). Hence the proof is complete.
Finally the result is sharp with the extremal function f given by

(2.7)

f(z) = z− 1− α

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
zx+1, x ∈ N.

Corollary 2.1. Let f be defined by (1.3) be in the class T Mm,b
λ1,λ2

(ai, bj, x, α).
Then we have

(2.8)

|an| ≤
1− α

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

,

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0, m, b ∈ N0, n ≥ x + 1, ai ∈ C, bj ∈
C\{0,−1,−2, . . .}, (i = 1, . . . , r, j = 1, . . . , s), r ≤ s+ 1; r, s ∈ N0 and
x ∈ N.

This equality is attained for the function f given by (2.7).
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3. Distortion Theorems

A distortion property for function f to be in the class T Mm,b
λ1,λ2

(ai, bj, x, α)
is given as follows:

Theorem 3.1. Let the function f be defined by (1.3) be in the class

T Mm,b
λ1,λ2

(ai, bj, x, α). Then for 0 < |z| = r < 1, we have

r − 1− α

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
rx+1

(3.1)

≤ |f(z)| ≤ r+
1− α

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
rx+1, x ∈ N.

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0 and m, b ∈ N0, ai ∈ C, bj ∈
C\{0,−1,−2, . . .},
(i = 1, . . . , r, j = 1, . . . , s), r ≤ s+ 1; r, s ∈ N0 and x ∈ N.

Proof. Since f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α) by Theorem 2.2, we have

∞∑
n=x+1

(n−α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ 1−α.

Now

(x+ 1− α)

[
1 + (λ1 + λ2)x+ b

1 + λ2x+ b

]m
(a1)x · · · (ar)x
(b1)x · · · (bs)x x!

(
∞∑

n=x+1

|an|

)

=
∞∑

n=x+1

(x+ 1− α)

[
1 + (λ1 + λ2)x+ b

1 + λ2x+ b

]m
(a1)x · · · (ar)x
(b1)x · · · (bs)x x!

|an|

≤
∞∑

n=x+1

(n− α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an|

≤ 1− α, x ∈ N.
Therefore,
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(3.2)
∞∑

n=x+1

|an| ≤
1− α

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
.

Since

f(z) = z −
∞∑

n=x+1

|an|zn,

we get

|f(z)| = |z −
∞∑

n=x+1

|an|zn|.

Next,

|z| − |z|x+1

∞∑
n=x+1

|an| ≤ |f(z)| ≤ |z|+ |z|x+1

∞∑
n=x+1

|an|,

that is

r − rx+1

∞∑
n=x+1

|an| ≤ |f(z)| ≤ r + rx+1

∞∑
n=x+1

|an|.

By using the inequality (3.2), it yields Theorem 3.1. Thus, the proof
is complete.

Theorem 3.2. Let the function f be defined by (1.3) be in the class

T Mm,b
λ1,λ2

(ai, bj, x, α). Then for 0 < |z| = r < 1, we have

1− (x+ 1)(1− α)

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
rx

(3.3)

≤ |f ′(z)| ≤ 1+
(x+ 1)(1− α)

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
rx, x ∈ N.

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0 and m, b ∈ N0, ai ∈ C, bj ∈
C\{0,−1,−2, . . .},
(i = 1, . . . , r, j = 1, . . . , s), r ≤ s+ 1; r, s ∈ N0 and x ∈ N.
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Proof. Since f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α) by Theorem 2.2, we have

∞∑
n=x+1

(n−α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ 1−α.

Now

(x+ 1− α)

[
1 + (λ1 + λ2)x+ b

1 + λ2x+ b

]m
(a1)x · · · (ar)x
(b1)x · · · (bs)x x!

(
∞∑

n=x+1

n|an|

)

=
∞∑

n=x+1

(x+ 1− α)

[
1 + (λ1 + λ2)x+ b

1 + λ2x+ b

]m
(a1)x · · · (ar)x
(b1)x · · · (bs)x x!

n|an|

≤ (x+ 1)
∞∑

n=x+1

(n− α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
·

· (a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an|,

≤ (x+ 1)(1− α), x ∈ N.
Hence,

(3.4)
∞∑

n=x+1

n|an| ≤
(x+ 1)(1− α)

x+ 1− α

[
1 + λ2x+ b

1 + (λ1 + λ2)x+ b

]m
(b1)x · · · (bs)x x!

(a1)x · · · (ar)x
, x ∈ N.

Since

f ′(z) = 1−
∞∑

n=x+1

n|an|zn−1,

then we have that

1− |z|x
∞∑

n=x+1

n|an| ≤ |f ′(z)| ≤ 1 + |z|x
∞∑

n=x+1

n|an|,

therefore,

1− rx
∞∑

n=x+1

n|an| ≤ |f ′(z)| ≤ 1 + rx
∞∑

n=x+1

n|an|, x ∈ N.
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By using the inequality (3.4), we get Theorem 3.2. This completes
the proof.

4. Extreme Points

We shall now determine the extreme points of the class T Mm,b
λ1,λ2

(ai, bj, x, α).

Theorem 4.1. Let x ∈ N and ai ∈ C, bj ∈ C\{0,−1,−2, . . .}, (i =
1, . . . , r, j = 1, . . . , s), where r, s ∈ N0 with r ≤ s + 1. Let 0 ≤ α <
1, λ2 ≥ λ1 ≥ 0 and m, b ∈ N0. Define fx(z) = z and

fn(z) = z− 1− α

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn,

where n ≥ x + 1. Then f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α) if and only if it can
be expressed in the form

(4.1) f(z) =
∞∑

n=x

µnfn(z),

where µn ≥ 0 and
∑∞

n=x µn = 1.

Proof. Suppose that

f(z) =
∞∑

n=x

µnfn(z)

= µxfx(z) +
∞∑

n=x+1

µnfn(z)

= µxfx(z) +
∞∑

n=x+1

µn

[
z − 1− α

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn
]

=
∞∑

n=x

µnz −
∞∑

n=x+1

µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn
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= z−
∞∑

n=x+1

µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn.

Now

f(z) = z−
∞∑

n=x+1

|an|zn = z−
∞∑

n=x+1

µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn,

therefore,

|an| =
µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

.

Now, we have that

∞∑
n=x+1

µn = 1− µx ≤ 1, x ∈ N.

Setting

∞∑
n=x+1

µn =

=
∞∑

n=x+1

µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

n− α

1− α

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
≤ 1,

we get

∞∑
n=x+1

n− α

1− α

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ 1.

Therefore,
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∞∑
n=x+1

(n− α)

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤

≤ 1− α.

It follows from Theorem 2.2 that f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α).

Conversely, we suppose that f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α), it is easily
seen that

f(z) = z −
∞∑

n=x+1

|an|zn = z−

−
∞∑

n=x+1

µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn,

which suffices to show that

|an| =
µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

.

Now, we have that f ∈ T Mm,b
λ1,λ2

(ai, bj, x, α), then by previous Corol-
lary 2.1,

|an| ≤
1− α

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

,

which is

n− α

1− α

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an| ≤ 1.

Since
∑∞

n=x µn = 1, we see µn ≤ 1, for each n ≥ x and x ∈ N. We
can set that

µn =
n− α

1− α

[
1 + (λ1 + λ2)(n− 1) + b

1 + λ2(n− 1) + b

]m
(a1)n−1 · · · (ar)n−1

(b1)n−1 · · · (bs)n−1(n− 1)!
|an|.

Thus,

|an| =
µn(1− α)

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

.
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The proof of Theorem 4.1 is complete.

Corollary 4.1. The extreme points of T Mm,b
λ1,λ2

(ai, bj, x, α) are the
functions

fx(z) = z,

(4.2)

fn(z) = z− 1− α

n− α

[
1 + λ2(n− 1) + b

1 + (λ1 + λ2)(n− 1) + b

]m
(b1)n−1 · · · (bs)n−1 (n− 1)!

(a1)n−1 · · · (ar)n−1

zn,

where 0 ≤ α < 1, λ2 ≥ λ1 ≥ 0, m, b ∈ N0, n ≥ x + 1 and x ∈ N,
ai ∈ C, bj ∈ C\{0,−1,−2, . . .}, (i = 1, . . . , r, j = 1, . . . , s), r ≤ s +
1; r, s ∈ N0.
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