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Abstract. In this paper we consider the stationary stochastic dis-
crete optimal control problem with average cost criterion. We formu-
late this problem on networks and propose polynomial time algorithms
for determining the optimal control by using a linear programming ap-
proach.
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1. Introduction

The aim of this paper is to develop algorithms for determining the
optimal solutions of a new class of a discrete control problems with an
infinite time horizon. The set of states of the system in the considered
problems is finite and the starting state is fixed. We study a class
of stochastic discrete control problems that emphasis Markov decision
problems and deterministic optimal control problems with an infinite
time horizon.
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We obtain the stochastic versions of classical discrete control prob-
lems assuming that the dynamical system in the control process may
admit dynamical states in which the vector of control parameters is
changing in a random way according to given distribution functions of
the probabilities on given feasible sets.

So, in the considered control problems we assume that the dynamics
of the system may contain controllable states as well as uncontrollable
states. These problems are formulated on networks and polynomial
time algorithms for determining their optimal solutions are proposed.

2. Problem Formulation

Let a discrete dynamical system L with finite set of states X be
given, where |X| = n. At every discrete moment of time t = 0, 1, 2, . . .
the state of L is x(t) ∈ X. The dynamics of the system is described
by a directed graph of states’ transitions G = (X,E) where the set of
vertices X corresponds to the set of states of the dynamical system and
an arbitrary directed edge e = (x, y) ∈ E expresses the possibility of
the system L to pass from the state x = x(t) to the state y = x(t+ 1)
at every discrete moment of time t. So, a directed edge e = (x, y)
in G corresponds to a stationary control of the system in the state
x ∈ X. We assume that graph G does not contain deadlock vertices,
i.e., for each vertex x there exists at least one leaving directed edge
e = (x, y) ∈ E. In addition, we assume that to each edge e = (x, y) ∈
E a quantity ce ∈ R is associated, which expresses the cost of the
system L to pass from the state x = x(t) to the state y = x(t) for
every t = 0, 1, 2, . . . .

A sequence of directed edges E ′ = {e0, e1, e2, . . . , et, . . . }, where
et = (x(t), x(t + 1)), t = 0, 1, 2, . . . , determines in G a control of the
dynamical system with a fixed starting state x0 = x(0). An arbitrary
control in G generates a trajectory x0 = x(0), x(1), x(2), . . . for which
the average cost per transition can be defined in the following way

f(E ′) = lim
t→∞

1

t

t−1∑
τ=0

ceτ .

In [1] it is shown that this value exists and that if G is strongly
connected, then for an arbitrary fixed starting state x0 = x(0) there
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exists the optimal control E∗ = {e∗0, e∗1, e∗2 . . . } for which

f(E∗) = min
E′

lim
t→∞

1

t

t−1∑
τ=0

ceτ

and this optimal control does not depend either on the starting state or
on time. Therefore, the optimal control for this deterministic problem
can be found in the set of stationary strategies S.

In this paper we assume that the set of states X of the dynamical
system admit states in which the system L makes transitions to the
next state in a random way according to a given distribution function
of probabilities on the set of possible transitions from these states
[2]. So, the set of states X is divided into two subsets XC and XN

(X = XC ∪XN , XC ∩XN = ∅), where XC represents the set of states
x ∈ X in which the transitions of the system to the next state y can
be controlled by the decision maker at every discrete moment of time
t and XN represents the set of states x ∈ X in which the decision
maker is not able to control the transition because the system passes
to the next state y randomly. Thus, for each x ∈ XN a probability
distribution function px,y on the set of possible transitions (x, y) from
x to y ∈ X(x) is given, i.e.,

(1)
∑

y∈X(x)

px,y = 1, ∀x ∈ XN ; px,y ≥ 0, ∀y ∈ X(x).

Here px,y expresses the probability of the system’s transition from the
state x to the state y for every discrete moment of time t.

We call the graph G, with the properties mentioned above, decision
network and denote it by (G,XC , XN , c, p, x0). So, this network is
determined by the directed graph G with a fixed starting state x0,
the subsets XC , XN , the cost function c : E → R and the probability
function p : EN → [0, 1] on the subset of the edges EN = {e = (x, y) ∈
E
∣∣x ∈ XN , y ∈ X}, where p satisfies the condition (1).
We define a stationary strategy for the control problem on networks

as a map:

s : x→ y ∈ X(x) for x ∈ XC ,

where X(x) = {y ∈ X|e = (x, y) ∈ E}.
Let s be an arbitrary stationary strategy. Then we can determine

the graph Gs = (X, Es ∪ EN), where Es = {e = (x, y) ∈ E |x ∈ XC ,
y = s(x)}. This graph corresponds to a Markov process with the



14 MARIA CAPCELEA, TITU CAPCELEA

probability matrix P s = (psx,y), where

psx,y =


px,y, if x ∈ XN and y = X,

1, if x ∈ XC and y = s(x),

0, if x ∈ XC and y ̸= s(x).

In the considered Markov process, for an arbitrary state x ∈ XC , the
transition (x, s(x)) from the states x ∈ XC to the states y = s(x) ∈ X
is made with the probability px,s(x) = 1 if the strategy s is applied. For
this Markov process we can determine the average cost per transition
for an arbitrary fixed starting state xi ∈ X. Thus, we can determine
the vector of average costs ωs, which corresponds to the strategy s,
according to the formula ωs = Qsµs, whereQs is the limit matrix of the
Markov process, generated by the stationary strategy s, and µs is the
corresponding vector of the immediate costs, i.e., µs

x =
∑

y∈X(x)

psx,ycx,y

[3]. A component ωs
x of the vector ωs represents the average cost per

transition in our problem with a given starting state x and a fixed
strategy s, i.e., fx(s) = ωs

x.
In such a way we can define the value of the objective function fx0(s)

for the control problem on a network with a given starting state x0,
when the stationary strategy s is applied.

The control problem on the network (G,XC , XN , c, p, x0) consists of
finding a stationary strategy s∗ for which

fx0(s
∗) = min

s
fx0(s).

3. A Linear Programming Approach for Determining
Optimal Stationary Strategies on Perfect Networks

We consider the stochastic control problem on the network (G,XC , XN ,
c, p, x0) with XC ̸= ∅, XN ̸= ∅ and assume that G is a strongly con-
nected directed graph. Additionally, we assume that in G for an ar-
bitrary stationary strategy s ∈ S the subgraph Gs = (X,Es ∪ EN) is
strongly connected. This means that the Markov chain induced by the
probability transition matrix P s is irreducible for an arbitrary strat-
egy s. We call the decision network with such a condition a perfect
network. At first we describe an algorithm for determining the optimal
stationary strategies for the control problem on perfect networks.

We consider the control problem for which the average cost per
transition is the same for an arbitrary starting state, i.e., fx(s) =
ωs, ∀x ∈ X.
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Let s ∈ S be an arbitrary strategy. Taking into account that for
every fixed x ∈ XC we have a unique y = s(x) ∈ X(x), we can
identify the map s with the set of boolean values sx,y for x ∈ XC and
y ∈ X(x), where

sx,y =

{
1, if y = s(x),

0, if y ̸= s(x).

For the optimal stationary strategy s∗ we denote the corresponding
boolean values by s∗x,y.

Assume that the network (G,XC , XN , c, p, x0) is perfect. Then the
following lemma holds.

Lemma 3.1. A stationary strategy s∗ is optimal if and only if it cor-
responds to an optimal solution q∗, s∗ of the following mixed integer
bilinear programming problem:

Minimize

(2) ψ(s, q) =
∑
x∈XC

∑
y∈X(x)

cx,ysx,yqx +
∑
z∈XN

µzqz

subject to

(3)



∑
x∈XC

sx,yqx +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X,∑
x∈XC

qx +
∑

z∈XN

qz = 1,∑
y∈X(x)

sx,y = 1, ∀x ∈ XC ,

sx,y ∈ {0, 1}, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X,

where

µz =
∑

y∈X(z)

pz,ycz,y, ∀z ∈ XN .

Proof. Denote µx =
∑

y∈X(x)

cx,ysx,y for x ∈ XC . Then µx for x ∈ XC

and µz for z ∈ XN represent, respectively, the immediate cost of the
system in the states x ∈ XC and z ∈ XN when the strategy s ∈ S
is applied. Indeed, we can consider the values sx,y for x ∈ XC and
y ∈ X(x) as probability transitions from the state x ∈ XC to the state
y ∈ X(x).
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Therefore, for fixed s the solution qs = (qsxi1
, qsxi2

, . . . , qsxin
) of the

system of linear equations

(4)


∑

x∈XC

sx,yqx +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X,∑
x∈XC

qx +
∑

z∈XN

qz = 1,

corresponds to the vector of limit probabilities in the ergodic Markov
chain determined by the graph Gs = (X,Es ∪EN) with the probabili-
ties px,y for (x, y) ∈ EN and px,y = sx,y for (x, y) ∈ EC (EC = E\EN).
Therefore, for given s the value

ψ(s, qs) =
∑
x∈XC

µxqx +
∑
z∈XN

µzqz,

expresses the average cost per transition for the dynamical system if
the strategy s is applied, i.e.,

fx(s) = ψ(s, qs), ∀x ∈ X.

So, if we solve the optimization problem (2), (3) on a perfect network
then we find the optimal strategy s∗.2

In the following for an arbitrary vertex y ∈ X we will denote by
X−

C (y) the set of vertices from XC which contain directed leaving edges
e = (x, y) ∈ E that end in y, i.e., X−

C (y) = {x ∈ XC | (x, y) ∈ E}; in
an analogues way we define the set X−(y) = {x ∈ X | (x, y) ∈ E}.

Based on the lemma above we can prove the following result.

Theorem 3.1. Let α∗
x,y (x ∈ XC , y ∈ X), q∗x (x ∈ X) be a basic

optimal solution of the following linear programming problem:

Minimize

(5) ψ(α, q) =
∑
x∈XC

∑
y∈X(x)

cx,yαx,y +
∑
z∈XN

µzqz

subject to

(6)



∑
x∈X−

C (y)

αx,y +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X,∑
x∈XC

qx +
∑

z∈XN

qz = 1,∑
y∈X(x)

αx,y = qx, ∀x ∈ XC ,

αx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X.



ALGORITHMS FOR SOLVING STOCHASTIC DISCRETE... 17

Then the optimal stationary strategy s∗ on a perfect network can be
found as follows:

s∗x,y =

{
1, if α∗

x,y > 0,

0, if α∗
x,y = 0,

where x ∈ XC , y ∈ X(x). Moreover, for every starting state x ∈ X
the optimal average cost per transition is equal to ψ(α∗, q∗), i.e.,

fx(s∗) =
∑
x∈XC

∑
y∈X(x)

cx,yα
∗
x,y +

∑
z∈XN

µzq
∗
z

for every x ∈ X.

Proof. To prove the theorem it is sufficient to apply Lemma (3.1)
and to show that the bilinear programming problem (2), (3) with
boolean variables sx,y for x ∈ XC , y ∈ X can be reduced to the linear
programming problem (5), (6). Indeed, we observe that the restric-
tions sx,y ∈ {0, 1} in the problems (2), (3) can be replaced by sx,y ≥ 0
because the optimal solutions after such a transformation of the prob-
lem are not changed. In addition, the restrictions∑

y∈X(x)

sx,y = 1, ∀x ∈ XC

can be changed by the restrictions∑
y∈X(x)

sx,yqx = qx, ∀x ∈ XC ,

because for the perfect network it holds qx > 0, ∀x ∈ XC .
Based on the properties mentioned above in the problem (2), (3) we

may replace the system (3) by the following system

(7)



∑
x∈X−

C (y)

sx,yqx +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X,∑
x∈XC

qx +
∑

z∈XN

qz = 1,∑
y∈X(x)

sx,yqx = qx, ∀x ∈ XC ,

sx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X.

Thus, we may conclude that problem (2), (3) and problem (2), (7)
have the same optimal solutions. Taking into account that for the
perfect network qx > 0, ∀x ∈ X we can introduce in problem (2), (7)
the notations αx,y = sx,yqx for x ∈ XC , y ∈ X(x). This leads to the
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problem (5), (6). It is evident that αx,y ̸= 0 if and only if sx,y = 1.
Therefore, the optimal stationary strategy s∗ can be found according
to the rule given in the theorem. 2

So, if the network (G,XC , XN , c, p, x0) is perfect then we can find
the optimal stationary strategy s∗ by using the following algorithm.

Algorithm 1. Determining the Optimal Stationary Strategy
on Perfect Networks

1) Formulate the linear programming problem (5), (6) and find a
basic optimal solution α∗

x,y (x ∈ XC , y ∈ X), q∗x (x ∈ X).
2) Fix a stationary strategy s∗ where s∗x,y = 1 for x ∈ XC , y ∈

X(x) if α∗
x,y > 0; otherwise put s∗x,y = 0.

4. Extension of the Algorithm 1 for Solving the
Unichain Control Problem

We show that the algorithm 1 can be extended for the problem in
which an arbitrary strategy s generates a Markov unichain. For this
problem the graph Gs induced by a stationary strategy may not be
strongly connected, but it contains a unique deadlock strongly con-
nected component (which do not contain a leaving directed edge from
the component to the exterior) that is reachable from every x ∈ X. A
basic optimal solution α∗, q∗ of the linear programming problem (5),
(6) determines the strategy

s∗x,y =

{
1, if α∗

x,y > 0;

0, if α∗
x,y = 0,

and a subset X∗ = {x ∈ X | q∗x > 0}, where s∗ provides the optimal
average cost per transition for the dynamical system L when it starts
transitions in the states x0 ∈ X∗. This means that for an arbitrary
network algorithm 1 determines the optimal stationary strategy of the
problem only in the case if the system starts transitions in the states
x ∈ X∗.

For a unichain control problem algorithm 1 determines the strategy
s∗ and the recurrent class X∗. The remaining states x ∈ X \X∗ in X
correspond to transient states and the optimal stationary strategies in
these states can be chosen in order to reach X∗.

We show how to use the linear programming model (5),(6) for de-
termining the optimal stationary strategies of the control problem on
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the nonperfect network in which for an arbitrary stationary strategy
s the matrix P s corresponds to a recurrent Markov chain.

An arbitrary strategy s in G generates a graph Gs = (X,Es ∪ EN)
with unique deadlock strongly connected component G′

s = (X ′
s, E

′
s)

that can be reached from any vertex x ∈ X. The optimal stationary
strategy s∗ in G can be found from a basic optimal solution by fixing
s∗x,y = 1 for the basic variables. This means that in G we can find the
optimal stationary strategy by using the following algorithm:

Algorithm 2. Determining the Optimal Stationary Strategy
for a Unichain Control Problem

1) Find a basic optimal solution α∗, q∗ of the linear programming
problem (5), (6) and the subset of vertices X∗ = {x ∈ X|q∗x >
0} which in G corresponds to a strongly connected subgraph
G∗ = (X∗, E∗).

2) If x0 ∈ X∗ then we obtain the solution of the problem with
fixed starting state x0. To determine the solution of the prob-
lem for an arbitrary starting state we may select successively
vertices x ∈ X \ X∗ which contain outgoing directed edges
that end in X∗ and will add them at each time to X∗, using
the following rule:

- if x ∈ XC ∩ (X \X∗) then we fix an directed edge e = (x, y),
put s∗x,y = 1 and change X∗ by X∗ ∪ {x};

- if x ∈ XN ∩ (X \X∗) then change X∗ by X∗ ∪ {x}.

5. Algorithms for solving stochastic discrete control
problems on networks with varying time of
states’transitions of the dynamical system

We consider the stationary stochastic discrete optimal control prob-
lem on networks with an average cost optimization criterion, when the
time of systems’ transitions from one state to another may vary in the
control process. The problem will be reduced to the case with unit
time of states’ transitions of the system.

Let a discrete dynamical system L with finite set of states X be
given. At every discrete moment of time t = t0, t1, t2, ... the state of
L is x (t) ∈ X and at the starting moment of time t0 = 0 the state
of the dynamical system is x0 = x(0). Assume that the dynamics
of the system is described by a directed graph of state’s transitions
G = (X,E). An arbitrary vertex x of G corresponds to a state x ∈ X
and an arbitrary directed edge e = (x, y) ∈ E expresses the possibility
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of the system L to pass from the state x (t) to the state x (t+ τe),
where τe is the time of the system’s transition from the state x = x (t)
to the state y = x (t+ τe) through the edge e = (x, y). So, on the edge
set E it is defined the transition time function τ : E → N and, also,
the cost function c : E → R, which associates to each edge the cost ce
of the system’s transition from the state x to the state y.

We assume that the set X admit states in which system L makes
transitions to a next state in the random way, according to given
distribution function of probabilities on the set of possible transitions
from these states. The set X is divided into two subsets XC and
XN (X = XC

∪
XN ,XC

∩
XN = ∅), where XC represents the set of

controllable states, and XN represents the set of uncontrollable states.
The control problem on network (G, XC , XN , c, p, x0) with an av-

erage cost optimization criterion consists in finding the stationary
strategy s∗ that provides the minimal mean integral-time cost by a
trajectory.

We define a stationary strategy for the control problem as a map
s : x→ y ∈ X (x) for x ∈ XC . For the arbitrary stationary strategy s
the graph Gs = (X, Es

∪
EN), where

Es = {e = (x, y) ∈ E | x ∈ XC , y = s (x)}, corresponds to a Markov
process with the probability matrix P s =

(
psx,y
)
, where

psx,y =

 px,y, if x ∈ XN and y ∈ X,
1, if x ∈ XC and y = s(x),
0, if x ∈ XC and y ̸= s(x).

6. Reduction to the problem with unit time of states’
transitions

Our problem can be reduced to the case with unit time of states’
transitions on an auxiliary graph G′ = (X ′, E ′). Graph G′ is ob-
tained from G, where each directed edge e = (x, y) ∈ E with cor-
responding transition time τe is changed by a sequence of directed
edges e′1 = (x, xe1) , e′2 = (xe1, x

e
2) , ..., e

′
τe =

(
xeτe−1, y

)
. So, the set

of vertices X ′ of the graph G′ consists of the set of states X and
the set of intermediate states XI = {xei | e ∈ E, i = 1, 2, ..., τe − 1},
i.e., X ′ = X

∪
XI. Also, we consider the sets X ′

C and X ′
N , so that

X ′ = X ′
C

∪
X ′

N , X ′
C = XC and X ′

N = X ′\XC . The set of edges E ′ is
defined as

E ′ =
∪
e∈E

Ee, Ee =
{

(x, xe1) , (xe1, x
e
2) , ...,

(
xeτe−1, y

) ∣∣ (x, y) ∈ E
}
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and the cost function c′ : E ′ → R by c′x,xe
1

= cx,y if e = (x, y) ∈ E,

c′xe
1,x

e
2

= cxe
2,x

e
3

= ... = cxe
τe−1,y

= 0. The probability function p′ : E ′
N →

[0, 1] is defined as follows:

p′x′,y′ =

{
px,y, if x′ = x, x′ ∈ XN ⊂ X ′

N and y′ = xe1,
1, if x′ ∈ X ′

N\XN .

Between the set of stationary strategies s : x → y ∈ X (x) for x ∈ X
and s′ : x′ → y′ ∈ X ′ (x′) for x′ ∈ X ′, there exists a bijective mapping
such that the corresponding average costs on G and on G′ are the
same. So, if s′∗ is the optimal stationary strategy of the problem with
unit transitions on G′ , then the optimal stationary strategy s∗ on G
is determined by fixing s∗ (x) = y if s′∗ (x) = xe1, where e = (x, y).

We consider that the network (G, XC , XN , c, p, x0) is perfect, i.e.,
the graphs G and Gs are strongly connected. In this case the network
(G′, X ′

C , X
′
N , c

′, p′, x0) is perfect.
Let s′ ∈ S ′ be an arbitrary strategy in G′. Taking into account that

for every fixed x′ ∈ X ′
C we have a unique y′ = s′ (x′) ∈ X ′ (x′), we can

identify the map s′ with the set of boolean values s′x′,y′ for x′ ∈ X ′
C

and y′ ∈ X ′ (x′), where

s′x′,y′ =

{
1, if y′ = s′ (x′) ,
0, if y′ ̸= s′ (x′) .

For the optimal stationary strategy s′∗ we denote the corresponding
boolean values by s′∗x′,y′ .

So, if the network (G, XC , XN , c, p, x0) is perfect then we can find
the optimal stationary strategy s∗ by using the following algorithm.

Algorithm 3. Determining the Optimal Stationary Strategy
for a Problem with Varying Time of States Transitions

1) Formulate the linear programming problem analogous to the
problem (5), (6) and find a basic optimal solution
α∗
x′,y′ (x′ ∈ X ′

C , y′ ∈ X ′), q∗x′ (x′ ∈ X ′);
2) Fix a stationary strategy s′∗ in G′: put s′∗x′,y′ = 1 for x′ ∈ X ′

C ,
y′ ∈ X ′ (x) if α∗

x′,y′ > 0; otherwise put s′∗x′,y′ = 0;
3) Fix a stationary strategy s∗ in G: for each (x′, y′) ∈ E ′ so that

s′∗x′,y′ = 1 put s∗x′,y = 1 for y ∈ X (x′), so that (x′, y′) is edge of
a directed path from x′ to y; otherwise put s∗x′,y = 0.

The algorithm 3 can be extended for the unichain control problem.
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