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ON UPPER AND LOWER m-ITERATE CONTINUOUS
MULTIFUNCTIONS

TAKASHI NOIRI AND VALERIU POPA

Abstract. We introduce the notion of mIT-structures determined
by operators mInt and mCl on an m-space (X, mx). By using mIT-
structures, we introduce and investigate new classes of multifunctions
F : (X,mx) — (Y,0) called upper/lower mIT-continuous. As spe-
cial cases of upper/lower mIT-continuity, we obtain upper/lower y-M
continuity [34] and upper/lower d-M-precontinuity [35].

1. INTRODUCTION

Semi-open sets, preopen sets, a-open sets, S-open sets and b-open
sets play an important role in the researches of generalizations of con-
tinuity of functions and multifunctions. By using these sets, several
authors introduced and studied various types of non-continuous func-
tions and multifunctions.

In [26] and [28], the present authors introduced and studied the no-
tions of minimal structures, m-spaces, m-continuity and M-continuity.
Quite recently, in [16], [17], [18], [19], and [20], Min and Kim intro-
duced the notions of m-semi-open sets, m-preopen sets, m-a-open
sets, m-fp-open sets which generalize the notions of semi-open sets,
preopen sets, a-open sets, and [S-open sets, respectively and also the
notions of m-semi-continuity, m-precontinuity, m-a-continuity, m-s-
continuity which generalize the notions of of semi-continuity, precon-
tinuity, a-continuity, S-continuity and m-continuity.

Keywords and phrases:m-structure, m-continuous, mI7T-structure,
mIT-continuous, multifunction.
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In [6], [7], [31] and [33], the notions of m-semi-open sets, m-preopen
sets, m-a-open sets and m-B-open sets are also introduced and stud-
ied. Recently, in [25] the notion of iterate m-continuous functions are
introduced and studied. Also, in [34] and [35], the notions of 7-M
continuity and - M-precontinuity for multifunctions are initiated and
studied.

In the present paper, we introduce the notions of upper / lower
mIT-continuous multifunctions which generalize the notions of upper
/ lower v-M continuity and d-M-precontinuity. By using upper/lower
M-continuity [22], we obtain many properties of upper / lower mIT
- continuous multifunctions which provide properties of upper / lower
~v-M continuity and J-M-precontinuity. And also, the notions of up-
per/lower mIT-continuous multifunctions provide the definitions of
the new notions: upper/lower m-semi-continuity, upper / lower m-
precontinuity, upper/lower m-a-continuity, and upper/lower m - (-
continuity. The properties of these multifunctions are obtained from
those of upper/lower mIT-continuity as the special cases.

2. PRELIMINARIES

Let (X, 7) be a topological space and A a subset of X. The closure
of A and the interior of A are denoted by Cl(A) and Int(A), respec-
tively. A point € X is called a d-cluster (resp. O-cluster) point of a
subset A if Int(C1((U)) N A # 0 (vesp. CI((U) N A # ) for every open
set U containing x. The set of all J-cluster (resp. 6-cluster) points
of A is called the d-closure (rep. 6-closure) of A and is denoted by
Clo(A) (resp. ClO(A)). If A= CIl6(A) (resp. A= ClO(A)), then A is
said to be d-closed (resp. 6-closed) [32]. The complement of a d-closed
(resp. f-closed) set is said to be d-open (resp. f-open). The union of
all §-open (resp. f-open) sets contained in A is called the d-interior
(resp. f-interior) of A and is denoted by Intd(A) (resp. Inté(A)).

We recall some generalized open sets in topological spaces.

Definition 2.1. Let (X, 7) be a topological space. A subset A of X
is said to be

(1) a-open [21] if A C Int(Cl(Int(A))),

(2) semi-open [12] if A C Cl(Int(A)),

(3) preopen [14] if A C Int(CIl(A)),

(4) b-open [4] or v-open [9] if A C Int(Cl(A)) U Cl(Int(A)),

(5) B-open [1] or semi-preopen [3] if A C Cl(Int(C1(A))).
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The family of all a-open (resp. semi-open, preopen, y-open, -open)
sets in (X, 7) is denoted by a(X) (resp. SO(X), PO(X), v(X), B(X)).

Definition 2.2. Let (X, 7) be a topological space. A subset A of X is
said to be a-closed [15] (resp. semi-closed [8], preclosed [14], v-closed
9], 5-closed [1]) if the complement of A is a-open (resp. semi-open,

preopen, y-open, [3-open).

Definition 2.3. Let (X, 7) be a topological space and A a subset of
X. The intersection of all a-closed (resp. semi-closed, preclosed, b-
closed, f-closed) sets of X containing A is called the a-closure [15]
(resp. semi-closure [8], preclosure [10], vy-closure [9], -closure [2]) of

A and is denoted by aCl(A) (resp. sCl(A), pCl(A), yCl(A), SCI(A)).

Definition 2.4. Let (X,7) be a topological space and A a subset
of X. The union of all a-open (resp. semi-open, preopen, 7y-open,
p-open) sets of X contained in A is called the a-interior [15] (resp.
semi-interior [8], preinterior [10], y-interior 9], B-interior [2]) of A

and is denoted by alnt(A) (resp. sInt(A), pInt(A), vInt(A), SInt(A)).

Definition 2.5. A function f : (X,7) — (Y, 0) is said to be semi-
continuous [12] (resp. precontinuous [14], a-continuous [15], v - contin-
uous [9], B-continuous [1]) at x € X if for each open set V' containing
f(zx), there exists a semi-open (resp. preopen, a-open, y-open, -open)
set U of X containing z such that f(U) C V. The function f is said to
be semi-continuous (resp. precontinuous , c-continuous, y-continuous,
[-continuous) if it has this property at each point z € X.

Throughout the present paper (X, 7) and (Y, o) (or simply X and
Y') always denote topological spaces and F': (X, 7) — (Y, o) presents
a multivalued function. For a multifunction F' : X — Y, we shall
denote the upper and lower inverse of a set B of Y by F*(B) and
F~(B), respectively, that is,

FH(B)={r € X :F(x) C B} and
F~(B)={rxe€ X : F(zx)NB # 0}.

3. MINIMAL STRUCTURES AND UPPER/LOWER m-CONTINUITY

Definition 3.1. Let X be a nonempty set and P(X) the power set
of X. A subfamily mx of P(X) is called a minimal structure (briefly
m-structure) on X [26], [27] if ) € mx and X € m.
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By (X, my), we denote a nonempty set X with an m-structure mx
on X and call it an m-space. Each member of mx is said to be mx-
open (briefly m-open) and the complement of an m x-open set is said
to be mx-closed (briefly m-closed).

Remark 3.1. Let (X, 7) be a topological space. The families 7, a(X),
SO(X), PO(X), v(X) and f(X) are all minimal structures on X.

Definition 3.2. Let X be a nonempty set and mx an m-structure on
X. For a subset A of X, the myx-closure of A and the my-interior of
A are defined in [13] as follows:

(1) mCl(A) =n{F:ACF, X\ F €mx},

(2) mInt(A) = U{U : U C A,U € mx}.

Remark 3.2. Let (X, 7) be a topological space and A a subset of X.
If mx = 7 (resp. SO(X), PO(X), a(X), v(X), B(X)), then we have
(1) mCI(A) = CI(A) (resp. sCl(A), pCl(A), aCl(A), vCl(A), BCL(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), alnt(A), vInt(A),
plnt(A)) .

Lemma 3.1. (Maki et al. [13]). Let X be a nonempty set and mx
a minimal structure on X. For subsets A and B of X, the following
properties hold:

(1) mCl(X \ A) = X \ mInt(A) and mInt(X \ A) = X \ mCIl(A),

(2) If (X \ A) € mx, then mCl(A) = A and if A € mx, then
mlnt(A) = A4,

(3) mC1(0) = 0, mCl(X) = X, mInt(D) = 0 and mInt(X) = X,

(4) If A C B, then mCl(A) C mCl(B) and mInt(A) C mInt(B),

(5) A C mCl(A) and mInt(A) C A,

(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2. (Popa and Noiri [26]). Let (X, mx) be an m-space and
A a subset of X. Then x € mCI(A) if and only if UN A #£ 0 for each

U € mx containing x.

Definition 3.3. A minimal structure my on a nonempty set X is said
to have property B [13] if the union of any family of subsets belonging
to mx belongs to mx.

Remark 3.3. If (X, 7) is a topological space, then SO(X), PO(X),
a(X), v(X) and S(X) have property B.

Lemma 3.3. (Popa and Noiri [30]). Let X be a nonempty set and mx
an m-structure on X satisfying property B. For a subset A of X, the
following properties hold:
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(1) A € mx if and only if mInt(A) = A,
(2) A is mx-closed if and only if mCl(A) = A,
(3) mInt(A) € mx and mCI(A) is mx-closed.

Definition 3.4. A function f : (X, mx) — (Y,0) is said to be m-
continuous at © € X [28] if for each open set V' € o containing f(z),
there exists U € mx containing x such that f(U) C V. The function
f is m~continuous if it has this property at each x € X.

Remark 3.4. Let (X, 7) be a topological space. If f : (X,my) —
(Y, o) is m-continuous and my = SO(X) (resp. PO(X), a(X), v(X)
and (X)), then we obtain Definition 2.5.

Definition 3.5. Let (X, mx) be an m-space and (Y, o) a topological
space. A multifunction F': (X, mx) — (Y, 0) is said to be

(1) upper m-continuous at x € X [29] if for each open set V € o
containing F'(z), there exists U € my containing x such that F(U) C
v,

(2) lower m-continuous at x € X [29] if for each open set V' € o
meeting F'(x), there exists U € mx containing x such that F'(u) NV #
() for every u € U,

(3) upper/lower m-continuous if it has this property at each z € X.

Theorem 3.1. For a multifunction F : (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper m-continuous;

(2) FY(V) = mInt(FT(V)) for every open set V of Y;

(3) F~(K) = mCl(F~(K)) for every closed set K of Y;

(4) mCl(F~(B)) C F~(CI(B)) for every subset B of Y;

(5) F™(Int(B)) C mInt(F*(B)) for every subset B of Y.

Proof. The proof follows from Theorem 3.1 of [22] and Lemma 4.1
of [29].

Corollary 3.1. Let (X, mx) be an m-space and my satisfy property
B. For a multifunction F : (X,mx) — (Y, 0), the following properties
are equivalent:

(1) F is upper m-continuous;

(2) F*(V) is m-open for every open set V of Y;

(3) F~(K) is m-closed for every closed set K of Y.

Proof. The proof follows from Theorem 3.1 and Lemma 3.3.

Theorem 3.2. For a multifunction F : (X, mx) — (Y, o), the follow-
ing properties are equivalent:
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(1) F is lower m-continuous;

(2) F~(V) = mInt(F~(V)) for every open set V of Y;
(3) FT(K) = mCl(F*(K)) for every closed set K of Y;
(4) mCl(F*(B)) C FT(Cl(B)) for every subset B of Y;
(5) F~(Int(B)) C mInt(F~(B)) for every subset B of Y;
(6) F(mCl(A)) C CI(F(A)) for every subset A of X.

Proof. The proof follows from Theorem 3.2 of [22] and Lemma 4.1
of [29].

Corollary 3.2. Let (X, mx) be an m-space and my satisfy property
B. For a multifunction F : (X,mx) — (Y, 0), the following properties
are equivalent:

(1) Fis lower m-continuous;

(2) F~(V) is m-open for every open set V of Y;

(3) FT(K) is m-closed for every closed set K of Y.

Proof. The proof follows from Theorem 3.2 and Lemma 3.3.

For a function F : (X, mx) — (Y, 0), we define D} (F) and D,, (F)
as follows:

D/ (F) = {z € X : F is not upper m-continuous at x},
D (F) = {z € X : F is not lower m-continuous at x}

Theorem 3.3. (Noiri and Popa [23]). For a multifunction F': (X, mx) —
(Y, ), the following equalities hold:
Dy (F) = Uge AF7(G) \ mInt(F7(G))}
= Upe pory {FT(Int(B)) \ mInt(F*(B))}
= Upe pv) {mCI(F(B)) \ F~(CI(B))}

= Uge 7 {mCI(F(K)) \ F7(K)},
where F is the family of closed sets of (Y, o).

Theorem 3.4. (Noiri and Popa [23]). For a multifunction F': (X, mx) —
(Y, ), the following equalities hold:

Do (F) = Uge 17 (G) \ mInt (F(G)) }
= Upe pory {F (Int(B)) \ mInt(F(B))}
= Upe pory {mCUFT(B))\ F(CI(B))}
= Uae pxy {mCl(A) \ F(CL(F(A)))}

1
=Uke 7 {chl(F+(K)) \ FT(K)},
where F is the family of closed sets of (Y, o).
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4. ITERATE m-STRUCTURES AND ITERATE m-CONTINUITY FOR
MULTIFUNCTIONS

Definition 4.1. Let (X, mx) be an m-space. A subset A of X is said
to be
(1) m-a-open [17] if A C mInt(mCl(mInt(A))),
(2) m-semi-open [16] if A C mCl(mInt(A)),
(3) m-preopen [19] if A C mInt(mCI(A)),
(4) m-B-open [6], [33] if A C mCl(mInt(mCI(A))),
(5) m-y-open [34] or m-b-open [25] if A C mInt(mCl(A))UmCl(mInt(A)),
(6) m-regular open (resp. m-regular closed) if A = mInt(mCl(A))
(resp. A = mCl(mlnt(A)).

The family of all m-a-open (resp. m-semi-open, m-preopen, m-{-
open, m-y-open) sets in (X, mx) is denoted by ma/(X) (resp. mSO(X),
mPO(X), mB(X), my(X)).

Remark 4.1. Similar definitions of m-semi-open sets, m-preopen sets,
m-a-open sets, m-f-open sets are provided in [7], [31] and [33].

Let A be a subset of an m-space (X, my). The union of m-regular
open sets of X contained in A is called myx-d-interior of A and is de-
noted by mx-dInt(A). A subset A is said to be mx-d-open if A = mx-
dInt(A). The complement of an mx-d-open set is said to be my-d-
closed. The intersection of all mx-d-closed sets of X containing A is
called the mx-d-closure of A and is denoted by mx-0CI(A). A subset A
of (X, mx) is said to be mx-d-preopen [35] if A C mInt(mx-dCI(A)).
The complement of an m x-d-preopen set is said to be m x-d-preclosed.
The family of all mx-d-open (resp. mx-d-preopen) sets of X is de-
noted by mé(X) (resp. moPO(X)).

Let (X, mx) be an m-space. Then ma(X), mSO(X), mPO(X),
mA(X), my(X), mé(X) and mdPO(X) are all minimal structures on
X and are determined by iterating operators mlInt, mCl, myx-dInt

and mx-dCl. Hence, they are called m-iterate structures [25] and are
denoted by mIT(X) (briefly mIT).

Remark 4.2. (1) It easily follows from Lemma 3.1(3)(4) that ma/(X),
mSO(X), mPO(X), m3(X) and mBO(X) are minimal structures with
property B. They are also shown in Theorem 3.5 of [16], Theorem 3.4
of [19], Theorem 3.4 of [17], Proposition 3.5 of [34].

(2) Let (X, mx) be an m-space and mIT(X) an iterate structure on
X. FmIT(X) = mSO(X) (resp. mPO(X), ma(X), mp(X)), my(X),
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moPO(X)), then we obtain the following definitions provided in [16]
(resp. [19], [17], [20], [34], [35]):

mITCl(A) = msCl(A) (resp. mpCl(A), maCl(A), mFClL(A), myCl(A),
m3pCl(A)),

mITInt(A) = msInt(A) (resp. mplnt(A), malnt(A), mpFInt(A),
myInt(A), mipInt(A)).

Remark 4.3. (1) By Lemmas 3.1 and 3.3, we obtain Theorems 3.7
and 3.8 of [19], Theorems 3.8 and 3.9 of [17], Remark 3.10 of [34].

(2) By Lemma 3.2, we obtain Lemma 3.9 of [19] and Theorem 3.10
of [17].

Definition 4.2. Let (X, my) be an m-space and (Y, o) a topological
space. A multifunction F': (X, mx) — (Y, 0) is said to be

(1) upper y-M-continuous [34] (resp. upper 6-M-precontinuous [35])
at © € X if for each open set V € o containing F(z), there exists
U € my(X) (resp. méPO(X)) containing = such that F(U) C V,

(2) lower vy-M-continuous [34] (resp. lower §-M-precontinuous [35])
at + € X if for each open set V' € o meeting F'(x), there exists
U € my(X) (resp. mdPO(X)) containing x such that F(u) NV # ()
for every u € U,

(3) upper/lower ~y-M-continuous (resp. upper/lower d-M-precontinuous)
if it has this property at each x € X.

Remark 4.4. By Definition 4.2 and Remark 4.2, it follows that a
multifunction F' : (X, my) — (Y, o) is upper/lower ~-M-continuous
(resp. upper/lower §-M-precontinuous) at = (on X) if a multifunction
F: (X,my(X)) — (Y,o) (rtesp. F : (X,moPO(X)) — (Y,0)) is

upper/lower m-continuous at z (on X).

Definition 4.3. A multifunction F': (X, mx) — (Y, 0) is said to be
upper/lower mIT-continuous at x € X (on X) if F': (X, mIT (X)) —
(Y, 0) is upper/lower m-continuous at z € X (on X).

Remark 4.5. Let (X, mx) be a minimal space. If mIT(X) = mSO(X)
(resp. mPO(X), ma(X), mB(X), my(X), méPO(X)) and F : (X,mx) —
(Y, o) is mIT-continuous, then F' is upper/lower m-semicontinuous
(resp. upper/lower m-precontinuous, upper/lower m-a-continuous,
upper /lower m-f-continuous, upper/lower ~-M-continuous [34], up-
per/lower §-M-precontinuous [35]).

Since mIT(X) has property B, by Theorems 3.1 and 3.2 and Corol-
laries 3.1 and 3.2 we obtain the following theorems.
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Theorem 4.1. For a multifunction F : (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper mIT-continuous;

(2) F*(V) is mIT-open for every open set V of Y;

(3) F~(K) is mIT-closed for every closed set K of Y;

(4) mITClHF~(B)) C F~(CI(B)) for every subset B of Y;

(5) F™(Int(B)) C mITInt(F*(B)) for every subset B of Y.

Remark 4.6. (1) If mIT(X) = my(X) (resp. méPO(X)), then by
Theorem 4.1 we obtain the results established in Theorem 4.5 (1), (2),
(3) and (4) of [34] (resp. Theorem 3.5 (1), (2), (3), (4) and (7) of [35]),

(2) If mIT(X) = mSO(X) (resp. mPO(X), ma(X), mp(X)), then
we obtain characterizations of upper m-semicontinuous (resp. upper
m-precontinuous, upper m-a-continuous, upper m-/-continuous) mul-
tifunctions.

Theorem 4.2. For a multifunction F : (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower mIT-continuous;

(2) F=(V) is mIT-open for every open set V of Y;

(3) FT(K) is mIT-closed for every closed set K of Y;

(4) mITCI(F*(B)) C FT(CIB)) for every subset B of Y;

(5) F~(Int(B)) C mITInt(F~(B)) for every subset B of Y;

(6) F(mITCIL(A)) C CI(F(A)) for every subset A of X.

Remark 4.7. (1) If mIT(X) = mvy(X) (resp. méPO(X)), then by
Theorem 4.2 we obtain the results established in Theorem 4.6 (1), (2),
(3), (4) and (5) of [34] (resp. Theorem 3.6 (1), (2), (3), (6) and (7) of
[35]),

(2) By Theorem 4.2 (6), we obtain a new characterization for lower
~-M-continuous (resp. lower d-M-continuous) multifunctions.

(3) If mIT(X) = mSO(X) (resp. mPO(X), ma(X), m5(X)), then
we obtain characterizations of lower m-semicontinuous (resp. lower
m-precontinuous, lower m-a-continuous, lower m-/-continuous) mul-
tifunctions.

For a function F : (X,mx) — (Y,0), we define D} .(F) and
D, +(F) as follows:

D} .(F) ={z € X : F is not upper mIT-continuous at x},
D_,+(F)={z € X : F is not lower m/T-continuous at '}

By Theorems 3.3 and 3.4, we obtain the following theorems:
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Theorem 4.3. For a multifunction F : (X, mx) — (Y, o), the follow-
ing equalities hold:
Dy r(F) = Uge, AF " (G) \ mITInt (F*(G)) }
= Use pov) {F*(Int(B)) \ mITInt(F+(B))}
= Upe poy {mITCI(F(B)) \ F~(CL(B))}
= Ugke 7 {mITCI(F(K)) \ F~(K)},

where F is the family of closed sets of (Y, o).
Theorem 4.4. For a multifunction F : (X, mx) — (Y, o), the follow-
ing equalities hold:
D (F) = UgeoAF™(G) \ mITInt(F~(G))}
= Upe »ov) {F (Int(B)) \ mITInt(F~(B))
= Uge pov) {mITCLI(F*(B)) \ F*(CL(B))}
= Uae pexy {mITCI(A) \ F*(CI(F(A)))}
=Uke 7 {mITCI(F+(K)) \ FH(K)},
where F is the family of closed sets of (Y, o).
For a multifunction F': (X, mx) — (Y,0), we define D} _(F) and
D, (F) as follows:

my

}

)
F

D (F) = {x € X : F is not upper my-continuous at x},
D, (F)={z e X : F is not lower m~y-continuous at x}

my

By Theorems 4.3 and 4.4, we obtain the following corollaries:

Corollary 4.1. For a multifunction F : (X,mx) — (Y,0), the fol-
lowing equalities hold:
Dy (F) = Ugeo AFT(G) \ myInt(F7(G))}
= Uge povy {F7(Int(B)) \ myInt(F*(B))}
=Upe » Y) {myCI(F~(B)) \ F~(CI(B))}

= Uge 7 {mCI(F~(K)) \ F~(K)},
where F is the family of closed sets of (Y, o).

Corollary 4.2. For a multifunction F : (X,mx) — (Y,0), the fol-
lowing equalities hold:
Dy (F) = UgeoAF(G) \ myInt(F~(G))}
= Upe »ov) {F (Int(B)) \ myInt(F~(B))}
= Uge pov) {myCUEF"(B)) \ F*(CL(B))}

= Uae peo {myCl(A) \ FT(CL(F(A)))}

=Uke 7 {Hl’VCl(F+(K)) \ FT(K)},
where F is the family of closed sets of (Y, o).

Remark 4.8. If mIT(X) = mSO(X), mPO(X), ma(X), m5(X)), or
mdPO(X), then we obtain the similar results.
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5. SOME PROPERTIES OF mIT-CONTINUOUS FUNCTIONS

Lemma 5.1. (Noiri and Popa [24]). Let (Y, o) be a reqular space and
my have property B. Then, for a multifunction F: (X,mx) — (Y, 0),
the following properties are equivalent:

(1) F'is upper m-continuous;

(2) F~(Cl0(B)) is m-closed for every subset B of Y;

(3) F~(K) is m-closed for every 0-closed set K of Y;

(4) FT (V) is m-open for every 6-open set V of Y.

Lemma 5.2. (Noiri and Popa [24]). Let (Y, 0) be a reqular space and
mx have property B. Then, for a multifunction F : (X,mx) — (Y, 0),
the following properties are equivalent:

(1) F is lower m-continuous;

(2) FT(Cl0(B)) is m-closed for every subset B of Y;

(3) FT(K) is m-closed for every 0-closed set K of Y;

(4) F~(V) is m-open for every 0-open set V of Y.

By Definition 4.3, Lemmas 5.1 and 5.2 and Remark 4.2(1), we obtain
the following theorems:

Theorem 5.1. Let (Y, 0) be a reqular space. Then, for a multifunction
F:(X,mx)— (Y,0), the following properties are equivalent:

(1) F is upper mIT-continuous;

(2) F~(Cl0(B)) is mIT-closed for every subset B of Y;

(8) F~(K) is mIT-closed for every 0-closed set K of Y;

(4) FT (V) is mIT-open for every O-open set V of Y.

Theorem 5.2. Let (Y, 0) be a reqular space. Then, for a multifunction
F:(X,mx)— (Y,0), the following properties are equivalent:

(1) F is lower mIT-continuous;

(2) F*(Cl(B)) is mIT-closed for every subset B of Y;

(3) FY(K) is mIT-closed for every 0-closed set K of Y;

(4) F~(V) is mIT-open for every 0-open set V of Y.

Corollary 5.1. Let (Y, 0) be a reqular space. Then, for a multifunc-
tion F: (X, mx) — (Y, 0), the following properties are equivalent:
(1) F is upper v-M -continuous;
(2) F~(Cl0(B)) is y-M-closed for every subset B of Y;
(3) F~(K) is y-M-closed for every 6-closed set K of Y;
(4) Ft(V) is v-M-open for every 6-open set V of Y.

Corollary 5.2. Let (Y,0) be a reqular space. Then, for a multifunc-
tion F: (X, mx) — (Y,0), the following properties are equivalent:
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(1) F is lower vy-M-continuous;

(2) FT(Cl0(B)) is y-M-closed for every subset B of Y;
(3) FT(K) is y-M-closed for every 6-closed set K of Y;
(4) F=(V) is v-M-open for every 0-open set V of Y.

Remark 5.1. If mIT(X) = mSO(X), mPO(X), ma(X), mg(X) or
mdPO(X), then we obtain the similar corollaries with Corollaries 5.1
and 5.2.

Definition 5.1. A subset A of a topological space (Y, ¢) is said to be
(1) a-regular [11] if for each a € A and each open set U containing
a, there exists an open set G of X such that a« € G C CI(G) C U,
(2) a-paracompact [36] if every X-open cover of A has an X-open
refinement which covers A and is locally finite for each point of X.

For a multifunction £ : X — (Y,0), by CI(F') : X — (Y,0) [5] we
denote a multifunction defined as follows: Cl(F)(z) = CI(F(x)) for
each x € X. Similarly, we denote sC1(F), pCl(F), aCI(F'), SCI(F),
yCI(F), opCL(F).

Lemma 5.3. If ' : (X,mx) — (Y,0) is a multifunction such that
F(x) is a-regular and a-paracompact for each x € X, then Gt(V) =
FH(V) for each open set V' of Y, where G denotes CI(F), pCI(F),
sCI(F), aCl(F), BC(F), vCI(F ), 6pCI(F).

Proof. The proof for CI(F), pCl(F), sCI(F), aCl(F) or SCI(F)
follows from Lemma 3.6 of [24]. The proof for yCI(F") or dpCl(F) is
similar with the proof of Lemma 3.6 of [24].

Lemma 5.4. For a multifunction F': (X, mx) — (Y, 0), the following
properties hold: G=(V') = F~ (V) for each open set V of Y, where G
denotes CI(F), pCI(F), sCI(F), aCI(F), BCI(F), vCI(F) or opCI(F ).

Proof. The proof for CI(F'), pCl(F), sCI(F), aCl(F) or SCI(F)
follows from Lemma 3.7 of [24]. The proof for vCI(F') or épCl(F) is
similar with the proof of Lemma 3.7 of [24].

Theorem 5.3. Let F' : (X,mx) — (Y,0) be a multifunction such
that F(x) is a-reqular and a-paracompact for each x € X. Then F is
upper m-continuous if and only if G is upper m-continuous, where G

= CI(F), pCI(F), sCI(F), aCI(F), BCUF), vCI(F) or dpCI(F).

Proof. Let V be an open set of Y and F' is upper m-continuous.
By Lemma 5.3 and Theorem 3.1, G*(V) = FH(V) = mInt(F'H (V) =
mInt(G* (V). By Theorem 3.1 G is upper m-continuous.
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Conversely, let V' be an open set of Y and G is upper m-continuous.
By Lemma 5.3 and Theorem 3.1, F'*(V) = GT(V) = mInt(G*T(V) =
mInt(EF* (V). By Theorem 3.1 F' is upper m-continuous.

Theorem 5.4. Let F': (X, mx) — (Y,0) be a multifunction. Then F
1s lower m-continuous if and only if G is lower m-continuous, where
G = CI(F), pCI(F), sCI(F), aCl(F), BCI(F), vCI(F') or épCI(F ).

Proof. Let V be an open set of Y and F' is lower m-continuous.
By Lemma 5.4 and Theorem 3.2, G~ (V) = F~(V) = mInt(F~ (V) =
mInt(G~ (V). By Theorem 3.2 G is lower m-continuous.

Conversely, let V' be an open set of Y and G is lower m-continuous.
By Lemma 5.4 and Theorem 3.2, F'~ (V) = G~ (V) = mInt(G~ (V) =
mInt(F~ (V). By Theorem 3.2 F' is lower m-continuous.

By Definition 4.3, Theorems 5.3 and 5.4, we obtain the following
theorems:

Theorem 5.5. Let F': (X, mx) — (Y, 0) be a multifunction such that
F(z) is a-regular and a-paracompact for each x € X. Then F is upper
mlIT-continuous if and only if G is upper mIT-continuous, where G =

CI(F), pCI(F), sCI(F), aCI(F), BCI(F), yCI(F) or opCI(F ).

Theorem 5.6. Let F': (X,mx) — (Y,0) be a multifunction. Then
Fis lower mIT-continuous if and only if G is lower mIT-continuous,
where G = CI(F'), pCI(F), sCI(F), aCl(F), BCUF), vCI(F) or opCI(F ).

Corollary 5.3. Let F : (X,mx) — (Y,0) be a multifunction such
that F(x) is a-reqular and a-paracompact for each x € X. Then F is

upper v-M-continuous if and only if G is upper v-M-continuous, where
G = CI(F), pCI(F), sCI(F), aCl(F), BCI(F), vCI(F) or épCI(F ).

Corollary 5.4. Let F : (X,mx) — (Y,0) be a multifunction. Then
F'is lower y-M-continuous if and only if G is lower v-M-continuous,
where G = CI(F), pCI(F), sCI(F), aCl(F), SCIF), vCI(F ) or épCI(F ).
Remark 5.2. If mIT(X) = mSO(X), mPO(X), ma(X), mp(X)) or

moPO(X), then we obtain the similar corollaries with Corollaries 5.3
and 5.4.

Definition 5.2. Let (X, mx) be an m-space and A a subset of X.
The m-frontier of A [27], mFr(A), is defined as follows: mFr(A) =
mCl(A) NmCI(X \ A).

Theorem 5.7. The set of all points v € X at which a multifunction
F : (X,mx) — (Y,0) is not upper (resp. lower) m-continuous is
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identical with the union of the m-frontiers of the upper (resp. lower)
inverse images of open sets containing (resp. meeting) F(x).

Proof. Let x be a point of X at which F' is not upper m-continuous.
Then there exists an open sets V of Y such that UN(X\F*(V)) # 0 for
every U € mx containing x. By Lemma 3.2, x € mCl(X\(F*(V)). On
the other hand, z € F* (V) C CI(F(V) and hence x € mFr(F* (V).

Conversely, suppose that F' is upper m-continuous. For any z € X
and any open sets of Y containing F'(z), we have € mInt(F*(V)).
This is a contradiction. Hence F' is not upper m-continuous. In case
F is lower m-continuous the proof is similar.

Definition 5.3. Let (X, mx) be an m-space and A a subset of X.
The mIT-frontier of A, mITFr(A), is defined as follows: mITFr(A) =
mITCI(A) NmITCI(X \ A).

Theorem 5.8. The set of all points v € X at which a multifunction
F : (X,mx) — (Y,0) is not upper (resp. lower) mIT-continuous
is identical with the union of the mIT-frontiers of the upper (resp.
lower) inverse images of open sets containing (resp. meeting) F(z).

Proof. The proof follows from Definition 4.3 and Theorem 5.7.

Remark 5.3. If mIT(X) = mSO(X), mPO(X), ma(X), mp(X),
my(X) or mdPO(X), then we obtain the similar results.

Definition 5.4. An m-space (X, my) is said to be m-compact [22],
[26] if every cover of X by m-open sets has a finite subcover.

A subset K of an m-space (X, my) is said to be m-compact [22],
[26] if every cover of K by m-open sets has a finite subcover.

Definition 5.5. An m-space (X, my) is said to be mIT-compact if
every cover of X by mIT-open sets has a finite subcover.

A subset K of an m-space (X, my) is said to be mIT-compact if
every cover of K by mIT-open sets has a finite subcover.

Remark 5.4. If mIT(X) = mSO(X) (resp. mPO(X)), then by Defi-
nition 5.5 we obtain the definition of m-semicompact spaces [18] (resp.
m-precompact spaces [20]).

Lemma 5.5. If ' : (X,myx) — (Y,0) is an upper m-continuous
multifunction such that F(x) is compact for each x € X and K is an
m-compact set of X, then F(K) is compact.

Proof. The proof follows from Theorem 4.1 of [22].
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Corollary 5.5. If F' : (X,mx) — (Y,0) is an upper m-continuous
surjective multifunction such that F(z) is compact for each x € X
and (X, mx) is m-compact, then (Y, o) is compact.

Lemma 5.6. If F : (X,myx) — (Y,0) is an upper mIT-continuous
multifunction such that F(x) is compact for each x € X and K is an
mIT-compact set of X, then F(K) is compact.

Proof. The proof follows from Theorem 4.1 of [22].

Corollary 5.6. If F': (X,mx) — (Y, 0) is an upper mIT-continuous
surjective multifunction such that F(x) is compact for each x € X and
(X, mx) is mIT-compact, then (Y, o) is compact.

Corollary 5.7. If F': (X, mx) — (Y, 0) is an upper v-M -continuous
surjective multifunction such that F(x) is compact for each x € X and
(X, mx) is y-M-compact, then (Y, o) is compact.

Definition 5.6. An m-space (X, mx) is said to be m-connected [28]
if X cannot be written as the union of two nonempty disjoint m-open
sets.

Definition 5.7. An m-space (X, my) is said to be mIT-connected if an
m-space (X, mIT (X)) is m-connected. Hence an m-space (X, mIT(X))
is m-connected if X cannot be written as the union of two nonempty
disjoint mIT-open sets.

Lemma 5.7. (Noiri and Popa [22]). If F': (X,mx) — (Y,0) is an
upper or lower m-continuous surjective multifunction such that F(z)
is connected for each x € X and (X, mx) is m-connected, then (Y, o)
15 connected.

Theorem 5.9. If F : (X,mx) — (Y,0) is an upper or lower mIT-
continuous surjective multifunction such that F(x) is connected for
each © € X and (X,my) is mIT-connected, where mx has property
B, then (Y, 0) is connected.

Corollary 5.8. If F': (X,mx) — (Y,0) is an upper or lower y-M -
continuous surjective multifunction such that F(x) is connected for
each x € X and (X, mx) is v-M-connected, then (Y, o) is connected.

Remark 5.5. If mIT(X) = mSO(X), mPO(X), ma(X), m5(X) or
mdPO(X), then we obtain the similar result with Corollary 5.8.



108 T.NOIRI, V.POPA

6. SEPARATION AXIOMS AND mlIT-CONTINUOUS MULTIFUNCTIONS

Definition 6.1. A subset A of (X, mx) is said to be m-dense in X if
mCl(A) = X.

Theorem 6.1. Let X be a nonempty set with two minimal structures
mk and m% such that U NV € m% whenever U € mY and V € m%
and (Y, o) be a Hausdorff space.
If the following four conditions are satisfied,
(1) a multifunction G : (X, m%) — (Y, 0) is upper m-continuous,
(2) a multifunction F : (X, m%) — (Y, o) is upper m-continuous,
(8) F(x) and G(z) are compact sets of (Y,0) for each x € X,
(4) F(2)NG(z) # O for each point x in an m-dense set D of (X, m%),
then F(x) N G(z) # O for each point = in X.

Proof. Let A={ 2 € X : F(x)NG(z) # 0 }. Suppose that
z € X \ A. Then we have F(x) N G(x) = (). Since F(z) and G(z)
are compact sets of a Hausdorff space Y, there exist open sets V' and
W of Y such that F(z) C V,G(z) C W and VNW = 0. Since G
is upper m-continuous, there exists U; € m! containing x such that
G(U,) C W. Since F is upper m-continuous, there exists U, € m%
containing x such that F(Us) C V. Now, set U = U; N Uy, then
we have U € m% and U N A = ). Therefore, by Lemma 3.2 we
have r € X \ m%Cl(A) and hence A =% CI(A). On the other hand,
F(x)NG(z) # 0 on D and hence D C A. Since D is m-dense in
(X, m%), we have X = m%Cl(D) C m%Cl(A) = A. Therefore, we
obtain F(x) N G(x) # ) for each x € X.

Definition 6.2. A subset A of (X, mx) is said to be mIT-dense in X
if mITCI(A) = X.

Theorem 6.2. Let (X, my) be an m-space with two m-iterate struc-
tures mITY(X) and mIT?(X) such that UNV € mIT?(X) whenever
UemITY(X) and V € mIT?(X) and (Y,0) be a Hausdorff space.
If the following four conditions are satisfied,
(1) a multifunction G : (X,mIT" (X)) — (Y, o) is upper m-continuous,
(2) a multifunction F : (X, mIT*(X)) — (Y, o) is upper m-continuous,
(3) F(xz) and G(z) are compact sets of (Y,o) for each x € X,
(4) F(x) N G(z) # O for each point z in an m-dense set D of
(X, mIT*(X)),
then F(x) N G(x) # 0 for each point x in X.

Corollary 6.1. Let (X, mx) be an m-space with two m~y-iterate struc-
tures my'(X) and m~*(X) such that U NV € m~y*(X) whenever
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Uemy"(X) and V € my*(X) and (Y,0) be a Hausdorff space.
If the following four conditions are satisfied,
(1) a multifunction G : (X, my" (X)) — (Y, 0) is upper m-continuous,
(2) a multifunction F : (X, my*(X)) — (Y, 0) is upper m-continuous,
(3) F(z) and G(z) are compact sets of (Y, o) for each z € X,
(4) F(x) N G(z) # O for each point x in an m-dense set D of
(X, my*(X)),
then F(x) NG(x) # 0 for each point x in X.

Remark 6.1. If mIT(X) = mSO(X), mPO(X), ma(X), mg(X) or
méPO(X), then we obtain the similar result with Corollary 6.1.

Definition 6.3. An m-space (X, my) is said to be m-Ty [28] if for
each distinct points x,y € X there exist U,V € my containing x,y,
respectively, such that U NV = 0.

Definition 6.4. An m-space (X, myx) is said to be mIT-Ts if an m-
space (X, mIT(X)) is m-T,. Hence an m-space (X, mx) is mIT-T, if
for each distinct points z,y € X there exist U, V € mIT(X) containing
x,y, respectively, such that UNV = (.

Remark 6.2. Let (X, mx) be an m-space. If mIT(X) = mSO(X)
(resp. mPO(X)), then we obtain the definition of m-semi-7, spaces
[18] (resp. m-pre-Ty spaces [20]).

Definition 6.5. A multifunction F': (X, mx) — (Y, 0) is said to be
injective if © # y implies that F(z) N F(y) = 0.

Theorem 6.3. If F': (X, mx) — (Y,0) is an upper m-continuous in-
jective multifunction into a Hausdorff space (Y, o) and F(z) is compact
for each x € X, then X is m-T5.

Proof. For any distinct points 1, 5 of X, we have F(z1)NF(z2) =
() since F is injective. Since F'(z) is compact for each z € X and Y is
Haudorff, there exist an open set V; such that F(z;) C V; for i = 1,2
and Vi NV, = (). Since F is upper m-continuous, there exists U; € mx
containing x; such that F(U;) C V; for i = 1,2. Therefore, we obtain
U, NUy =0 and hence X is m-T5.

Theorem 6.4. If F: (X, mx) — (Y,0) is an upper mIT-continuous
injective multifunction into a Hausdorff space (Y, o) and F(x) is com-
pact for each x € X, then (X,my) is mIT-T5.

Corollary 6.2. If F': (X,mx) — (Y,0) is an upper ~v-M-continuous
injective multifunction into a Hausdorff space (Y, o) and F(z) is com-
pact for each x € X, then (X, mx) is my(X)-Ty.
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Remark 6.3. Let (X, my) be an m-space. If mIT(X) = mSO(X),
mPO(X), ma(X), mB(X) or mdPO(X), we obtain the similar result
with Corollary 6.2.

Theorem 6.5. Let X be a nonempty set with two minimal structures
mk and m% such that U NV € m% whenever U € mY and V € m%
and (Y,0) be a Hausdorff space. If the following four conditions are
satisfied:
(1) a multifunction Fy : (X,mY) — (Y, o) is upper m-continuous,
(2) a multifunction Fy : (X,m%) — (Y, o) is upper m-continuous,
(3) Fi(x) and Fy(z) are compact sets of (Y,0) for each x € X,
(4) Fi(z) N Fy(z) # 0 for each x € X,
then a multifunction F : (X, m%) — (Y, 0), defined by formula F(z) =
Fi(z) N Fy(x) for each x € X, is upper m-continuous.

Proof. Let x € X and V' be an open set of Y such that F'(z) C V.
Then, A = Fi(z) \ V and B = Fy(x) \ V are disjoint compact sets.
Hence, there exist open sets Vi and V5 such that A C Vi, B C 1,
and Vi NV, = (0. Since F) is upper m-continuous, there exists U; €
m} containing x such that Fy(U;) C V4, U V. Since Fy is upper m-
continuous, there exists Uy € m% containing z such that Fy(Usy) C
VoUV. Set U = U; NUs, then U € m% containing x. If y € F(x) for
any zg € U, then y € (ViUV)N(VLUV) = (ViNVa)UV =V because
Vi NVy = (. Hence, we have y € V' and hence F(U) C V. Therefore,
F' is upper m-continuous.

Theorem 6.6. Let (X, mx) an m-space with two m-iterate struc-
tures mITH(X) and mIT?*(X) such that UNV € mIT?*(X) whenever
UemITYX) and V € mIT?(X) and (Y,0) be a Hausdorff space. If
the following four conditions are satisfied:
(1) a multifunction Fy : (X, mITY (X)) — (Y, o) is upper m-continuous,
(2) a multifunction Fy : (X, mIT?*(X)) — (Y, 0) is upper m-continuous,
(8) Fi(x) and Fy(x) are compact sets of (Y, o) for each v € X,
(4) Fi(x) N Fy(z) # 0 for each x € X,
then a multifunction F : (X, mIT*(X)) — (Y, o), defined by F(x) =
Fi(x) N Fy(x) for each x € X, is upper m-continuous.

Corollary 6.3. Let (X, mx) an m-space with two m~y-structures m~y'(X)
and m~y*(X) such that UNV € my*(X) whenever U € my'(X) and
V e my*(X) and (Y,0) be a Hausdorff space. If the following four
conditions are satisfied:
(1) a multifunction Fy : (X, my'(X)) — (Y, o) is upper m-continuous,
(2) a multifunction Fy : (X, m~*(X)) — (Y, o) is upper m-continuous,
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(3) Fi(x) and Fy(z) are compact sets of (Y,0) for each x € X,

(4) Fi(x) N Fy(x) # 0 for each x € X,
then a multifunction F : (X,my*(X)) — (Y,0), defined by F(z) =
Fi(x) N Fy(x) for each x € X, is upper m-continuous.

Remark 6.4. Let (X, mx) be an m-space. If mIT(X) = mSO(X),
mPO(X), ma(X), mB(X) or méPO(X), then we obtain the similar
result with Corollary 6.3.
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