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2-PERFECTLY CONTINUOUS FUNCTIONS AND
THEIR FUNCTION SPACES
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Abstract. A new class of functions called z-perfectly continuous
functions is introduced, which properly includes the class of pseudo
perfectly continuous functions [24] but turns out to be independent
of continuity. Besides the study of the basic properties of z-perfectly
continuous functions and the interplay with topological properties,
sufficient conditions are outlined for their function spaces to be closed,
respectively compact, in the topology of pointwise convergence.

1. INTRODUCTION

Taking account of [24], we can mention some remarkable classes of
functions in descending order, each class properly containing the next
class: z-perfectly continuous functions, pseudo perfectly continuous
functions [24], quasi-perfectly continuous functions [27], d-perfectly
continuous functions [22], perfectly continuous functions due to Noiri
[32], strongly continuous functions of Levine [28].
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Naimpally [31] showed the set S(X,Y’) of all strongly continuous
functions from a locally connected space X into a Hausdorff space Y
is closed in Y¥ in the topology of pointwise convergence. This result
was extended for larger classes of spaces and functions ([21], [22], [24],
[27], [36]). Ome purpose of this paper is to further strengthen these
results. Moreover, conditions are given for certain classes of functions
to be compact Hausdorff subspaces of Y¥ in the topology of pointwise
convergence.

The organization of the paper is as follows: Section 2 is devoted to
preliminaries and basic definitions. In Section 3, we introduce the no-
tion of a ‘z-perfectly continuous function” and reflect upon its place in
the hierarchy of variants of continuity which already exist in the litera-
ture. Moreover, examples are included to ascertain the distinctiveness
of the notions so defined from the existing ones in the mathematical
literature. Section 4 is devoted to the study of basic properties of z-
perfectly continuous functions. The notion of z-partition topology is
introduced and sufficient conditions are given for its direct and inverse
preservation under mappings. A sum theorem is proved showing that
the z-perfect continuity of a certain family of restrictions of a function
implies the z-perfect continuity of that function on the whole space.
In Section 5 we discuss the interplay between topological properties
of X, Y and the z-perfectly continuous functions f : X — Y. Sec-
tion 6 is devoted to function spaces wherein it is shown that if X is
sum connected [16] (e.g. connected or locally connected) and Y is a
functionally Hausdorff space, then the function space P,(X,Y") of all
z-perfectly continuous functions from X to Y is closed in Y in the
topology of pointwise convergence. Moreover, if Y is a compact Haus-
dorff space, then P,(X,Y") and several other function spaces are shown
to be compact Hausdorff in the topology of pointwise convergence.

2. PRELIMINARIES AND BASIC DEFINITIONS

In what follows, X and Y are topological spaces. A subset A of
X is called regular Gs-set [30] if A is an intersection of a sequence

o0 o
of closed sets whose interiors contain A, i.e., if A= (| F, = [ FY,
n=1 n=1

where each F, is a closed subset of X (here F° denotes the interior of
F,). The complement of a regular Gs-set is called a regular F,-set.
A point x € X is called a §-adherent point [41] of A C X if every
closed neigbourhood of x intersects A. Let clyg A denote the set of all
f-adherent points of A. The set A is called 0-closed if A = cly A.
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The complement of a #-closed set is referred to as a 0-open set. A
subset A of a space X is said to be regular open if it is the interior
of its closure, i.e., A = A°. The complement of a regular open set is
referred to as a regular closed set. Any union of regular open sets
is called 0-open [41]. The complement of a d-open set is referred to
as a 0-closed set. A subset A of a space X is said to be cl-open [35]
if for each € A there exists a clopen set H such that x € H C A; or
equivalently A is expressible as a union of clopen sets. The complement
of a cl-open set is referred to as a cl-closed set. Any union of cozero
sets is called z-open [19]. The complement of a z-open set is referred
to as a z-closed set.

2.1. Definitions. A function f: X — Y is said to be

(a) perfectly continuous ([25], [32]) if f~*(V) is clopen in X for
every open set V C Y.

(b) slightly continuous' [13] if f=*(V) is open in X for every clopen
set V CY.

(c) d-perfectly continuous [22] if for each §-openset VinY, f~1(V)
is a clopen set in X.

(d) almost perfectly continuous [36] (= regular set connected
8]) if f~(V) is clopen for every regular open set V in Y.

(e) quasi perfectly continuous [27] if f~*(V) is clopen in X for
every f-open set V in Y.

(f) pseudo perfectly continuous [24] if f~1(V) is clopen in X for
every regular F,-set V in Y.

2.2. Definitions. A function f: X — Y is said to be

(a) cl-supercontinuous [35] (= clopen continuous [33]) if for
each = € X and each open set V' containing f(z) there is a clopen
set U containing « such that f(U) C V.

(b) z-supercontinuous [19] if for each x € X and for each open set
V' containing f(x), there exists a cozero set U containing z such
that f(U) C V.

(c) z-continuous [34] if for each x € X and for each cozero set V'
containing f(z), there exists an open set U containing x such that
fu)cVv.

(d) z-cl-supercontinuos [37] if for each € X and each cozero set
V' containing f(x), there exists a clopen set U containing x such

that f(U) C V.

ISlightly continuous functions have been referred to as cl-continuous in ([20],
[26]).
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2.3. Definition. A function f: X — Y is said to be strongly con-
tinuous [28] if f(A) C f(A) for each subset A of X.

2.4. Definition. A filter F is said to z-converge [19] (cl-converge

[35]) to a point =, written as F = z(F < x) if every cozero (clopen)
set containing z contains a member of F.

2.5. Definition. A net (z,) in X is said to z-converge [19] (cl-

converge [35]) to a point x, written as x) = z(x) R x) if it is
eventually in every cozero (clopen) set containing x.

3. Z-PERFECTLY CONTINUOUS FUNCTIONS

3.1. Definition. A subset A of X is called a cozero set if there exists
a continuous real valued function f on X such that A = {z € X :

f(x) # 0}

3.2. Definition. A function f : X — Y from a topological space X
into a topological space Y is called z-perfectly continuous if f~1(V)
is clopen in X for every cozero set V in Y.

The following diagram well exhibits the interrelations that exist
among pseudo perfect continuity and other variants of continuity that
already exist in the literature and are related to the theme of the
present paper.

strongly continuous

1

perfectly continuous — cl-supercontinuous —  z-supercontinuous

i

d-perfectly continuous — almost perfectly continuous

1

quasi perfectly continuous — pseudo perfectly continuous — z-perfectly continuous

!

z-continuous

Examples.

3.1. Let X denote the real line with usual topology and let Y be en-
dowed with the topology 7 = {@, {1}, R}. Then the identity function
f X — Y is z-perfectly continuous but not continuous.

3.2. Let X be the real line endowed with usual topology. Then the
identity function defined on X is continuous as well as z-supercontinuous
but not z-perfectly continuous.

3.3. Let Y be the space of Hewitt’s example [12] of an infinite reg-
ular Hausdorff space on which every continuous real valued function
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is constant. Let X denote the same set with indiscrete topology and
f denote the identity mapping of X onto Y. Then f is z-perfectly
continuous. However, f is not pseudo perfectly continuous since Y
contains regular Gs-set which is not a zero set in Y (see Mack [30]).

4. BASIC PROPERTIES OF Z-PERFECTLY CONTINUOUS FUNCTIONS

4.1. Theorem. For a function f: (X,7) — (Y,9) the following state-
ments are equivalent.

(a) The function f is z-perfectly continuous.

(b) f~Y(V) is cl-open in X for every z-open set V C Y.
(c) fFYB ) is cl-closed in X for every z-closed set B C'Y.
(d) f(F) > f(x) for every filter F 4.

(e) f(zx) = f(z) for every net x 4.

Proof. (a)=(b): Let V be a z-open set in Y, then V' = J, . Ua, where
each U, is a cozero set. Since f is z-perfectly continuous, f~1(U,) is
clopen for each a. Hence f~1(V) = U,ep /7' (Ua) is cl-open in X.

(b)=-(c): Let B be a z-closed set in Y, then Y\ B is z-open in Y. By
(b) X\ f(B) = f~YY\B) is cl-open in X. Hence f~!(B) is cl-closed
in X.

(¢)=(b): obvious.

(b)=(d): Let V be a z-open set in Y containing f(x). Then V =
Uaen Vo where each V;, is a cozero set and suppose that f(z) € V3 for
some 3 € A. Then by (b) f~'(V3) is a cl-open set in X containing x.
Let U be a clopen set such that z € U C f~(Vj). Since F <, 2, there
exists a G € F such that G € U C f~!(Vj). Hence f(G) C Vj and 50
F 5 f(a).

(d)=(e): Let x, < 2 and Fz, be the filter generated by (z,). Then

.. . cl
each clopen set containing x contains a member of F,,, and so F,, — z.

By (d) f(F.,) = f(z). So every cozero set V containing f(r) contains
a member of f(F,,) and hence the net f(z,) is eventually in V. That

is f(za) = f(2).

(e)=>(a): Let V be a cozero set in Y. To show f~}(V) is clopen,
assume the contrary and let z € f~!(V). Thus there is a net (z,) in
X which cl-converges to z and misses f~*(V) frequently. Then the
net (f(x,)) misses V frequently, which is a contradiction. &
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4.2. Proposition. If f : X — Y is a z-perfectly continuous function
and g 1 Y — Z is z-continuous, then g o f is a z-perfectly continu-
ous function. In particular composition of two z-perfectly continuous
functions is z-perfectly continuous.

4.3. Corollary. If f : X — Y s a z-perfectly continuous function
and g :'Y — Z is a continuous function, then g o f is a z-perfectly
continuous function.

4.4. Proposition. Let f : X — Y be a slightly continuous function
and let g : Y — Z be a z-perfectly continuous function. Then go f is
z-perfectly continuous.

4.5. Definitions. A space X is said to be endowed with a

(i) z-partition topology if every cozero set in X is closed; or equiv-
alently every zero set in X is open.

(ii) pseudo partition topology [24] if every regular F,-set in X is
closed; or equivalently every regular Gs-set in X is open.

(iii) partition topology [39] if every open set in X is closed.

(iv) d-partition topology [22] if every d-open set in X is closed

(v) almost partition topology [36] (=extremally disconnected
topology) if every regular open set in X is closed.

(vi) quasi partition topology [27] if every f-open set in X is closed.

The following implications are immediate from definitions.

partition topology

4
d-partition topology = almost partition topology
(= extremally disconnected topology)
4
quasi partition topology = pseudo partition topology

4
z-partition topology

However, none of the above implications is reversible as shown in
([22], [24], [36]) and the following example.

4.6. Example. Consider the Hewitt’s example [12] of an infinite, regu-
lar, Hausdorff space X on which every continuous real valued function
is constant. Then X has z-partition topology but it is not endowed
with pseudo partition topology, since X contains a regular Gg-set
which is not a zero set.
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4.7. Theorem. Let f : X — Y be a function and g : X — X XY,
defined by g(x) = (z, f(x)) for each x € X, be the graph function. If g
18 z-perfectly continuous, then so is f and the space X is endowed with
a z-partition topology. Further, if X has a z-partition topology and f
18 z-perfectly continuous, then g is z-cl-supercontinuous.

Proof. Suppose that the graph function g : X — X x Y is z-perfectly
continuous. Consider the projection map p, : X x Y — Y. Since
it is continuous, it is z-continuous. Hence in view of Proposition 4.2
the function f = p, o g is z-perfectly continuous. To prove that the
space X possesses a z-partition topology, let U be a cozero set in X.
Then U x Y is a cozero set in X x Y. Since g is z-perfectly continuous,
g 1 (UxY) = U is clopen in X and so the topology of X is a z-partition
topology.

Finally, suppose that X has z-partition topology and f is a z-
perfectly continuous function. Let U x V' be a basic cozero set in
X xY. Then g/ (U x V) =Un f~}(V) is a clopen set in X and so
g is z-cl-supercontinuous. g

4.8. Theorem. Let f : X — Y be a z-perfectly continuous surjection
which maps clopen sets to closed (open) sets. Then Y is endowed
with a z-partition topology. Moreover, if f is a bijection which maps
cozero (zero) sets to cozero (zero) sets, then X is also equipped with a
z-partition topology.

Proof. Suppose f maps clopen sets to closed (open) sets. Let V be a
cozero (zero) sets in Y. In view of z-perfect continuity of f, f~(V) is
a clopen set in X. Again, since f is a surjection which maps clopen
sets to closed (open) sets, the set f(f~*(V)) = V is closed (open)
in Y and hence clopen in Y. Thus Y is endowed with a z-partition
topology.

To prove the last part of the theorem assume that f is a bijection
which maps cozero (zero) sets to cozero (zero) sets and let U be a
cozero (zero) set in X. Then f(U) is a cozero (zero) set in Y. Since f
is a z-perfectly continuous bijection, f~'(f(U)) = U is a clopen set in
X and so X is endowed with a z-partition topology.

4.9. Proposition. If f : X — Y is a surjection which maps clopen
sets to open sets and g :'Y — Z is a function such that g o f s z-
perfectly continuous, then g is a z-continuous function. Moreover, if
f maps clopen sets to clopen sets, then g is a z-perfectly continuous
function.
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Proof. Let V be a cozero set in Z. Since go f is z-perfectly continuous,
(go )1 (V) = f~H(g " (V)) is a clopen set in X. Again, since f is
a surjection which maps clopen sets to open sets, f(f~ (g7 *(V))) =
g (V) is open in Y and so ¢ is a z-continuous function. The last
assertion is immediate, since in this case g~*(V) is a clopen set in Y.

4.10. Remark. A space X is endowed with a z-partition topology if and
only if every z-continuous function f : X — Y is z-perfectly continu-
ous. Necessity is obvious in view of definitions. To prove sufficiency,
we prove its contrapositive. Let V' be a cozero set in X which 1s not
clopen. Then the identity mapping defined on X is z-continuous but
not z-perfectly continuous.

4.11. Proposition. If f : X — Y is a z-perfectly continuous function
and g : Y — Z is a z-supercontinuous function, then their composition
18 cl-supercontinuous.

Proof. Let V' be an open set in Z. In view of z-supercontinuity of g,
g (V) is a z-open set in Y and so g (V') = |J V., where each V, is a

cozero set. Since f is z-perfectly continuous, each f~1(V,,) is a clopen

set. Honce (g0 1) (V) = 67 () = 1 (UVa ) = Ua £V
is cl-open. So g o f is cl-supercontinuous. :

4.12. Proposition. If f : X — Y is a z-perfectly continuous function
and g 1 Y — Z is almost z-supercontinuous, then their composition
go f is almost cl-supercontinuous.

4.13. Proposition. If f : X — Y is a z-perfectly continuous function
and g - Y — Z is quasi z-supercontinuous, then their composition go f
1S quasi cl-supercontinuous.

4.14. Theorem. Let f : X — Y be a function and let Q = {X, :
a € A} be a locally finite clopen cover of X. For each o € A, let
fo = flx., : Xo =Y denote the restriction map. Then f is z-perfectly
continuous if and only if each f, is z-perfectly continuous.

Proof. Necessity is immediate in view of the fact that z-perfect con-

tinuity is preserved under the restriction of domain. To prove suffi-
ciency, let V be a cozero set in Y. Then f~1(V) = |J (f|X,) 1 (V) =

a€A
U (f~Y(V)N X.). Since each f~1(V) [ X, is clopen in X, and hence
a€el
in X. Thus f~*(V) is open being the union of clopen sets. Moreover,
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since the collection @ is locally finite, the collection {f~*(V) N X, :
a € A} is a locally finite collection of clopen sets. Since the union of
a locally finite collection of closed sets is closed, f~1(V) is also closed
and hence clopen. g

4.15. Definition ([3], [6]). A subset S of a space X is said to be z-
embedded in X if every zero set in S is the intersection of a zero set
in X with S; or equivalently every cozero set in S is the intersection
of a cozero set in X with S.

4.16. Proposition. Let f : X — Y be a z-perfectly continuous func-
tion. If f(X) is z-embedded in Y, then f : X — f(X) is z perfectly
continuous.

Proof. Let Vi be a cozero set in f(X). Since f(X) is z-embedded
in Y, there exists a cozero set V in Y such that Vi = V) f(X).
In view of z-perfect continuity of f, f~1(V) is clopen in X. Now
[ V) = VN (X)) = FAH V)N fHf(X)) = f71(V) and hence
the result. &

4.17. Definition ([2]). A topological space X is called an Alexan-
droff space if any intersection of open sets in X is open in X, or
equivalently any union of closed sets in X 1is closed in X.

Alexandroff spaces have been referred to as saturated spaces by
Lorrain in [29].

4.18. Theorem. For each o € A, let f, : X — X, be a function and
let f: X — [] X4 be defined by f(x) = (fo(x)) for each x € X. If f

a€cA
18 z-perfectly continuous, then each f, is z-perfectly continuous. Fur-

ther, if X is an Alexzandroff space and each f. is z-perfectly continuous,
then f is z-perfectly continuous.

Proof. Let f be z-perfectly continuous. Now for each o, f, =11, 0 f,
where I, denotes the projection map. Since each projection map II,
is continuous and hence z-continuous, in view of Proposition 4.2 it
follows that each f, is z-perfectly continuous.

Conversely, suppose that X is an Alexandroff space and each f, is a
z-perfectly continuous function. Since X is Alexandroff, to show that
the function f is z-perfectly continuous, it is sufficient to show that
f71(S) is clopen for every subbasic cozero set S in the product space
[T Xa. Let Usx [[ X, be asubbasic cozero set in [[ X,, where Us is

acA aEA aeA
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a cozero set in Xg. Then f~1(Usx [] Xo) = [ (115 (Us)) = f5'(Us)
o

is clopen in X and so f is z-perfectly continuous. g

5. INTERPLAY BETWEEN TOPOLOGICAL PROPERTIES AND
Z-PERFECTLY CONTINUOUS FUNCTIONS

5.1. Definition. A topological space X is called functionally Haus-
dorff if any two distinct points of X can be separated by disjoint coz-
ero sets, equivalently, if X every pair of distinct points, x and y in X,
there exists a continuous function f : X — [0, 1] such that f(z) =0

and f(y) = 1.

5.2. Definition ([24]). A space X is called DsT-space if for each
pair of distinct points z, y in X, there is a regular F,-set U containing
one of the points x and y but not the other.

The following theorem is related to a class of spaces, important
in the theories studying the p-adic topologies and the Stone duality
for Boolean algebras, namely spaces having large inductive dimension
zero or ultranormal spaces [38]. These are precisely the spaces in which
each pair of nonempty disjoint closed sets can be separated by disjoint
clopen sets.

5.3. Theorem. Let f : X — Y be a closed, z-perfectly continuous
injection into a normal space Y. Then X is an ultranormal space.

Proof. Let A and B be any two disjoint closed sets in X. Since the
function f is closed and injective, f(A) and f(B) are disjoint closed
subsets of Y. Again, since Y is normal, by Urysohn’s Lemma there
exists a continuous function ¢ : Y — [0,1] such that ¢(f(A4)) = 0
and ¢(f(B)) =1. Then V = ¢71([0,1/2)) and W = ¢~ 1((1/2,1]) are
disjoint cozero sets in Y containing f(A) and f(B), respectively. Since
f is z-perfectly continuous, f~1(V) and f~!(W) are disjoint clopen sets
containing A and B, respectively and so X is an ultranormal space. &

5.4. Definition. A space X is said to be quasicompact [10] (mildly
compact [38)) if every cover of X by cozero (clopen) sets has a finite
subcover.

5.5. Proposition. Let f : X — Y be a z-perfectly continuous function
from a mildly compact space X onto a space Y. Then'Y is quasicom-
pact.
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Proof. Let @ = {U, : @ € A} be a cover of Y by cozero sets. Since
f is z-perfectly continuous, the collection 3 = {f~1(U,) : « € A} is a
clopen cover of X. Since X is mildly compact, let {f~1(Uy,), ..., [ (Ua,)}
be a finite subcollection of @ which covers X. Then {U,,,...,U,, } isa
finite subcollection of €2 which covers Y. Hence Y is quasicompact.

5.6. Proposition. Let f : X — Y be a z-perfectly continuous function
from a space X onto a space Y. If (i) f is an open bijection; or (ii)
f s a closed surjection, then any pair of disjoint cozero sets in'Y are
clopen in'Y.

Proof. Let A and B be disjoint cozero-subsets of Y. Since f is z-
perfectly continuous f~!(A) and f~!(B) are disjoint clopen subsets of
X.

(i) In case f is an open bijection, f(f~1(A)) = A and f(f~Y(B)) = B
are disjoint open sets and hence clopen sets in Y.

(i) In case f is a closed surjection, the sets A =Y — f(X — f~1(A))
and B=Y — f(X — f71(B)) are disjoint clopen sets in Y. §

5.7. Proposition. Let f,g : X — Y be z-perfectly continuous func-
tions from a space X into a functionally Hausdorff space Y. Then the
set A={z: f(z) = g(x)} is cl-closed in X.

Proof. Let x € X \ A. Then f(z) # g(x), and so by hypothesis
on Y, there are disjoint cozero sets U and V containing f(x) and
g(x), respectively. Since f and g are z-perfectly continuous, the sets
f~YU) and g7!(V) are clopen and containing the point z. Let G =
fHU)Ng™ (V). Then G is a clopen set containing x and GNA = &.
Thus A is cl-closed in X. &

5.8. Proposition. Let f : X — Y be a z-perfectly continuous function
from a space X into a functionally Hausdorff space Y. Then the set
A={(r1,22) € X x X : f(x1) = f(x2)} is cl-closed in X x X.

Proof. Let (xz1,23) € (X x X)\ A. Then f(z1) # f(x3). Since Y is
functionally Hausdorff, there exist disjoint cozero sets U and V' con-
taining f(x1) and f(x9), respectively. Since f is z-perfectly continuous,
f7YU) and f~1(V) are disjoint clopen sets in X containing z; and
T, respectively. Let G = f~1(U) x f~1(V). Then G is a clopen subset
of X x X containing (z1,25) and GN A = @. Thus A is cl-closed in
X xX. 1

5.9. Definition. A space X is said to be
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(i) z-hyperconnected if there exists no proper zero set in X or
equivalently there exists no proper cozero set in X (= X is the
only cozero set in X)

(ii) pseudo hyperconnected [24] if there exists no proper regular
Gs-set in X or equivalently there exists no proper regular F,-set
in X (= X is the only regular F,-set in X)

(iii) hyperconnected ([1], [39]) if every nonempty open subset of X
is dense in X (= X is the only regular open set in X).

(iv) quasi hyperconnected [18] if there exists no proper f-open set
in X or equivalently there exists no proper f-closed set in X
(= X is the only #-open set in X).

The following implications are immediate from definitions.

hyperconnected =- quasi hyperconnected = pseudo hyperconnected

4

z-hyperconnected

5.10. Example. Hewitt’s example [12] of an infinite regular Hausdorff
space on which every continuous real valued function is constant is z-
hyperconnected but not pseudo hyperconnected.

5.11. Proposition. Let f : X — Y be a z-perfectly continuous surjec-
tion from a connected space X onto Y. Then'Y is z-hyperconnected.

Proof. Suppose Y is not z-hyperconnected and let V' be a non empty
cozero set in Y. Since f is z-perfectly continuous, f~'(V) is a non
empty proper clopen subset of X contradicting the fact that X is
connected. 1

5.12. Remark. There exists no z-perfectly continuous surjection from
a connected space onto a non z-hyperconnected space.

5.13. Definition. The graph G(f) of a function f : X — Y is said to
be

(i) clopen z-closed if for each (z,y) ¢ G(f) there exists a clopen
set U of z and a cozero set V' containing y such that (U x V) N
G(f)=2.

(ii) clopen Ds-closed [24] if for each (z,y) ¢ G(f) there exists a
clopen set U of z and a regular F,-set V' containing y such that
(UxV)NG(f) =2.

(iii) clopen 6-closed [18] if for each (z,y) ¢ G(f) there exists a
clopen set U of z and a #-open set V containing y such that
(UxV)NG(f) =2.
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5.14. Proposition. Let f : X — Y be a z-perfectly continuous func-
tion into a functionally Hausdorff space Y. Then the graph G(f) of f
18 clopen z-closed in X xXY.

Proof. Suppose (x,y) ¢ G(f). Then f(z) # y. Since Y is functionally
Hausdorff there exist disjoint cozero sets V' and W containing f(z) and
y, respectively. Since f is z-perfectly continuous, f~1(V) is a clopen
set containing x. Clearly (f~1(V) x W)NG(f) = @ and so the graph
G(f) of fis clopen z-closed in X x Y. 1

5.15. Corollary. If f : X — Y is a z-perfectly continuous function
into a functionally Hausdorff space Y, then the graph G(f) of f is
clopen Ds-closed (clopen 0-closed) in X X Y.

6. FUNCTION SPACES AND Z-PERFECTLY CONTINUOUS FUNCTIONS

It is of considerable importance and from applications viewpoint to
formulate conditions on the spaces X, Y and subsets of C(X,Y) or
Y to be closed/compact in the topology of pointwise convergence.
Results of this type and Ascoli type theorems abound in the literature
(see [4], [14]).

Herein we strengthen the results of ([18], [21], [22], [24], [27], [28],
[36]) to show that if X is a sum connected space and Y is function-
ally Hausdorff, then S(X,Y) = P(X,Y) = L(X,Y) = PA(X,Y) =
Ps(X,Y) = P(X,Y) = P,(X,Y) = P,(X,Y) denote the function
spaces of all strongly continuous, perfectly continuous, cl-supercontinuous,
0-perfectly continuous, almost perfectly continuous, quasi perfectly
continuous, pseudo perfectly continuous functions from X into Y, re-
spectively with the topology of pointwise convergence and are closed
in Y¥ in the topology of pointwise convergence.

6.1. Theorem. Let f : X — Y be a z-perfectly continuous function
nto a functionally Hausdorff space Y. Then f is constant on each
connected subset of X. In particular, if X 1is connected, then f is
constant on X and hence strongly continuous.

Proof. The method of proof by contradiction is used. Let C' be the con-
nected subset of X such that f(C) is not a singleton. Let f(x), f(y) €
f(C), f(x) # f(y). Since Y is functionally Hausdorff, there exist
disjoint cozero sets U and V' containing f(x) and f(y), respectively.
Since f is a z-perfectly continuous, f~H(U) N C and f~}(V) N C are
non empty proper clopen subsets of C', contradicting the fact that C
is connected. The last part of the theorem is immediate, since every
constant function is strongly continuous. &
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6.2. Remark. The hypothesis of ‘functionally Hausdorff space’ in The-
orem 6.1 cannot be omitted. For let X be the real line with usual
topology and let Y denote the real line endowed with cofinite topol-
ogy. Let f denote the identity mapping from X onto Y. Then f is a
nonconstant z-perfectly continuous function.

6.3. Corollary. Let f : X — Y be a z-perfectly continuous function
from a sum connected space X into a functionally Hausdorff space
Y. Then f is constant on each component of X and hence strongly
continuous.

Proof. Clearly, in view of Theorem 6.1 f is constant on each compo-
nent of X. Since X is a sum connected space, each component of X
is clopen in X. Hence it follows that any union of components of X
and the complement of this union are complementary clopen sets in X.
Thus f is constant on each component on X. Therefore, for every sub-
set Aof Y, f71(A) and X\ f~!(A) are complementary clopen sets in
X being the union of component of X. So f is strongly continuous. g

Next, we quote the following result from [24].

6.4. Theorem ([24, Theorem 6.7]). Let f : X — Y be a function from
a sum connected space X into a DsTy-space Y. Then the following
statements are equivalent.

) f is strongly continuous.

) f is perfectly continuous.

) f is cl-supercontinuous.

) f is d-perfectly continuous.

) f is almost perfectly continuous.
) f is quasi perfectly continuous.
(g) f is pseudo perfectly continuous.

(a
(b
(c
(d
(e
(f

6.5. Theorem. Let f : X — Y be a function from a sum connected
space X into a functionally Hausdorff space Y. Then the following
statements are equivalent.

(a) f is strongly continuous.

(b) f is perfectly continuous.

(c) f is cl-supercontinuous.

(d) f is §-perfectly continuous.

(e) f is almost perfectly continuous.
(f) f is quasi perfectly continuous.
(g) [ is pseudo perfectly continuous.
(h) f is z-perfectly continuous.
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Proof. Since every functionally Hausdorff space is DsTy-space, the
equivalence of the assertions (a)-(g) is a consequence of Theorem 6.4.
The implications (a)=-(b) =(d) =(f) =(g) =(h) are trivial and the
implication (h)=-(a) is immediate in view of Corollary 6.3. B

6.6. Theorem. Let X be a sum connected space and let Y be a func-
tionally Hausdorff space. Then S(X,Y) = P(X,Y) = L(X,Y) =
PA(X,Y) = P5s(X)Y) = P(X,)Y) = P(X,Y) = P.(X,Y) is closed

in YX in the topology of pointwise convergence.

Proof. Tt is immediate from Theorem 6.5 that the above eight classes
of functions are identical and its closedness in Y* in the topology of
pointwise convergence follows either from [22, Theorem 5.4] or [36,
Theorem 4.6] or [27, Theorem 5.7]. 1

The above results are important from applications view point since
in particular it follows that if X is sum connected (e.g. connected or
locally connected) and Y is functionally Hausdorff, then the pointwise
limit of a sequence {f, : X — Y : n € N} of z-perfectly continuous
functions is z-perfectly continuous.

We conclude this section with the following result which seems to
be of considerable significance from applications view point.

6.7. Theorem. If X is a sum connected space and Y 1is a compact
Hausdorff space, then the spaces S(X,Y) = P(X,Y) = L(X,Y) =
PA(X)Y) = B5(X,Y) = PJ(X,Y) = P,(X,Y) = P,(X,Y) are com-
pact Hausdorff subspaces of Y~ in the topology of pointwise conver-
gence.

7. CHANGE OF TOPOLOGY

The technique of change of topology of a space is prevalent all
through mathematics and is of considerable significance and widely
used in topology, functional analysis and several other branches of
mathematics. For example, to see the applications of the technique in
topology see ([11], [15], [17], [23], [42]).

Here we discuss the behaviour of a z-perfectly continuous function
if its domain or range or both domain and range are retopologized in
an appropriate way. This method also suggests the alternative proofs
of certain results of preceding sections.

Let (X, 7) be a topological space and let B, denote the collection of
all cozero subsets of (X, 7). Since the intersection of two cozero sets is
a cozero set, the collection B, is a base for a topology 7, on X which
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is coarser than 7 (see [19]). The topology 7, has been referred to by
several authors in the literature. See for example, Aull [5], D’Aristotle
[7] and Stephenson [40].

Further, B denotes the collection of all clopen subsets of (X, 7).
Since the intersection of two clopen sets is a clopen set, the collection
B, is a base for a topology 7 on X. Clearly 7 C 7 (see [9], [35]).
The space (X, 7) is zero-dimensional if and only if 7 = 7.

For interrelations and interplay among various other coarser topolo-
gies obtained in this way for a given topology we refer the interested
reader to [23]. Finally, we conclude with the following result.

7.1. Theorem. For a function f : (X, 7) — (Y, 0) the following state-
ments are equivalent.

(i) f:(X,7) = (Y,0) is a z-perfectly continuous function

(i) f:(X,7) = (Y,0,) is cl-supercontinuous
(iii) f: (X Ta4) — (Y, 0) is z-continuous
(iv) f:(X,7a) = (Y,0.) is continuous.
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