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ON UPPER AND LOWER m-ITERATE CONTINUOUS
MULTIFUNCTIONS

TAKASHI NOIRI AND VALERIU POPA

Abstract. We introduce the notion of mIT -structures determined
by operators mInt and mCl on an m-space (X,mX). By using mIT -
structures, we introduce and investigate new classes of multifunctions
F : (X,mX) → (Y, σ) called upper/lower mIT -continuous. As spe-
cial cases of upper/lower mIT -continuity, we obtain upper/lower γ-M
continuity [34] and upper/lower δ-M -precontinuity [35].

1. Introduction

Semi-open sets, preopen sets, α-open sets, β-open sets and b-open
sets play an important role in the researches of generalizations of con-
tinuity of functions and multifunctions. By using these sets, several
authors introduced and studied various types of non-continuous func-
tions and multifunctions.

In [26] and [28], the present authors introduced and studied the no-
tions of minimal structures, m-spaces, m-continuity andM -continuity.
Quite recently, in [16], [17], [18], [19], and [20], Min and Kim intro-
duced the notions of m-semi-open sets, m-preopen sets, m-α-open
sets, m-β-open sets which generalize the notions of semi-open sets,
preopen sets, α-open sets, and β-open sets, respectively and also the
notions of m-semi-continuity, m-precontinuity, m-α-continuity, m-β-
continuity which generalize the notions of of semi-continuity, precon-
tinuity, α-continuity, β-continuity and m-continuity.
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In [6], [7], [31] and [33], the notions of m-semi-open sets, m-preopen
sets, m-α-open sets and m-β-open sets are also introduced and stud-
ied. Recently, in [25] the notion of iterate m-continuous functions are
introduced and studied. Also, in [34] and [35], the notions of γ-M
continuity and δ-M -precontinuity for multifunctions are initiated and
studied.

In the present paper, we introduce the notions of upper / lower
mIT -continuous multifunctions which generalize the notions of upper
/ lower γ-M continuity and δ-M -precontinuity. By using upper/lower
M -continuity [22], we obtain many properties of upper / lower mIT
- continuous multifunctions which provide properties of upper / lower
γ-M continuity and δ-M -precontinuity. And also, the notions of up-
per/lower mIT -continuous multifunctions provide the definitions of
the new notions: upper/lower m-semi-continuity, upper / lower m-
precontinuity, upper/lower m-α-continuity, and upper/lower m - β-
continuity. The properties of these multifunctions are obtained from
those of upper/lower mIT -continuity as the special cases.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure
of A and the interior of A are denoted by Cl(A) and Int(A), respec-
tively. A point x ∈ X is called a δ-cluster (resp. θ-cluster) point of a
subset A if Int(Cl((U))∩A ̸= ∅ (resp. Cl((U)∩A ̸= ∅) for every open
set U containing x. The set of all δ-cluster (resp. θ-cluster) points
of A is called the δ-closure (rep. θ-closure) of A and is denoted by
Clδ(A) (resp. Clθ(A)). If A = Clδ(A) (resp. A = Clθ(A)), then A is
said to be δ-closed (resp. θ-closed) [32]. The complement of a δ-closed
(resp. θ-closed) set is said to be δ-open (resp. θ-open). The union of
all δ-open (resp. θ-open) sets contained in A is called the δ-interior
(resp. θ-interior) of A and is denoted by Intδ(A) (resp. Intθ(A)).

We recall some generalized open sets in topological spaces.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X
is said to be

(1) α-open [21] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [12] if A ⊂ Cl(Int(A)),
(3) preopen [14] if A ⊂ Int(Cl(A)),
(4) b-open [4] or γ-open [9] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)),
(5) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).
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The family of all α-open (resp. semi-open, preopen, γ-open, β-open)
sets in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), γ(X), β(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is
said to be α-closed [15] (resp. semi-closed [8], preclosed [14], γ-closed
[9], β-closed [1]) if the complement of A is α-open (resp. semi-open,
preopen, γ-open, β-open).

Definition 2.3. Let (X, τ) be a topological space and A a subset of
X. The intersection of all α-closed (resp. semi-closed, preclosed, b-
closed, β-closed) sets of X containing A is called the α-closure [15]
(resp. semi-closure [8], preclosure [10], γ-closure [9], β-closure [2]) of
A and is denoted by αCl(A) (resp. sCl(A), pCl(A), γCl(A), βCl(A)).

Definition 2.4. Let (X, τ) be a topological space and A a subset
of X. The union of all α-open (resp. semi-open, preopen, γ-open,
β-open) sets of X contained in A is called the α-interior [15] (resp.
semi-interior [8], preinterior [10], γ-interior [9], β-interior [2]) of A
and is denoted by αInt(A) (resp. sInt(A), pInt(A), γInt(A), βInt(A)).

Definition 2.5. A function f : (X, τ) → (Y, σ) is said to be semi-
continuous [12] (resp. precontinuous [14], α-continuous [15], γ - contin-
uous [9], β-continuous [1]) at x ∈ X if for each open set V containing
f(x), there exists a semi-open (resp. preopen, α-open, γ-open, β-open)
set U of X containing x such that f(U) ⊂ V . The function f is said to
be semi-continuous (resp. precontinuous , α-continuous, γ-continuous,
β-continuous) if it has this property at each point x ∈ X.

Throughout the present paper (X, τ) and (Y, σ) (or simply X and
Y ) always denote topological spaces and F : (X, τ) → (Y, σ) presents
a multivalued function. For a multifunction F : X → Y , we shall
denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is,

F+(B) = {x ∈ X : F (x) ⊂ B} and
F−(B) = {x ∈ X : F (x) ∩B ̸= ∅}.

3. Minimal structures and upper/lower m-continuity

Definition 3.1. Let X be a nonempty set and P(X) the power set
of X. A subfamily mX of P(X) is called a minimal structure (briefly
m-structure) on X [26], [27] if ∅ ∈ mX and X ∈ mX .
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By (X,mX), we denote a nonempty set X with an m-structure mX

on X and call it an m-space. Each member of mX is said to be mX-
open (briefly m-open) and the complement of an mX-open set is said
to be mX-closed (briefly m-closed).

Remark 3.1. Let (X, τ) be a topological space. The families τ , α(X),
SO(X), PO(X), γ(X) and β(X) are all minimal structures on X.

Definition 3.2. Let X be a nonempty set and mX an m-structure on
X. For a subset A of X, the mX-closure of A and the mX-interior of
A are defined in [13] as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A a subset of X.
If mX = τ (resp. SO(X), PO(X), α(X), γ(X), β(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), γCl(A), βCl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), γInt(A),

βInt(A)) .

Lemma 3.1. (Maki et al. [13]). Let X be a nonempty set and mX

a minimal structure on X. For subsets A and B of X, the following
properties hold:

(1) mCl(X \ A) = X \mInt(A) and mInt(X \ A) = X \mCl(A),
(2) If (X \ A) ∈ mX , then mCl(A) = A and if A ∈ mX , then

mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2. (Popa and Noiri [26]). Let (X,mX) be an m-space and
A a subset of X. Then x ∈ mCl(A) if and only if U ∩A ̸= ∅ for each
U ∈ mX containing x.

Definition 3.3. A minimal structure mX on a nonempty set X is said
to have property B [13] if the union of any family of subsets belonging
to mX belongs to mX .

Remark 3.3. If (X, τ) is a topological space, then SO(X), PO(X),
α(X), γ(X) and β(X) have property B.

Lemma 3.3. (Popa and Noiri [30]). Let X be a nonempty set and mX

an m-structure on X satisfying property B. For a subset A of X, the
following properties hold:
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(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. A function f : (X,mX) → (Y, σ) is said to be m-
continuous at x ∈ X [28] if for each open set V ∈ σ containing f(x),
there exists U ∈ mX containing x such that f(U) ⊂ V . The function
f is m-continuous if it has this property at each x ∈ X.

Remark 3.4. Let (X, τ) be a topological space. If f : (X,mX) →
(Y, σ) is m-continuous and mX = SO(X) (resp. PO(X), α(X), γ(X)
and β(X)), then we obtain Definition 2.5.

Definition 3.5. Let (X,mX) be an m-space and (Y, σ) a topological
space. A multifunction F : (X,mX) → (Y, σ) is said to be

(1) upper m-continuous at x ∈ X [29] if for each open set V ∈ σ
containing F (x), there exists U ∈ mX containing x such that F (U) ⊂
V ,

(2) lower m-continuous at x ∈ X [29] if for each open set V ∈ σ
meeting F (x), there exists U ∈ mX containing x such that F (u)∩V ̸=
∅ for every u ∈ U ,

(3) upper/lower m-continuous if it has this property at each x ∈ X.

Theorem 3.1. For a multifunction F : (X,mX) → (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper m-continuous;
(2) F+(V ) = mInt(F+(V )) for every open set V of Y;
(3) F−(K) = mCl(F−(K)) for every closed set K of Y;
(4) mCl(F−(B)) ⊂ F−(Cl(B)) for every subset B of Y;
(5) F+(Int(B)) ⊂ mInt(F+(B)) for every subset B of Y.

Proof. The proof follows from Theorem 3.1 of [22] and Lemma 4.1
of [29].

Corollary 3.1. Let (X,mX) be an m-space and mX satisfy property
B. For a multifunction F : (X,mX) → (Y, σ), the following properties
are equivalent:

(1) F is upper m-continuous;
(2) F+(V ) is m-open for every open set V of Y;
(3) F−(K) is m-closed for every closed set K of Y.

Proof. The proof follows from Theorem 3.1 and Lemma 3.3.

Theorem 3.2. For a multifunction F : (X,mX) → (Y, σ), the follow-
ing properties are equivalent:
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(1) F is lower m-continuous;
(2) F−(V ) = mInt(F−(V )) for every open set V of Y;
(3) F+(K) = mCl(F+(K)) for every closed set K of Y;
(4) mCl(F+(B)) ⊂ F+(Cl(B)) for every subset B of Y;
(5) F−(Int(B)) ⊂ mInt(F−(B)) for every subset B of Y;
(6) F (mCl(A)) ⊂ Cl(F (A)) for every subset A of X.

Proof. The proof follows from Theorem 3.2 of [22] and Lemma 4.1
of [29].

Corollary 3.2. Let (X,mX) be an m-space and mX satisfy property
B. For a multifunction F : (X,mX) → (Y, σ), the following properties
are equivalent:

(1) F is lower m-continuous;
(2) F−(V ) is m-open for every open set V of Y;
(3) F+(K) is m-closed for every closed set K of Y.

Proof. The proof follows from Theorem 3.2 and Lemma 3.3.

For a function F : (X,mX) → (Y, σ), we define D+
m(F ) and D−

m(F )
as follows:

D+
m(F ) = {x ∈ X : F is not upper m-continuous at x},

D−
m(F ) = {x ∈ X : F is not lower m-continuous at x}

Theorem 3.3. (Noiri and Popa [23]). For a multifunction F : (X,mX) →
(Y, σ), the following equalities hold:

D+
m(F ) =

∪
G∈σ{F+(G) \mInt(F+(G))}

=
∪

B∈ P (Y ) {F+(Int(B)) \mInt(F+(B))}
=

∪
B∈ P (Y ) {mCl(F−(B)) \ F−(Cl(B))}

=
∪

K∈ F {mCl(F−(K)) \ F−(K)},
where F is the family of closed sets of (Y, σ).

Theorem 3.4. (Noiri and Popa [23]). For a multifunction F : (X,mX) →
(Y, σ), the following equalities hold:

D−
m(F ) =

∪
G∈σ{F−(G) \mInt(F−(G))}

=
∪

B∈ P (Y ) {F−(Int(B)) \mInt(F−(B))}
=

∪
B∈ P (Y ) {mCl(F+(B)) \ F+(Cl(B))}

=
∪

A∈ P (X) {mCl(A) \ F+(Cl(F (A)))}
=

∪
K∈ F {mCl(F+(K)) \ F+(K)},

where F is the family of closed sets of (Y, σ).
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4. Iterate m-structures and iterate m-continuity for
multifunctions

Definition 4.1. Let (X,mX) be an m-space. A subset A of X is said
to be

(1) m-α-open [17] if A ⊂ mInt(mCl(mInt(A))),
(2) m-semi-open [16] if A ⊂ mCl(mInt(A)),
(3) m-preopen [19] if A ⊂ mInt(mCl(A)),
(4) m-β-open [6], [33] if A ⊂ mCl(mInt(mCl(A))),
(5)m-γ-open [34] orm-b-open [25] ifA ⊂ mInt(mCl(A))∪mCl(mInt(A)),
(6) m-regular open (resp. m-regular closed) if A = mInt(mCl(A))

(resp. A = mCl(mInt(A)).

The family of all m-α-open (resp. m-semi-open, m-preopen, m-β-
open,m-γ-open) sets in (X,mX) is denoted by mα(X) (resp. mSO(X),
mPO(X), mβ(X), mγ(X)).

Remark 4.1. Similar definitions ofm-semi-open sets, m-preopen sets,
m-α-open sets, m-β-open sets are provided in [7], [31] and [33].

Let A be a subset of an m-space (X,mX). The union of m-regular
open sets of X contained in A is called mX-δ-interior of A and is de-
noted by mX-δInt(A). A subset A is said to be mX-δ-open if A = mX-
δInt(A). The complement of an mX-δ-open set is said to be mX-δ-
closed. The intersection of all mX-δ-closed sets of X containing A is
called themX-δ-closure of A and is denoted bymX-δCl(A). A subset A
of (X,mX) is said to be mX-δ-preopen [35] if A ⊂ mInt(mX-δCl(A)).
The complement of an mX-δ-preopen set is said to be mX-δ-preclosed.
The family of all mX-δ-open (resp. mX-δ-preopen) sets of X is de-
noted by mδ(X) (resp. mδPO(X)).

Let (X,mX) be an m-space. Then mα(X), mSO(X), mPO(X),
mβ(X), mγ(X), mδ(X) and mδPO(X) are all minimal structures on
X and are determined by iterating operators mInt, mCl, mX-δInt
and mX-δCl. Hence, they are called m-iterate structures [25] and are
denoted by mIT(X) (briefly mIT).

Remark 4.2. (1) It easily follows from Lemma 3.1(3)(4) that mα(X),
mSO(X), mPO(X), mβ(X) and mBO(X) are minimal structures with
property B. They are also shown in Theorem 3.5 of [16], Theorem 3.4
of [19], Theorem 3.4 of [17], Proposition 3.5 of [34].

(2) Let (X,mX) be an m-space and mIT(X) an iterate structure on
X. If mIT(X) = mSO(X) (resp. mPO(X), mα(X), mβ(X)), mγ(X),
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mδPO(X)), then we obtain the following definitions provided in [16]
(resp. [19], [17], [20], [34], [35]):

mITCl(A) = msCl(A) (resp. mpCl(A), mαCl(A), mβCl(A),mγCl(A),
mδpCl(A)),

mITInt(A) = msInt(A) (resp. mpInt(A), mαInt(A), mβInt(A),
mγInt(A), mδpInt(A)).

Remark 4.3. (1) By Lemmas 3.1 and 3.3, we obtain Theorems 3.7
and 3.8 of [19], Theorems 3.8 and 3.9 of [17], Remark 3.10 of [34].

(2) By Lemma 3.2, we obtain Lemma 3.9 of [19] and Theorem 3.10
of [17].

Definition 4.2. Let (X,mX) be an m-space and (Y, σ) a topological
space. A multifunction F : (X,mX) → (Y, σ) is said to be

(1) upper γ-M-continuous [34] (resp. upper δ-M-precontinuous [35])
at x ∈ X if for each open set V ∈ σ containing F (x), there exists
U ∈ mγ(X) (resp. mδPO(X)) containing x such that F (U) ⊂ V ,

(2) lower γ-M-continuous [34] (resp. lower δ-M-precontinuous [35])
at x ∈ X if for each open set V ∈ σ meeting F (x), there exists
U ∈ mγ(X) (resp. mδPO(X)) containing x such that F (u) ∩ V ̸= ∅
for every u ∈ U ,

(3) upper/lower γ-M-continuous (resp. upper/lower δ-M-precontinuous)
if it has this property at each x ∈ X.

Remark 4.4. By Definition 4.2 and Remark 4.2, it follows that a
multifunction F : (X,mX) → (Y, σ) is upper/lower γ-M -continuous
(resp. upper/lower δ-M -precontinuous) at x (on X) if a multifunction
F : (X,mγ(X)) → (Y, σ) (resp. F : (X,mδPO(X)) → (Y, σ)) is
upper/lower m-continuous at x (on X).

Definition 4.3. A multifunction F : (X,mX) → (Y, σ) is said to be
upper/lower mIT-continuous at x ∈ X (on X) if F : (X,mIT (X)) →
(Y, σ) is upper/lower m-continuous at x ∈ X (on X).

Remark 4.5. Let (X,mX) be a minimal space. If mIT(X) = mSO(X)
(resp. mPO(X), mα(X), mβ(X), mγ(X), mδPO(X)) and F : (X,mX) →
(Y, σ) is mIT -continuous, then F is upper/lower m-semicontinuous
(resp. upper/lower m-precontinuous, upper/lower m-α-continuous,
upper/lower m-β-continuous, upper/lower γ-M -continuous [34], up-
per/lower δ-M -precontinuous [35]).

Since mIT(X) has property B, by Theorems 3.1 and 3.2 and Corol-
laries 3.1 and 3.2 we obtain the following theorems.
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Theorem 4.1. For a multifunction F : (X,mX) → (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper mIT-continuous;
(2) F+(V ) is mIT-open for every open set V of Y;
(3) F−(K) is mIT-closed for every closed set K of Y;
(4) mITCl(F−(B)) ⊂ F−(Cl(B)) for every subset B of Y;
(5) F+(Int(B)) ⊂ mITInt(F+(B)) for every subset B of Y.

Remark 4.6. (1) If mIT(X) = mγ(X) (resp. mδPO(X)), then by
Theorem 4.1 we obtain the results established in Theorem 4.5 (1), (2),
(3) and (4) of [34] (resp. Theorem 3.5 (1), (2), (3), (4) and (7) of [35]),

(2) If mIT(X) = mSO(X) (resp. mPO(X), mα(X), mβ(X)), then
we obtain characterizations of upper m-semicontinuous (resp. upper
m-precontinuous, upper m-α-continuous, upper m-β-continuous) mul-
tifunctions.

Theorem 4.2. For a multifunction F : (X,mX) → (Y, σ), the follow-
ing properties are equivalent:

(1) F is lower mIT-continuous;
(2) F−(V ) is mIT-open for every open set V of Y;
(3) F+(K) is mIT-closed for every closed set K of Y;
(4) mITCl(F+(B)) ⊂ F+(Cl(B)) for every subset B of Y;
(5) F−(Int(B)) ⊂ mITInt(F−(B)) for every subset B of Y;
(6) F (mITCl(A)) ⊂ Cl(F (A)) for every subset A of X.

Remark 4.7. (1) If mIT(X) = mγ(X) (resp. mδPO(X)), then by
Theorem 4.2 we obtain the results established in Theorem 4.6 (1), (2),
(3), (4) and (5) of [34] (resp. Theorem 3.6 (1), (2), (3), (6) and (7) of
[35]),

(2) By Theorem 4.2 (6), we obtain a new characterization for lower
γ-M -continuous (resp. lower δ-M -continuous) multifunctions.

(3) If mIT(X) = mSO(X) (resp. mPO(X), mα(X), mβ(X)), then
we obtain characterizations of lower m-semicontinuous (resp. lower
m-precontinuous, lower m-α-continuous, lower m-β-continuous) mul-
tifunctions.

For a function F : (X,mX) → (Y, σ), we define D+
mIT (F ) and

D−
mIT (F ) as follows:

D+
mIT (F ) = {x ∈ X : F is not upper mIT -continuous at x},

D−
mIT (F ) = {x ∈ X : F is not lower mIT -continuous at x}

By Theorems 3.3 and 3.4, we obtain the following theorems:
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Theorem 4.3. For a multifunction F : (X,mX) → (Y, σ), the follow-
ing equalities hold:

D+
mIT (F ) =

∪
G∈σ{F+(G) \mITInt(F+(G))}

=
∪

B∈ P (Y ) {F+(Int(B)) \mITInt(F+(B))}
=

∪
B∈ P (Y ) {mITCl(F−(B)) \ F−(Cl(B))}

=
∪

K∈ F {mITCl(F−(K)) \ F−(K)},
where F is the family of closed sets of (Y, σ).

Theorem 4.4. For a multifunction F : (X,mX) → (Y, σ), the follow-
ing equalities hold:

D−
mIT (F ) =

∪
G∈σ{F−(G) \mITInt(F−(G))}

=
∪

B∈ P (Y ) {F−(Int(B)) \mITInt(F−(B))}
=

∪
B∈ P (Y ) {mITCl(F+(B)) \ F+(Cl(B))}

=
∪

A∈ P (X) {mITCl(A) \ F+(Cl(F (A)))}
=

∪
K∈ F {mITCl(F+(K)) \ F+(K)},

where F is the family of closed sets of (Y, σ).

For a multifunction F : (X,mX) → (Y, σ), we define D+
mγ(F ) and

D−
mγ(F ) as follows:

D+
mγ(F ) = {x ∈ X : F is not upper mγ-continuous at x},

D−
mγ(F ) = {x ∈ X : F is not lower mγ-continuous at x}

By Theorems 4.3 and 4.4, we obtain the following corollaries:

Corollary 4.1. For a multifunction F : (X,mX) → (Y, σ), the fol-
lowing equalities hold:

D+
mγ(F ) =

∪
G∈σ{F+(G) \mγInt(F+(G))}

=
∪

B∈ P (Y ) {F+(Int(B)) \mγInt(F+(B))}
=

∪
B∈ P (Y ) {mγCl(F−(B)) \ F−(Cl(B))}

=
∪

K∈ F {mγCl(F−(K)) \ F−(K)},
where F is the family of closed sets of (Y, σ).

Corollary 4.2. For a multifunction F : (X,mX) → (Y, σ), the fol-
lowing equalities hold:

D−
mγ(F ) =

∪
G∈σ{F−(G) \mγInt(F−(G))}

=
∪

B∈ P (Y ) {F−(Int(B)) \mγInt(F−(B))}
=

∪
B∈ P (Y ) {mγCl(F+(B)) \ F+(Cl(B))}

=
∪

A∈ P (X) {mγCl(A) \ F+(Cl(F (A)))}
=

∪
K∈ F {mγCl(F+(K)) \ F+(K)},

where F is the family of closed sets of (Y, σ).

Remark 4.8. If mIT(X) = mSO(X), mPO(X), mα(X), mβ(X)), or
mδPO(X), then we obtain the similar results.
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5. Some properties of mIT -continuous functions

Lemma 5.1. (Noiri and Popa [24]). Let (Y, σ) be a regular space and
mX have property B. Then, for a multifunction F : (X,mX) → (Y, σ),
the following properties are equivalent:

(1) F is upper m-continuous;
(2) F−(Clθ(B)) is m-closed for every subset B of Y;
(3) F−(K) is m-closed for every θ-closed set K of Y;
(4) F+(V ) is m-open for every θ-open set V of Y.

Lemma 5.2. (Noiri and Popa [24]). Let (Y, σ) be a regular space and
mX have property B. Then, for a multifunction F : (X,mX) → (Y, σ),
the following properties are equivalent:

(1) F is lower m-continuous;
(2) F+(Clθ(B)) is m-closed for every subset B of Y;
(3) F+(K) is m-closed for every θ-closed set K of Y;
(4) F−(V ) is m-open for every θ-open set V of Y.

By Definition 4.3, Lemmas 5.1 and 5.2 and Remark 4.2(1), we obtain
the following theorems:

Theorem 5.1. Let (Y, σ) be a regular space. Then, for a multifunction
F : (X,mX) → (Y, σ), the following properties are equivalent:

(1) F is upper mIT-continuous;
(2) F−(Clθ(B)) is mIT -closed for every subset B of Y;
(3) F−(K) is mIT -closed for every θ-closed set K of Y;
(4) F+(V ) is mIT -open for every θ-open set V of Y.

Theorem 5.2. Let (Y, σ) be a regular space. Then, for a multifunction
F : (X,mX) → (Y, σ), the following properties are equivalent:

(1) F is lower mIT-continuous;
(2) F+(Clθ(B)) is mIT -closed for every subset B of Y;
(3) F+(K) is mIT -closed for every θ-closed set K of Y;
(4) F−(V ) is mIT -open for every θ-open set V of Y.

Corollary 5.1. Let (Y, σ) be a regular space. Then, for a multifunc-
tion F : (X,mX) → (Y, σ), the following properties are equivalent:

(1) F is upper γ-M-continuous;
(2) F−(Clθ(B)) is γ-M-closed for every subset B of Y;
(3) F−(K) is γ-M-closed for every θ-closed set K of Y;
(4) F+(V ) is γ-M-open for every θ-open set V of Y.

Corollary 5.2. Let (Y, σ) be a regular space. Then, for a multifunc-
tion F : (X,mX) → (Y, σ), the following properties are equivalent:
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(1) F is lower γ-M-continuous;
(2) F+(Clθ(B)) is γ-M-closed for every subset B of Y;
(3) F+(K) is γ-M-closed for every θ-closed set K of Y;
(4) F−(V ) is γ-M-open for every θ-open set V of Y.

Remark 5.1. If mIT(X) = mSO(X), mPO(X), mα(X), mβ(X) or
mδPO(X), then we obtain the similar corollaries with Corollaries 5.1
and 5.2.

Definition 5.1. A subset A of a topological space (Y, σ) is said to be
(1) α-regular [11] if for each a ∈ A and each open set U containing

a, there exists an open set G of X such that a ∈ G ⊂ Cl(G) ⊂ U ,
(2) α-paracompact [36] if every X-open cover of A has an X-open

refinement which covers A and is locally finite for each point of X.

For a multifunction F : X → (Y, σ), by Cl(F ) : X → (Y, σ) [5] we
denote a multifunction defined as follows: Cl(F )(x) = Cl(F (x)) for
each x ∈ X. Similarly, we denote sCl(F ), pCl(F ), αCl(F ), βCl(F ),
γCl(F ), δpCl(F ).

Lemma 5.3. If F : (X,mX) → (Y, σ) is a multifunction such that
F (x) is α-regular and α-paracompact for each x ∈ X, then G+(V ) =
F+(V ) for each open set V of Y , where G denotes Cl(F ), pCl(F ),
sCl(F ), αCl(F ), βCl(F ), γCl(F ), δpCl(F ).

Proof. The proof for Cl(F ), pCl(F ), sCl(F ), αCl(F ) or βCl(F )
follows from Lemma 3.6 of [24]. The proof for γCl(F ) or δpCl(F ) is
similar with the proof of Lemma 3.6 of [24].

Lemma 5.4. For a multifunction F : (X,mX) → (Y, σ), the following
properties hold: G−(V ) = F−(V ) for each open set V of Y , where G
denotes Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Proof. The proof for Cl(F ), pCl(F ), sCl(F ), αCl(F ) or βCl(F )
follows from Lemma 3.7 of [24]. The proof for γCl(F ) or δpCl(F ) is
similar with the proof of Lemma 3.7 of [24].

Theorem 5.3. Let F : (X,mX) → (Y, σ) be a multifunction such
that F (x) is α-regular and α-paracompact for each x ∈ X. Then F is
upper m-continuous if and only if G is upper m-continuous, where G
= Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Proof. Let V be an open set of Y and F is upper m-continuous.
By Lemma 5.3 and Theorem 3.1, G+(V ) = F+(V ) = mInt(F+(V ) =
mInt(G+(V ). By Theorem 3.1 G is upper m-continuous.
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Conversely, let V be an open set of Y and G is upper m-continuous.
By Lemma 5.3 and Theorem 3.1, F+(V ) = G+(V ) = mInt(G+(V ) =
mInt(F+(V ). By Theorem 3.1 F is upper m-continuous.

Theorem 5.4. Let F : (X,mX) → (Y, σ) be a multifunction. Then F
is lower m-continuous if and only if G is lower m-continuous, where
G = Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Proof. Let V be an open set of Y and F is lower m-continuous.
By Lemma 5.4 and Theorem 3.2, G−(V ) = F−(V ) = mInt(F−(V ) =
mInt(G−(V ). By Theorem 3.2 G is lower m-continuous.

Conversely, let V be an open set of Y and G is lower m-continuous.
By Lemma 5.4 and Theorem 3.2, F−(V ) = G−(V ) = mInt(G−(V ) =
mInt(F−(V ). By Theorem 3.2 F is lower m-continuous.

By Definition 4.3, Theorems 5.3 and 5.4, we obtain the following
theorems:

Theorem 5.5. Let F : (X,mX) → (Y, σ) be a multifunction such that
F (x) is α-regular and α-paracompact for each x ∈ X. Then F is upper
mIT-continuous if and only if G is upper mIT-continuous, where G =
Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Theorem 5.6. Let F : (X,mX) → (Y, σ) be a multifunction. Then
F is lower mIT-continuous if and only if G is lower mIT-continuous,
where G = Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Corollary 5.3. Let F : (X,mX) → (Y, σ) be a multifunction such
that F (x) is α-regular and α-paracompact for each x ∈ X. Then F is
upper γ-M-continuous if and only if G is upper γ-M-continuous, where
G = Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Corollary 5.4. Let F : (X,mX) → (Y, σ) be a multifunction. Then
F is lower γ-M-continuous if and only if G is lower γ-M-continuous,
where G = Cl(F ), pCl(F ), sCl(F ), αCl(F ), βCl(F ), γCl(F ) or δpCl(F ).

Remark 5.2. If mIT(X) = mSO(X), mPO(X), mα(X), mβ(X)) or
mδPO(X), then we obtain the similar corollaries with Corollaries 5.3
and 5.4.

Definition 5.2. Let (X,mX) be an m-space and A a subset of X.
The m-frontier of A [27], mFr(A), is defined as follows: mFr(A) =
mCl(A) ∩mCl(X \ A).
Theorem 5.7. The set of all points x ∈ X at which a multifunction
F : (X,mX) → (Y, σ) is not upper (resp. lower) m-continuous is
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identical with the union of the m-frontiers of the upper (resp. lower)
inverse images of open sets containing (resp. meeting) F(x).

Proof. Let x be a point ofX at which F is not upperm-continuous.
Then there exists an open sets V of Y such that U∩(X\F+(V )) ̸= ∅ for
every U ∈ mX containing x. By Lemma 3.2, x ∈ mCl(X\(F+(V )). On
the other hand, x ∈ F+(V ) ⊂ Cl(F+(V ) and hence x ∈ mFr(F+(V ).

Conversely, suppose that F is upper m-continuous. For any x ∈ X
and any open sets of Y containing F (x), we have x ∈ mInt(F+(V )).
This is a contradiction. Hence F is not upper m-continuous. In case
F is lower m-continuous the proof is similar.

Definition 5.3. Let (X,mX) be an m-space and A a subset of X.
The mIT -frontier of A, mITFr(A), is defined as follows: mITFr(A) =
mITCl(A) ∩mITCl(X \ A).

Theorem 5.8. The set of all points x ∈ X at which a multifunction
F : (X,mX) → (Y, σ) is not upper (resp. lower) mIT -continuous
is identical with the union of the mIT -frontiers of the upper (resp.
lower) inverse images of open sets containing (resp. meeting) F(x).

Proof. The proof follows from Definition 4.3 and Theorem 5.7.

Remark 5.3. If mIT(X) = mSO(X), mPO(X), mα(X), mβ(X),
mγ(X) or mδPO(X), then we obtain the similar results.

Definition 5.4. An m-space (X,mX) is said to be m-compact [22],
[26] if every cover of X by m-open sets has a finite subcover.

A subset K of an m-space (X,mX) is said to be m-compact [22],
[26] if every cover of K by m-open sets has a finite subcover.

Definition 5.5. An m-space (X,mX) is said to be mIT -compact if
every cover of X by mIT -open sets has a finite subcover.

A subset K of an m-space (X,mX) is said to be mIT -compact if
every cover of K by mIT -open sets has a finite subcover.

Remark 5.4. If mIT(X) = mSO(X) (resp. mPO(X)), then by Defi-
nition 5.5 we obtain the definition of m-semicompact spaces [18] (resp.
m-precompact spaces [20]).

Lemma 5.5. If F : (X,mX) → (Y, σ) is an upper m-continuous
multifunction such that F (x) is compact for each x ∈ X and K is an
m-compact set of X, then F (K) is compact.

Proof. The proof follows from Theorem 4.1 of [22].
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Corollary 5.5. If F : (X,mX) → (Y, σ) is an upper m-continuous
surjective multifunction such that F (x) is compact for each x ∈ X
and (X,mX) is m-compact, then (Y, σ) is compact.

Lemma 5.6. If F : (X,mX) → (Y, σ) is an upper mIT -continuous
multifunction such that F (x) is compact for each x ∈ X and K is an
mIT -compact set of X, then F (K) is compact.

Proof. The proof follows from Theorem 4.1 of [22].

Corollary 5.6. If F : (X,mX) → (Y, σ) is an upper mIT -continuous
surjective multifunction such that F (x) is compact for each x ∈ X and
(X,mX) is mIT -compact, then (Y, σ) is compact.

Corollary 5.7. If F : (X,mX) → (Y, σ) is an upper γ-M-continuous
surjective multifunction such that F (x) is compact for each x ∈ X and
(X,mX) is γ-M-compact, then (Y, σ) is compact.

Definition 5.6. An m-space (X,mX) is said to be m-connected [28]
if X cannot be written as the union of two nonempty disjoint m-open
sets.

Definition 5.7. Anm-space (X,mX) is said to bemIT-connected if an
m-space (X,mIT (X)) ism-connected. Hence anm-space (X,mIT (X))
is m-connected if X cannot be written as the union of two nonempty
disjoint mIT -open sets.

Lemma 5.7. (Noiri and Popa [22]). If F : (X,mX) → (Y, σ) is an
upper or lower m-continuous surjective multifunction such that F (x)
is connected for each x ∈ X and (X,mX) is m-connected, then (Y, σ)
is connected.

Theorem 5.9. If F : (X,mX) → (Y, σ) is an upper or lower mIT-
continuous surjective multifunction such that F (x) is connected for
each x ∈ X and (X,mX) is mIT-connected, where mX has property
B, then (Y, σ) is connected.

Corollary 5.8. If F : (X,mX) → (Y, σ) is an upper or lower γ-M-
continuous surjective multifunction such that F (x) is connected for
each x ∈ X and (X,mX) is γ-M-connected, then (Y, σ) is connected.

Remark 5.5. If mIT(X) = mSO(X), mPO(X), mα(X), mβ(X) or
mδPO(X), then we obtain the similar result with Corollary 5.8.
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6. Separation axioms and mIT -continuous multifunctions

Definition 6.1. A subset A of (X,mX) is said to be m-dense in X if
mCl(A) = X.

Theorem 6.1. Let X be a nonempty set with two minimal structures
m1

X and m2
X such that U ∩ V ∈ m2

X whenever U ∈ m1
X and V ∈ m2

X

and (Y, σ) be a Hausdorff space.
If the following four conditions are satisfied,

(1) a multifunction G : (X,m1
X) → (Y, σ) is upper m-continuous,

(2) a multifunction F : (X,m2
X) → (Y, σ) is upper m-continuous,

(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F (x)∩G(x) ̸= ∅ for each point x in an m-dense set D of (X,m2

X),
then F (x) ∩G(x) ̸= ∅ for each point x in X.

Proof. Let A = { x ∈ X : F (x) ∩ G(x) ̸= ∅ }. Suppose that
x ∈ X \ A. Then we have F (x) ∩ G(x) = ∅. Since F (x) and G(x)
are compact sets of a Hausdorff space Y , there exist open sets V and
W of Y such that F (x) ⊂ V,G(x) ⊂ W and V ∩ W = ∅. Since G
is upper m-continuous, there exists U1 ∈ m1

X containing x such that
G(U1) ⊂ W . Since F is upper m-continuous, there exists U2 ∈ m2

X

containing x such that F (U2) ⊂ V . Now, set U = U1 ∩ U2, then
we have U ∈ m2

X and U ∩ A = ∅. Therefore, by Lemma 3.2 we
have x ∈ X \ m2

XCl(A) and hence A =2
X Cl(A). On the other hand,

F (x) ∩ G(x) ̸= ∅ on D and hence D ⊂ A. Since D is m-dense in
(X,m2

X), we have X = m2
XCl(D) ⊂ m2

XCl(A) = A. Therefore, we
obtain F (x) ∩G(x) ̸= ∅ for each x ∈ X.

Definition 6.2. A subset A of (X,mX) is said to be mIT-dense in X
if mITCl(A) = X.

Theorem 6.2. Let (X,mX) be an m-space with two m-iterate struc-
tures mIT 1(X) and mIT 2(X) such that U ∩ V ∈ mIT 2(X) whenever
U ∈ mIT 1(X) and V ∈ mIT 2(X) and (Y, σ) be a Hausdorff space.
If the following four conditions are satisfied,

(1) a multifunction G : (X,mIT 1(X)) → (Y, σ) is upper m-continuous,
(2) a multifunction F : (X,mIT 2(X)) → (Y, σ) is upper m-continuous,
(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F (x) ∩ G(x) ̸= ∅ for each point x in an m-dense set D of

(X,mIT 2(X)),
then F (x) ∩G(x) ̸= ∅ for each point x in X.

Corollary 6.1. Let (X,mX) be an m-space with two mγ-iterate struc-
tures mγ1(X) and mγ2(X) such that U ∩ V ∈ mγ2(X) whenever
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U ∈ mγ1(X) and V ∈ mγ2(X) and (Y, σ) be a Hausdorff space.
If the following four conditions are satisfied,

(1) a multifunction G : (X,mγ1(X)) → (Y, σ) is upper m-continuous,
(2) a multifunction F : (X,mγ2(X)) → (Y, σ) is upper m-continuous,
(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F (x) ∩ G(x) ̸= ∅ for each point x in an m-dense set D of

(X,mγ2(X)),
then F (x) ∩G(x) ̸= ∅ for each point x in X.

Remark 6.1. If mIT(X) = mSO(X), mPO(X), mα(X), mβ(X) or
mδPO(X), then we obtain the similar result with Corollary 6.1.

Definition 6.3. An m-space (X,mX) is said to be m-T2 [28] if for
each distinct points x, y ∈ X there exist U, V ∈ mX containing x, y,
respectively, such that U ∩ V = ∅.
Definition 6.4. An m-space (X,mX) is said to be mIT -T2 if an m-
space (X,mIT (X)) is m-T2. Hence an m-space (X,mX) is mIT -T2 if
for each distinct points x, y ∈ X there exist U, V ∈ mIT (X) containing
x, y, respectively, such that U ∩ V = ∅.
Remark 6.2. Let (X,mX) be an m-space. If mIT(X) = mSO(X)
(resp. mPO(X)), then we obtain the definition of m-semi-T2 spaces
[18] (resp. m-pre-T2 spaces [20]).

Definition 6.5. A multifunction F : (X,mX) → (Y, σ) is said to be
injective if x ̸= y implies that F (x) ∩ F (y) = ∅.
Theorem 6.3. If F : (X,mX) → (Y, σ) is an upper m-continuous in-
jective multifunction into a Hausdorff space (Y, σ) and F(x) is compact
for each x ∈ X, then X is m-T2.

Proof. For any distinct points x1, x2 of X, we have F (x1)∩F (x2) =
∅ since F is injective. Since F (x) is compact for each x ∈ X and Y is
Haudorff, there exist an open set Vi such that F (xi) ⊂ Vi for i = 1, 2
and V1∩V2 = ∅. Since F is upper m-continuous, there exists Ui ∈ mX

containing xi such that F (Ui) ⊂ Vi for i = 1, 2. Therefore, we obtain
U1 ∩ U2 = ∅ and hence X is m-T2.

Theorem 6.4. If F : (X,mX) → (Y, σ) is an upper mIT-continuous
injective multifunction into a Hausdorff space (Y, σ) and F(x) is com-
pact for each x ∈ X, then (X,mX) is mIT -T2.

Corollary 6.2. If F : (X,mX) → (Y, σ) is an upper γ-M-continuous
injective multifunction into a Hausdorff space (Y, σ) and F(x) is com-
pact for each x ∈ X, then (X,mX) is mγ(X)-T2.
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Remark 6.3. Let (X,mX) be an m-space. If mIT (X) = mSO(X),
mPO(X), mα(X), mβ(X) or mδPO(X), we obtain the similar result
with Corollary 6.2.

Theorem 6.5. Let X be a nonempty set with two minimal structures
m1

X and m2
X such that U ∩ V ∈ m2

X whenever U ∈ m1
X and V ∈ m2

X

and (Y, σ) be a Hausdorff space. If the following four conditions are
satisfied:

(1) a multifunction F1 : (X,m1
X) → (Y, σ) is upper m-continuous,

(2) a multifunction F2 : (X,m2
X) → (Y, σ) is upper m-continuous,

(3) F1(x) and F2(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F1(x) ∩ F2(x) ̸= ∅ for each x ∈ X,

then a multifunction F : (X,m2
X) → (Y, σ), defined by formula F (x) =

F1(x) ∩ F2(x) for each x ∈ X, is upper m-continuous.

Proof. Let x ∈ X and V be an open set of Y such that F (x) ⊂ V .
Then, A = F1(x) \ V and B = F2(x) \ V are disjoint compact sets.
Hence, there exist open sets V1 and V2 such that A ⊂ V1, B ⊂ V2

and V1 ∩ V2 = ∅. Since F1 is upper m-continuous, there exists U1 ∈
m1

X containing x such that F1(U1) ⊂ V1 ∪ V . Since F2 is upper m-
continuous, there exists U2 ∈ m2

X containing x such that F2(U2) ⊂
V2 ∪ V . Set U = U1 ∩U2, then U ∈ m2

X containing x. If y ∈ F (x0) for
any x0 ∈ U , then y ∈ (V1∪V )∩ (V2∪V ) = (V1∩V2)∪V = V because
V1 ∩ V2 = ∅. Hence, we have y ∈ V and hence F (U) ⊂ V . Therefore,
F is upper m-continuous.

Theorem 6.6. Let (X,mX) an m-space with two m-iterate struc-
tures mIT 1(X) and mIT 2(X) such that U ∩ V ∈ mIT 2(X) whenever
U ∈ mIT 1(X) and V ∈ mIT 2(X) and (Y, σ) be a Hausdorff space. If
the following four conditions are satisfied:

(1) a multifunction F1 : (X,mIT 1(X)) → (Y, σ) is upper m-continuous,
(2) a multifunction F2 : (X,mIT 2(X)) → (Y, σ) is upper m-continuous,
(3) F1(x) and F2(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F1(x) ∩ F2(x) ̸= ∅ for each x ∈ X,

then a multifunction F : (X,mIT 2(X)) → (Y, σ), defined by F (x) =
F1(x) ∩ F2(x) for each x ∈ X, is upper m-continuous.

Corollary 6.3. Let (X,mX) anm-space with two mγ-structuresmγ1(X)
and mγ2(X) such that U ∩ V ∈ mγ2(X) whenever U ∈ mγ1(X) and
V ∈ mγ2(X) and (Y, σ) be a Hausdorff space. If the following four
conditions are satisfied:

(1) a multifunction F1 : (X,mγ1(X)) → (Y, σ) is upper m-continuous,
(2) a multifunction F2 : (X,mγ2(X)) → (Y, σ) is upper m-continuous,
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(3) F1(x) and F2(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F1(x) ∩ F2(x) ̸= ∅ for each x ∈ X,

then a multifunction F : (X,mγ2(X)) → (Y, σ), defined by F (x) =
F1(x) ∩ F2(x) for each x ∈ X, is upper m-continuous.

Remark 6.4. Let (X,mX) be an m-space. If mIT (X) = mSO(X),
mPO(X), mα(X), mβ(X) or mδPO(X), then we obtain the similar
result with Corollary 6.3.
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