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Abstract. In the present paper a general fixed point theorem for
two pairs of occasionally weakly compatible mappings is proved. This
theorem generalizes some results by metric spaces, symmetric spaces,
quasi - metric spaces, b - metric spaces, generalized metric spaces, GG
- metric spaces.
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1. INTRODUCTION

Definition 1.1. Let X be a nonempty set. A functiond : X xX — R,
1s a metric on X if for each x,y,z € X:

1) d(z,y) = 0 if and only if x =y,

2)  d(z,y)=dy,z),

3)  d(z,y) <d(x,2)+d(2y).

The pair (X, d) is a metric space.
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space, symmetric space, b - metric space, generalized metric space, GG
- metric space, implicit relation.

(2010) Mathematics Subject Classification: 54H25, 47H10.

45



46 VALERIU POPA

Definition 1.2. Let X be a nonempty set. A functiond : X xX — R,
15 a symmetric on X if for each v,y € X:

1) d(z,y) = 0 if and only if x =y,

2)  d(z,y)=d(y,z).

The pair (X, d) is a symmetric space.

There exists a vast literature concerning fixed points in symmetric
spaces.

Definition 1.3. Let X be a nonempty set. A functiond : X x X — R,
is a quasi - metric on X [51] if for each x,y,z € X:

1) d(z,y) = 0 if and only if x =y,

2) d(z,y) < d(z,z)+d(z,y).

The pair (X, d) is a quasi - metric space.

Some fixed point theorems in quasi - metric spaces are proved in
[11], [22], [23], [29], [47], [48] and in other papers.

Definition 1.4. Let X be a nonempty set. A functiond: X x X —
R, is a b - metric on X [12] if there exists s > 1 such that for all
r,y,z € X:

1) d(z,y) = 0 if and only if x =y,

2 dley) = d(y, ),

3) d(z,y) < s[d(x 2) +d(z,y)].

The pair (X,d) is a b - metric space.

Some fixed point theorems in b - metric spaces are proved in [12],
[13], [14], [15], [37], [49] and in other papers.

Definition 1.5. Let X be a nonempty set. A functiond : X xX — R,
is a generalized metric on X [9] if for each x,y,z,w € X:

1) d(z,y) =0 if and only if x =y,

2)  dx,y) =d(y,z),

3 dley) < dle, ) +d(z,w) + d(w,y).

The pair (X, d) is a generalized metric space.

Some fixed point theorems in generalized metric spaces are proved
n [9], [16], [17], [18], [21], [28] and in other papers.

Remark 1.1. In Definitions 1.1 - 1.5 the condition 1) is single com-
mon condition. In [26] and [42] some fized point theorems in symmet-
ric spaces for mappings without the condition of symmetry and triangle
inequality are proved. Also in [7] some fized point theorems satisfying
only condition 1) are proved.
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Definition 1.6. Let X be a nonempty set. A function m : X X
X — Ry is a minimal condition metric (briefly mc - metric) on X if
m(x,y) =0 if and only if v = y.

The pair (X, m) is a minimal condition metric space (briefly mc -
metric space).

Remark 1.2. 1) By Definition 1.6 it follows that every metric,
symmetric, quasi - metric, b - metric, generalized metric is a mc -
metric.

2) The metric spaces, symmetric spaces, quasi - metric spaces,
b - metric spaces, generalized metric spaces are all me - metric spaces.

In the following we denote M (A, B) = inf{m(a,b) : a € A,b € B}.

2. PRELIMINARIES

Let A and S be self mappings of a metric space (X, d). Jungck [24]
defined A and S to be compatible if lim,,_,o, d(ASz,, SAz,) = 0 when-
ever {z, } is a sequence in X such that lim, . Az, = lim, . Sz, =1
for some t € X.

A point x € X is a coincidence point of A and S if Ax = Sz. We
denote by C(A,S) the set of all coincidence points of A and S.

In [38], Pant defined A and S to be pointwise R - weakly commuting
if for each x € X, there exists R > 0 such that d(SAz, ASz) <
Rd(Ax, Sz). Tt is proved in [39] that pointwise R - weakly commuting
is equivalent with the commuting at coincidence points.

Definition 2.1. A and S is said to be weakly compatible [25] if ASu =
SAu foru e C(A,S).

Remark 2.1. A and S are pointwise R - weakly commuting if and
only if A and S are weakly compatible.

Definition 2.2. A and S are said to be occasionally weakly compatible
(briefly owc) [6] if ASu = SAu for some u € C(A,S).

Remark 2.2. If C(A,S) # @ and A and S are weakly compatible,

then A and S are owe, but the converse is not true (Example [6]).

Some fixed point theorems for owec mappings are proved in [4], [26],
[42], [45] and in other papers.

Let X be a nonempty set and f : X — X and F': X — 2%, A
point x € X is a coincidence point of f and F'if fo € Fax. We denote
by C(f, F) the set of all coincidence points of f and F.
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Definition 2.3. The pair (f, F') is occasionally weakly compatible [1],
2] if fFu C Ffu for someu € C(f,F).

Some fixed point theorems for owc hybrid mappings are proved in
[1], [2], [5], [8] and in other papers.

The study of fixed points in metric spaces satisfying an implicit
relation is initiated in [40], [41].

In the present paper a general fixed point theorem for owc hybrid
mappings satisfying an implicit relation is proved. As application,
two general fixed point theorems for mappings satisfying contractive
conditions of integral type and for hybrid mappings in G - metric
spaces are obtained.

3. IMPLICIT RELATIONS

Definition 3.1. Let ¢q4 be the set of all real functions ¢(t,...,tg) :
RS — R satisfying the following conditions:

(¢1): ¢ 1s nonincreasing in variables ty,ts, tg,

(¢2): o(t,t,0,0,t,t) >0, Vt > 0.

Example 3.1. ¢(ty,...,ts) = t1 —k max{ta, t3, ..., ts}, where k € (0,1).
(¢1): Obviously.
(¢2): o(t,t,0,0,t,t) =t(1 — k), Vt > 0.

Example 3.2. gb(tl, ey t6) =1t — h max {tg, ts, t4, %(t5 + tﬁ)}, where
h e (0,1).

(¢1): Obviously.

(d2):  &(L,1,0,0,¢,8) = t(1 — h), V¢ > 0.

ts+14 15 +1
Example 3.3. ¢(t1,...,t6) = t1 — kmax{tg, 5405 6}, where

2 72
ke (0,1).
(¢1): Obviously.
(pa):  O(t,6,0,0,t,t) =t(1 — k), ¥Vt > 0.

Example 3.4. ¢(tq, ..., tg) = t; — aty —bmax{ts, t;) — cmax{ts, t5, s},
where a,b,c >0 and a +c < 1.

(¢1): Obviously.

(62):  B(t,,0,0,¢,t) =t(1 — (a+c)), Vt > 0.

Example 3.5. ¢(ty,...,t5) = t1 —ato — b(ts +t4) — cmin{ts, ts}, where
a,b,c>0 and a+c < 1.

(¢1): Obviously.

(6): O6,8,0,0,6,8) = (1= (a -+ ), ¥t > 0.
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Example 3.6. ¢(t1,....,t) = t1 — aty — b(ts + t4) — c\/tsts, where
a,b,c>0 and a+c<1.

(¢1): Obviously.

(o) o(t,t,0,0,t,t) =t(1 — (a+c)), Vt > 0.

Example 3.7. ¢(t1, ey t6) =11 — ozmax{tg, ts, t4} — (1 - a)(at5 +bt6>,
where 0 < a<1,a,b>0anda+b<1.

(¢1): Obviously.

(¢2): o(t,t,0,0,t,t) =t(1 — a)(1 — (a + b)), VEt > 0.

min{t% ,t%}
14t3+tg ’

Example 3.8. @(t1,...,t6) =t — ata — b where a,b > 0 and
a+b<1.
(¢1): Obviously.

(¢2):  H(t,,0,0,t,t) = t2(1 — (a + b)), Vt > 0.

Example 3.9. ¢(ty,...,t5) = t; — aty — blfft;rfw where a,b > 0 and
a+2b< 1.

(¢1): Obuviously.

(ha):  &(t,£,0,0,¢,t) = t(1 — (a+ 2b)), Vt > 0.

Example 3.10. ¢(t1,...,ts) = t1 — max {ctq, ct3, cty, ats + btg}, where
ce (0,1), a,b >0 and max{c,a + b} < 1.

(¢1): Obviously.

(¢p2): o(t,t,0,0,t,t) = t(1 — max{c,a + b}), Vt > 0.

4. MAIN RESULTS

Theorem 4.1. Let f, h be self mappings of a mc - metric space (X, m)
and F, H be maps of X into 2% such that the pairs (f, F) and (h, H)
are owc. If

o(m(fx,hy), M(Fz, Hy), M(fz, Fz),
M(hy, Hy), M(fx, Hy), M(Fz, hy)) <0
for all x,y € X for which fx # hy and ¢ € ¢4, then f,h, F and H

have a unique common fixed point.

(4.1)

Proof. Since (f, F') and (h, H) are owc, there exists z,y € X such
that fx € Fa, hy € Hy and fFx C F fx and hHy C Hhy. First we
prove that fr = hy. Suppose that fx # hy. Then 0 # m(fx, hy) >
M(fx,Hy). By (4.1) and (¢;) we have

o(m(fx, hy), m(fx, hy),0,0,m(fz, hy), m(fz, hy)) <0,
a contradiction of (¢9). Hence fx = hy.
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Next we prove that fo = f2x. Suppose that fr # f?z. Since f%x €
fFx C Ffa, then 0 # m(f*v, fx) > M(F fa, fx) = M(Ffz, hy) >
M (F fz, Hy). By (4.1) and (¢;) we have successively

o(m(f?z, hy), M(F fx, Hy),0,0, M(f*z, Hy), M(F fz, hy)) <0,

o(m(f*x, hy), m(f*z, hy),0,0,m(f*z, hy), m(f*z, hy)) <0,

a contradiction of (¢). Hence fz = f?z and fx is a fixed point of f.
Similarly, h?y = hy. Therefore, fo = f?xr = hy = h*y = hfx and fx
is a fixed point of h. On the other hand, fo = f?x € fFx C Ffx,
hence fx is a fixed point of F. Similarly, fx = f?z = hy = h%y €
hHy C Hhy = H fx and fx is a fixed point of H. Therefore, w = fx
is a common fixed point of f, h, F' and H.

Suppose that w’ # w is an other common fixed point of f, h, F’ and
H. Then, by (4.1) and (¢;) we have successively

S(M(fw, hw'), M(Fw, Hw'),0,0, M (fw, Hw"), M(Fw, hw')) <0,
d(m(w,w"), m(w,w"),0,0,m(w,w), m(w,w')) <0,
a contradiction of (¢y). Hence w is the unique common fixed point of

f,h, FFand H. O

Corollary 4.1. Let f,h be self mappings in a metric (symmetric,
quasi - metric, b - metric, generalized metric) space and F, H : X —
2% such that the pairs (f,F) and (h,H) are owc. If the inequality
(4.1) holds for all x,y € X with fx # hy and ¢ € ¢q4, then f,h, F and
H have a unique common fized point.

If f=~hand F = H then by Theorem 4.1 we obtain

Theorem 4.2. Let f be a self mapping of a mc - metric space (X, m)
and F be a map of X into 2% such that the pair (f, F) is owc. If

(4.2) o(m(fx, fy), M(Fz, Fy), M(fz, Fx),
M(fy, Fy), M(fx, Fy), M(Fx, fy)) <0

for all x,y € X for which fx # fy and ¢ € ¢g4, then f and F have a

unique common fized point.

If f,h,F and H are single valued mappings, then by Theorem 4.1
we obtain

Theorem 4.3. Let f,h, F' and H be self mappings of a mc - metric
space (X, m) such that the pairs (f,F) and (h, H) are owc. If the
inequality

o(m(fz, hy),m(Fx, Hy),m(fx, Fx),

(4.3) m(hy, Hy), m(fz, Hy),m(Fz, hy)) <0
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for all x,y € X for which fx # hy, then f,h, F' and H have a unique

common fized point.

Corollary 4.2. Let f,h, F and H be self mappings of a metric (sym-
metric, quasi - metric, b - metric, generalized metric) space such that
the pairs (f, F) and (h, H) are owc. If the inequality (4.3) holds for
all x,y € X for which fx # hy, then f,h, F and H have a unique
common fized point.

By Theorem 4.1 we and Examples 3.1 - 3.10 we obtain

Corollary 4.3. Let f, h be self mappings of a mc - metric space (X, m)
and F,H be maps of X into 2%X. If one of the following inequalities
holds for all x,y € X for which fx # hy:
1)
m(fx, hy) < kmax{M (Fz, Hy), M (fz, Fx),
M(hy, Hy), M(fz, Hy), M(Fz,hy)},
where k € (0, 1),
2)
m(fx, hy) < kmax{M(Fz, Hy), M(fz, Fx),
M(hy, Hy), 3[M(fx, Hy) + M(Fz, hy)]},
where k € (0,1),
3)
m(fx, hy) < kmax{M (Fz, Hy),
3[M(fx, Fx) + M(hy, Hy)),
IM(fx, Hy) + M(Fz, hy)]},
where k € (0,1),
4)
m(fx, hy) < aM(Fz,Hy) + bmax{M (fz, Fx), M(hy, Hy)},
cmax{M (Fz, Hy), M(fxz, Hy), M(Fz, hy)},
where a,b,c >0 and a+c < 1,
5)
m(fx,hy) < aM(Fz,Hy) + b[M(fz, Fx)+ M(hy, Hy)]
+cmin{M (fz, Hy), M(Fx,hy)},
where a,b,c >0 and a+c < 1,
6)
m(fx, hy) < aM(Fx, Hy) + b[M(fz, Fx) + M(hy, Hy)],
+c/M(fx, Hy) - M(Fx, hy),
where a,b,c >0 and a+c <1,




52 VALERIU POPA

7)
m(fx,hy) < aomax{M(Fz, Hy), M(fx, Fz), M(hy, Hy)}
+(1 — a)[aM(fx, Hy) + bM (Fx, Hy)],

where a € (0,1), a,b>0 and a+b < 1,
8)

m?(fx,hy) < aM?(Fx, Hy) + puin{ M2 (fz, Hy), M*(Fz, hy)}

1+ M(fx,Fx)+ M(hy,Hy) ’

where a,b >0 and a +b < 1,

9)

ml(fa, hy) < aM(Fx, Hy) + bl 2 Hy) £ M(Fz, hy)

1+ M(fx,Fx)+ M(hy, Hy)’

where a,b >0 and a + 2b < 1,
10)
m(fx, hy) < max{cM(Fz, Hy),cM(fx, Fx),
cM(hy, Hy),aM (fz, Hy) + bM (Fz, hy)},
where ¢ € (0,1), a,b > 0 and max{c,a + b} < 1,
and if (f, F) and (h, H) are owe, then f,h, F and H have a unique
common fized point.

Remark 4.1. By Theorems 4.2, 4.3 and Examples 3.1 - 3.10 we obtain
new corollaries.

5. APPLICATIONS

a) Fixed points in G - metric spaces

In [19], [20] Dhage introduced a new class of generalized metric
spaces named D - metric spaces. Mustafa and Sims [32], [33] proved
that most of the claims concerning the fundamental topological struc-
tures on D - metric spaces are incorrect and introduced appropriate
notion of generalized metric spaces, named G - metric spaces. In fact,
Mustafa, Sims and other authors studied many fixed point results for
self mappings in G - metric spaces under certain conditions [30], [33],
[34], [35], [36], [43] and other papers.

Definition 5.1. Let X be a nonempty set and G : X3 — R, be a
function satisfying the following properties:

(G1) : G(z,y,2) =0ifr =y =z,

(Gq) : 0 < G(x,x,y) for all z,y € X with y # x,

(G3) : G(z,y,y) < G(z,y,2) for all z,y,z € X and z # y,
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(Gy) : G(z,y,2) = Gy, z,x) = G(z,z,y) = ... (symmetry in all
three variables),

(Gs) : G(z,y,2) < G(x,a,a) + Gla,y, z) for all z,y,z,a € X (rec-
tangle inequality).

The function G is called a G - metric on X and the pair (X, G) is
called a G - metric space, [32], [33].

Remark 5.1. If G(x,y,2) =0, then v =y = z [33].

Lemma 5.1. Let (X, G) be a G - metric space and q(z,y) = G(z,y,y).
Then q(x,y) is a quasi - metric on X.

Proof. 1) By (G1) and Remark 5.1 ¢(x,y) = 0 if and only if z = y.
2) By (G5) we have

q(z,y) = G(z,y,y) < G(z,2,2) + G(z,y,y) = q(x,2) + q(z,y).
Hence ¢(z,y) is a quasi - metric on X. O

Theorem 5.1. Let f,h, F and H be self mappings of a G - metric
space (X, G) such that (f, F) and (h, H) are owc. If

o(G(fx, hy, hy), G(Fz, Hy, Hy), G(fx, Fx, Fx),
G(hy, Hy, Hy), G(fz, Hy, Hy), G(Fz, hy, hy)) < 0,

for all x,y € X for which fx # hy and ¢ € ¢pq. Then f,h, F and H

have a unique common fixed point.

(5.1)

Proof. As in Lemma 5.1, ¢(x,y) = G(x,y,y) is a quasi - metric on X.
Then,
G(fx, hy, hy) = q(fz, hy), G(Fz, Hy, Hy) = q(Fz, Hy),
G(fx,Fa,Fz) = q(fz, Fx),G(hy, Hy, Hy) = q(hy, Hy),
G(fx,Hy, Hy) = q(fz, Hy), G(Fx, hy, hy) = q(F'z, hy).
Then in (X, g) by (5.1) we have

(5.2) ¢(a(fz, hy), ¢(Fz, Hy), q(fz, F),
q(hy, Hy),q(fz, Hy), ¢(Fz, hy)) <0,
which is the inequality (4.3) for m(z,y) = q(x,y).
Hence, the conditions of Theorem 4.3 are satisfied and f, h, F' and
H have a unique common fixed point. 0

By Theorem 5.1 and Examples 3.1 - 3.10 we obtain

Corollary 5.1. Let f,h, F' and H be self mappings of a G - met-
ric space (X,G) such that (f,F) and (h,H) are owc. If one of the
following inequalities holds for all x,y € X with fx # hy:
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1)
G(fz, hy, hy) < kmax{G(Fz,Hy, Hy),G(fz, Fz, Fx),
G(hy, Hy, Hy), G(fz, Hy, Hy), G(Fz, hy, hy)},

where k € (0,1),
2)

G(fz, hy, hy) < kmax{G(Fz,Hy, Hy),G(fz, Fz, Fx),
G(hy, Hy, Hy), 3G (fx, Hy, Hy) + G(Fz, hy, hy)]},

where k € (0,1),

5)
G(fx, hy, hy) < kmax{G(Fz, Hy, Hy),
1%[G(fac, Fx, Fx) + G(hy, Hy, Hy)],
5|G(fz, Hy, Hy) + G(Fz, hy, hy)]},

where k € (0,1),

4)
G(fr,hy, hy) < aG(Fx, Hy, Hy) + b|G(fz, Fx, Fx) + G(hy, Hy, Hy))

+emax{G(Fz, Hy, Hy), G(fz, Hy, Hy), G(Fx, hy, hy)},
where a,b,c >0 and a+c < 1,

5)
G(fx,hy, hy) < aG(Fx, Hy, Hy)
+b[G(fz, Fx, Fx) + G(hy, Hy, Hy)]
+cmin{G(fz, Hy, Hy), G(Fz, hy, hy)},
where a,b,c >0 and a+c < 1,

6)
G(fx,hy, hy) < aG(Fx, Hy, Hy)

+b|G(fz, Fa, Fx) + G(hy, Hy, Hy)]
+ey/G(fr, Hy, Hy) - G(Fz, hy, hy),

where a,b,c >0 and a+c < 1,
7)

G(fz, hy, hy) < amax{G(Fz, Hy, Hy),
G(fx,Fzx,Fx),G(hy, Hy, Hy)}
+(1 — &)[aG(fz, Hy, Hy) + bG(Fx, hy, hy)],
where o € (0,1), a,0 >0 and a+b < 1,

8)
[G(fa, hy, hy)]* < aG*(Fx, Hy, Hy)

bmin{Gz(fx,Hy, Hy), G*(Fx,hy, hy)}
1+ G(fz, Fx, Fx) + G(hy, Hy, Hy) '

where a,b >0 and a +b < 1,
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9)
G(fx, hy, hy) < aG(Fz, Hy, Hy)

G(fz,Hy, Hy) + G(Fx, hy, hy)
1+ G(fz, Fx,Fz) + G(hy, Hy, Hy)’
where a,b >0 and a + 2b < 1,

10)

G(fx, hy, hy) < max{cG(Fz, Hy, Hy),cG(fx, Fx, Fx),
cG(hy, Hy, Hy),aG(fz, Hy, Hy) + bG(Fz, hy, hy)},

where ¢ € (0,1), a,b > 0 and max{c,a+ b} <1,

then f,h, F' and H have a unique common fixed point.

+b

b) Fixed point results for mappings satisfying a contractive con-
dition of integral type

In [10], Branciari established the following fixed point theorem,
which opened the way to the study of mappings satisfying a contrac-
tive condition of integral type.

Theorem 5.2. Let (X, d) be a complete metric space, ¢ € (0,1) and
f:(X,d) = (X,d) be a mapping such that for all x,y € X

/ h(t)dt < / h(t)dt
0 0

where h : [0,00) — [0,00) is a Lebesque measurable mapping which is
summable (i.e. with finite integral) on each compact subset of [0, 00),
such that, for e > 0, f0€ h(t)dt > 0. Then f has a unique fized point z
such that for each x € X, lim,_,, f"x = 2.

Some fixed point theorems for compatible, weakly compatible and
owc mappings satisfying a contractive condition of integral type are
proved in [3], [27], [42], [44], [45], [46], [50] and in other papers.

Let (X,d) be a metric space and s(x,y) = fod(m’y)h(t)dt, where
h(t) is as in Theorem 5.2. In [31] and [44] is proved that s(z,y) is a
symmetric on X and the study of fixed points for mappings satisfying
contractive conditions of integral type is reduced to the study of fixed
points in symmetric spaces.

Let (X,d) be a metric space and f,g: X — X and F,G : X — 2%,
and (X s) is the symmetric space determined by s(z,y). Then

s(fz, gy) = [ ntydt, S(Fx, Gy) = [P n(t)t,

(
(53)  S(fa, Fz) = [PU" h)dt, S(gy, Gy) = ;79 n(t)dt,
(

S(fx,Gy) = [PV n(t)dt, S(Fz, gy) = "7 h(t)dt.
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where h(t) is as in Theorem 5.2.

Theorem 5.3. Let (X,d) be a metric space, f,g : X — X, F,G :
X — 2% satisfying

S([279 p(tydt, [PE peya, [P e,

[P peyat, [PUT ), [PE b(t)dt) <0,

0

for all z,y € X with fx # gy and ¢ € ¢q. If the pairs (f, F) and
(9,G) are owe, then f,g, F and G have a unique common fized point.

Proof. By (5.3) and (5.4) we obtain

o(s(fx,gy), S(Fx, Gy), S(fx, Fx),S(gy, Gy), S(fz, Gy), S(Fz, gy)) <0,
for all z,y € X with fo # gy and ¢ € ¢,.

Hence the conditions of Theorem 4.1 are satisfied for m(z,y) =
s(x,y) in the symmetric space (X, s). By Theorem 4.1, f, g, F and G
have a unique common fixed point. O]

(5.4)

By Theorem 5.3 and Examples 3.1 - 3.10 we obtain

Corollary 5.2. Let f,g : X — X and F,G : X — 2% such that
(f,F) and (g9,G) are owc. If one of the following conditions holds for
all x,y € X with fx # gy:

1)

fod(fﬂﬁ,gy) h(t)dt < kmax{fOD(Fm,Gy) h(t)dt, fOD(fZ,Fz) h(t)dt,

S ptyt, iP5 nde, [0 h(tdt),
where k € (0, 1),
2)

Jow9) p)dt < kmax{ [P h(edt, [P0 nydt, [P e,
%UOD(fm,Fy) h(t)dt + fOD(F%gy) h(t)dt]},
where k € (0, 1),
3)
fod(fl",gy) h(t)dt < kmax{foD(Fx,Gy) h(t)dt,
LPURED b ydt + [P p(t)at),
%UOD(fx,Gy) h(t)dt 4+ fOD(Fz,gy) h(t)dt]},
where k € (0, 1),
4)
fod(fxagy) h(t)dt < afoD(Fw,Gy) h(t)dt
tomax{ [PV n(eydt, [P h(t)dt

temax{ [P ntyat, [7T0 ()t}
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where a,b,c >0 and a+c < 1,
5)
f;“f " p()dt < a [PE0Y n(t)dt
O he dt + [, h(t)d]
—i—cmm{fo (fa, Gy) t)dt, fo (Fogy) h(t)dt},
where a,b,c >0 and a+c < 1,
6)
fod(ffﬂagy) h(t)dt < afoD(F%Gy) h(t)
B[ h(ydt + [ ()]

+c\/ JPURED pydt - [PERI p()dt
where a,b,c >0 and a+c < 1,

7)

fod(fm gy(fh(F)dt <« max{fOG ;Jw GY) h(t)dt,
fo t)dt, fO (99:59) (¢ )dt}
+(1 = a)fa [PV Gy) h(t)dt + b [P p(t)dt),
where a € (0,1), a,b>0 and a+b < 1,
8)
d(fz.9y) (Fr,Gy) ?
[fo h(t )dt} <a [f h(t)dt]

{UO (F2G0) b dt} [fD(Fmgy)h }}

1+ [PYSFD pydt + [P n(t)de
where a,b >0 and a +b < 1,

9)

+bmin

Y

JaI=m) yydt < a [P0 b(t)dt
Jo T htydt + [, et
L [P ntydt + [ h(t)dt
where a,b >0 and a + 2b < 1,
10)
Jam) b ydt < max{e [P b(t)dt, e fo U En) b4y dt,
¢ [P p(t)dt, a D(fw h(t)dt + b [P p(t)dt),

where ¢ € (0,1), a,b > 0 and max{c,a+ b} < 1,
then f,g, F and G have a unique common fixed point.
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If f,g,F and G are single valued mappings, then bt Theorem 5.2
we obtain

Theorem 5.4. Let (X, d) be a metric space and f, g, F,G be self map-
pings of (X,d) satisfying
O fy " h(e)dt, [ h(oyde, [0 he)de,

[Hov G g )ar, [P hiyat, [ n(t)dt) <o,

for all x;y € X, with fx # gy and ¢ € ¢4. If the pairs (f, F) and
(9,G) are owc then f,g, F,G have a unique common fized point.

Remark 5.2. By Examples 3.1 - 3.10 and Theorem 5.3 we obtain a
similar Corollary with Corollary 5.1.

(5.5)
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