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Abstract. In this paper a general fixed point theorem for
mappings satisfying a cyclical implicit contractive relation which
extends the results from [3], [10], [15], [17], [21], [23], [24], [27] to
G - metric spaces is proved.
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1. Introduction

In 2003, Kirk et al. [10] extended Banach’s contraction princi-
ple to a case of cyclic contractive mappings. In [23], most of
the fundamental metrical fixed point theorems in literature (Chate-

jeea, Reich, Hardy - Rogers, Ćirić) are extended to cyclic contractive
mappings. Other new results are obtained in [21], [22], [33]. Several
extensions of these results have appeared in literature.

In [5], [6], Dhage introduced a new class of generalized metric spaces,
named D - metric spaces. Mustafa and Sims [11], [12] proved
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that most of the claims concerning the fundamental topological
structures on D - metric spaces are incorrect and introduced an ap-
propriate notion of generalized metric space, named G - metric space.

In fact, Mustafa, Sims and other authors studied many fixed point
results for self mappings in G - metric spaces under certain conditions
[13], [14], [15], [16], [17], [20], [34] and other papers.

Several classical fixed point theorems and common fixed point
theorems have been recently unified by considering a general
condition by an implicit relation in [25], [26] and in other papers.

Actually, the method is used in the study of fixed points in metric
spaces, symmetric spaces, quasi - metric spaces, convex metric spaces,
reflexive spaces, compact metric spaces, paracompact metric spaces, in
two and three metric spaces, for single valued functions, hybrid pairs
of functions and set valued functions.

Quite recently, this method is used in the study of fixed points for
mappings satisfying a contractive condition of integral type, in fuzzy
metric spaces and intuitionistic metric spaces.

The study of fixed points for mappings satisfying implicit relations
in G - metric spaces is initiated in [27], [28], [29], [30] and in other
papers.

The study of cyclic contractions on G - metric spaces in initiated in
[1], [2], [9], [18].

The study of implicit - relation - type cyclic contractive mappings
is initiated in [19].

2. Preliminaries

Definition 2.1. [12] Let X be a nonempty set and G : X3 → R+ be
a function satisfying the following properties:

(G1) : G(x, y, z) = 0 if x = y = z,
(G2) : 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,
(G3) : G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ̸= y,
(G4) : G(x, y, z) = G(y, z, x) = G(z, x, y) = ... (symmetry in all

three variables),
(G5) : G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rec-

tangle inequality).
Then, the function G is called a G - metric on X and the pair (X,G)

is called a G - metric space.

Note that if G(x, y, z) = 0 then x = y = z.
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Definition 2.2 ([12]). Let (X,G) be a G - metric space. A sequence
(xn) in (X,G) is said to be:

a) G - convergent if for ε > 0, there is an x ∈ X and k ∈ N such
that for all m,n ∈ N,m, n ≥ k, G(x, xn, xm) < ε.

b) G - Cauchy if for ε > 0, there is k ∈ N such that for all
m,n, p ∈ N, m,n, p ≥ k, G(xn, xm, xp) < ε, that is G(xn, xm, xp) → 0
as n,m, p→ ∞.

c) A G - metric space (X,G) is said to be G - complete if every G
- Cauchy sequence is G - convergent.

Lemma 2.3 ([12]). Let (X,G) be a G - metric space. Then, the
following properties are equivalent:

1) (xn) is G - convergent to x;
2) G(xn, xn, x) → 0 as n→ ∞;
3) G(xn, x, x) → 0 as n→ ∞;
4) G(xn, xm, x) → 0 as n,m→ ∞.

Lemma 2.4 ([12]). If (X,G) is a G - metric space, the following
properties are equivalent:

1) (xn) is G - Cauchy;
2) For ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for all

n,m ∈ N, n,m > k, .

Lemma 2.5 ([12]). Let (X,G) be a G - metric space. Then, the
function G(x, y, z) is jointly continuous in all three of its variables.

Note that each G - metric on X generates a topology τG on X [11]
whose base is a family of open G - balls {BG(x, ε) : x ∈ X, ε > 0},
where BG(x, ε) = {y ∈ X : G(x, y, y) < ε} for all x ∈ X and ε > 0.

A nonempty set A ⊂ X is G - closed if A = A.
Hence, x ∈ A⇔ BG(x, ε) ∩ A ̸= ∅, ∀ε > 0.

Lemma 2.6 ([9]). Let (X,G) be a G - metric space and A be a
nonempty subset of X. A is closed if for any G - convergent sequence
(xn) in A with limn→∞ xn = x, then x ∈ A.

Theorem 2.7 (Theorem 2.1 [15]). Let (X,G) be a G - complete metric
space and let T : X → X be a mapping which satisfy the following
inequality for all x, y ∈ X:

(2.1)
G(Tx, Ty, Ty) ≤ kmax{G(y, Ty, Ty) +G(x, Ty, Ty),

2G(y, Tx, Tx)},

where k ∈
[
0,

1

3

)
. Then T has an unique fixed point.
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Theorem 2.8 (Theorem 3.1 [17]). Let (X,G) be a G - complete metric
space and let T : X → X be a mapping such that for all x, y ∈ X:

(2.2)
G(Tx, Ty, Ty) ≤ max{aG(x, y, y),
b[G(x, Tx, Tx) + 2G(y, Ty, Ty),

b[G(x, Ty, Ty) +G(y, Ty, Ty) + (y, Tx, Tx)]},

where a ∈ [0, 1) and b ∈
[
0,

1

3

)
. Then T has an unique fixed point.

Let p > 1, p ∈ N be, T a self mapping of a metric space (X, d) and
{Ai}pi=1 nonempty closed subsets of X. The mapping T is said to be
cyclical if

(2.3) T (Ai) ⊂ Ai+1, i = 1, p, where Ap+1 = A1.

In [10] the following theorem is proved.

Theorem 2.9 ([10]). Let {Ai}pi=1 be nonempty closed subsets of a
complete metric space and suppose that T : ∪p

i=1Ai → ∪p
i=1Ai satisfy

the condition (2.3) and there exists a constant α ∈ (0, 1) such that

(2.4) d(Tx, Ty) ≤ αd(x, y), ∀x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.

Then T has an unique fixed point in ∩p
i=1Ai.

A cyclical extension of Kanan’s theorem [8] is obtained in [33].

Theorem 2.10 ([33]). Let (X, d) be a complete metric space, A1, ..., Ap

be nonempty closed subsets of X and T : ∪p
i=1Ai → ∪p

i=1Ai. We sup-
pose that T satisfies (2.3) and

(2.5) d(Tx, T 2x) ≤ kd(x, Tx),

for all x ∈ Ai and k ∈
[
0,

1

2

)
.

Then T has an unique fixed point in ∩p
i=1Ai.

A cyclical extension of Kanan’s theorem [8] is obtained in [23].

Theorem 2.11 ([23]). Let {Ai}pi=1 be nonempty closed subsets of a
complete metric space (X, d) and suppose that T : ∪p

i=1Ai → ∪p
i=1Ai

satisfy the condition (2.3) and there exists α ∈
(

0,
1

2

)
such that

(2.6) d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)],

for all x ∈ Ai, y ∈ Ai+1, i = 1, p.
Then T has an unique fixed point in ∩p

i=1Ai.
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A cyclical extension of Reich [31] - Rus [32] theorem is obtained in
[23].

Theorem 2.12 ([23]). Let {Ai}pi=1 be nonempty closed subsets of a
complete metric space (X, d) and suppose that T : ∪p

i=1Ai → ∪p
i=1Ai

satisfy (2.3) and there exist α, β ∈ R+ with α + 2β < 1 such that

(2.7) d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)],

for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.
Then T has an unique fixed point in ∩p

i=1Ai.

The following results are obtained in [24].

Theorem 2.13 ([24]). Let {Ai}pi=1 be nonempty closed subsets of a
complete metric space (X, d) and suppose that T : ∪p

i=1Ai → ∪p
i=1Ai

satisfy (2.3) and
a) there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

(2.8) d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty),

or,
b) there exist a, b ∈ R+ with a+ b < 1 such that

(2.9) d(Tx, Ty) ≤ ad(x, y) + bmax{d(x, Tx), d(y, Ty)},
for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.

c) there exist a, c ∈ R+ with a+ 2c < 1 such that

(2.10) d(Tx, Ty) ≤ ad(x, y) + cmax{d(x, Ty), d(y, Tx)},
for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.

Then T has an unique fixed point in ∩p
i=1Ai.

A cyclical extension of Reich [31] - Rus [32] theorem is obtained in
[23].

Theorem 2.14 ([23]). Let {Ai}pi=1 be nonempty closed subsets of a
complete metric space (X, d) and suppose that f : ∪p

i=1Ai → ∪p
i=1Ai

satisfy (2.3) and there exists α ∈
[
0,

1

2

)
such that

(2.11)
d(fx, fy) ≤ αmax{d(x, y), d(x, fx),

d(y, fy), d(x, fy), d(y, fx)},

for all x ∈ Ai, y ∈ Ai+1, i = 1, p.
Then T has an unique fixed point in ∩p

i=1Ai.

The following two results are obtained in [24].
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Theorem 2.15 ([24]). Let (X, d) be a complete metric space, p ∈ N,
A1, ..., Ap be nonempty closed subsets of X and T : ∪p

i=1Ai → ∪p
i=1A

satisfy (2.3) and

(2.12) d(Tx, Ty) ≤ k max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
,

where k ∈ (0, 1) for all x ∈ Ai, y ∈ Ai+1, i = 1, p.
Then T has an unique fixed point in ∩p

i=1Ai.

Remark 2.16. This result is an extension of Theorem 2.1 from [10],
[22].

Theorem 2.17 ([24]). Let (X, d) be a complete metric space, p ∈ N,
A1, ..., Ap be nonempty closed subsets of X and T : ∪p

i=1Ai → ∪p
i=1A

satisfy (2.3) and

(2.13)
d(Tx, Ty) ≤ αmax{d(x, y), d(x, Tx), d(y, Ty)}+

+(1 − α)[ad(x, Ty) + bd(y, Tx)],

where 0 ≤ α ≤ 1, 0 ≤ a <
1

2
, 0 ≤ b <

1

2
, for all x ∈ Ai, y ∈ Ai+1,

i = 1, p.
Then T has an unique fixed point which is in ∩p

i=1Ai.

The purpose of this paper is to prove a general fixed point the-
orem for mappings satisfying a cyclical implicit contractive condition,
which extends Theorems 2.7 - 2.17 to G - metric spaces.

3. Implicit relations

Definition 3.1 ([3], [19]). Let FG be the set of all continuous
functions F (t1, ..., t6) : R6

+ → R such that:
(F1) : F is nonincreasing in variable t5;
(F2) : There exists h1 ∈ [0, 1) such that for all u, v ≥ 0, F (u, v, v, u, u+

v, 0) ≤ 0 implies u ≤ h1v;
(F3) : There exists h2 ∈ [0, 1) such that for all t, t′ ≥ 0, F (t, t, 0, 0, t, t′) ≤

0 implies t ≤ h2t
′.

Example 3.2. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where
a, b, c, d, e ≥ 0 and a+ b+ c+ 2d+ e < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u + v, 0) = u − av − bv − cv −

d(u+ v) ≤ 0 which implies u ≤ h1v, where 0 ≤ h1 =
a+ b+ d

1 − (c+ d)
< 1
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(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t− at− dt− et′ ≤ 0 which

implies t ≤ h2t
′, where 0 ≤ h2 =

e

1 − (a+ d)
< 1.

Example 3.3. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

1

2
(t5 + t6)

}
, where

k ∈ [0, 1).
(F1) : Obviously.

(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u−kmax

{
u, v,

u+ v

2

}
≤

0. If u ≤ v, then u(1 − k) ≤ 0, a contradiction. Hence u ≤ v, which
implies u ≤ h1v, where 0 ≤ h1 = k < 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t− kmax

{
t,
t+ t′

2

}
≤ 0.

If t > t′, then t(1 − k) ≤ 0, a contradiction. Hence t ≤ t′, which
implies t ≤ h2t

′, where 0 ≤ h2 = k < 1.

Example 3.4. F (t1, ..., t6) = t1−αmax {t2, t3, t4}−(1−α)(at5+bt6),

where 0 ≤ α < 1, 0 ≤ a <
1

2
, 0 ≤ b <

1

2
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u−αmax{u, v}−(1−

α)a(u+ v) ≤ 0. If u > v, then u(1 − α)(1 − 2a) ≤ 0, a contradiction.

Hence, u ≤ v, which implies u ≤ h1v, where 0 ≤ h1 =
α + (1 − α)a

1 − (1 − α)a
<

1.
(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t − αt − (1 − α)at − (1 −

α)bt′ ≤ 0 which implies t ≤ h2t
′, where 0 ≤ h2 =

b

1 − a
< 1.

Example 3.5. F (t1, ..., t6) = t1 − at2 − bmax {t3, t4} − cmax{t5, t6},
where a, b, c ≥ 0 and a+ b+ 2c < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u−av−bmax{u, v}−

c(u + v) ≤ 0. If u > v, then u[1 − (a + b + 2c)] ≤ 0, a contradiction.

Hence, u ≤ v, which implies u ≤ h1v, where 0 ≤ h1 =
α + b+ c

1 − c
< 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t − at − cmax{t, t′} ≤ 0.
If t > t′, then t[1 − (a + c)] ≤ 0, a contradiction. Hence t ≤ t′, which
implies t ≤ h2t

′, where 0 ≤ h2 = c
1−a

< 1.

Example 3.6. F (t1, ..., t6) = t1 − kmax {t2, t3, t4, t5, t6}, where k ∈[
0,

1

2

)
.
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(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u−kmax {u, v, u+ v} ≤

0, which implies u ≤ h1v, where 0 ≤ h1 =
k

1 − k
< 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t − kmax {t, t′} ≤ 0. If
t > t′, then t(1 − k) ≤ 0, a contradiction. Hence t ≤ t′, which implies
t ≤ h2t

′, where 0 ≤ h2 = k < 1.

Example 3.7. F (t1, ..., t6) = t1 − at2 − bt3 − cmax {t4, t5, 2t6}, where
a, b, c ≥ 0 and a+ b+ 3c < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u−av−bv−c(2u+v) ≤

0, which implies u ≤ h1v, where 0 ≤ h1 =
a+ b+ c

1 − 2c
< 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t− at− cmax {t, 2t′} ≤ 0.
If t > 2t′, then t[1−(a+c)] ≤ 0, a contradiction. Hence t ≤ 2t′, which

implies t ≤ h2t
′, where 0 ≤ h2 =

2c

1 − a
< 1.

Example 3.8. F (t1, ..., t6) = t1−max {at2, b(t3 + 2t4), b(t4 + t5 + t6)},

where a ∈ (0, 1) and b ∈
[
0,

1

3

)
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u + v, 0) = u − max{av, b(2u +

v)} ≤ 0. If u > v, then u[1−max{a, 3b}] ≤ 0, a contradiction. Hence,
u ≤ v, which implies u ≤ h1v, where 0 ≤ h1 = max{a, 3b} < 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t−max {at, b(t+ t′)} ≤ 0.
If t > t′, then t[1 − max {a, 2b}] ≤ 0, a contradiction. Hence t ≤ t′,
which implies t ≤ h2t

′, where 0 ≤ h2 = max {a, 2b} < 1.

Example 3.9. F (t1, ..., t6) = t21 − t1(at2 + bt3 + ct4) − dt5t6, where
a, b, c, d ≥ 0 and 0 < a+ b+ c+ d < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u2−u(av+bv+cu) ≤ 0.

If u > 0, then u − av − bv − cu ≤ 0, which implies u ≤ h1v, where

0 ≤ h1 =
a+ b

1 − c
< 1. If u = 0, then u ≤ h1v.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t2 − at2 − ctt′ ≤ 0, which

implies t ≤ h2t
′, where 0 ≤ h2 =

c

1 − a
< 1.

Example 3.10. F (t1, ..., t6) = t21 − at22 − b
t5t6

1 + t23 + t24
, where a, b ≥ 0

and 0 < a+ b < 1.
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(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u + v, 0) = u2 − av2 ≤ 0, which

implies u ≤ h1v, where 0 ≤ h1 =
√
a < 1. If u = 0, then u ≤ h1v.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t2(1 − a) − btt′ ≤ 0, which

implies t ≤ h2t
′, where 0 ≤ h2 =

b

1 − a
< 1.

Example 3.11. F (t1, ..., t6) = t1− at2− bt3− cmax{2t4 + t5, t1 + t4 +
t5 + t6}, where a, b, c ≥ 0 and 0 < a+ b+ 4c < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+v, 0) = u−av−bv−c(3u+v) ≤

0, which implies u ≤ h1v, where 0 ≤ h1 =
a+ b+ c

1 − 3c
< 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t−at− c(t+ t′) ≤ 0, which

implies t ≤ h2t
′, where 0 ≤ h2 =

c

1 − (a+ c)
< 1.

Example 3.12. F (t1, ..., t6) = t1 − kmax{t2, t3 + t4, t5 + t6}, where
0 ≤ k <

1

2
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u + v, 0) = u − k(u + v) ≤ 0,

which implies u ≤ h1v, where 0 ≤ h1 =
k

1 − k
< 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t − k(t + t′) ≤ 0, which

implies t ≤ h2t
′, where 0 ≤ h2 =

k

1 − k
< 1.

Example 3.13. F (t1, ..., t6) =

= t1 − kmax

{
t2, t3, t4,

2t4 + t6
3

,
2t4 + t5

3
,
t5 + t6

2

}
, where 0 ≤ k < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and

F (u, v, v, u, u + v, 0) = u − kmax

{
u, v,

2u

3
,
2u+ v

3
,
u+ v

3

}
≤ 0.If

u > v, then u(1−k) ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ h1v, where 0 ≤ h1 = k < 1.

(F3) : Let t, t′ ≥ 0 and F (t, t, 0, 0, t, t′) = t− kmax

{
t,
t

3
,
t+ t′

3

}
≤

0. If t > t′, then t(1 − k) ≤ 0, a contradiction. Hence, t ≤ t′, which
implies t ≤ h2t

′, where 0 ≤ h2 = k < 1.
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4. Main results

Theorem 4.1. Let (X,G) be a complete G - metric spaces and let
{Ai}pi=1 be a family of nonempty closed subsets of X. Let Y = ∪p

i=1Ai

and let T : Y → Y be a mapping satisfying

(4.1) T (Ai) ⊂ Ai+1, i = 1, p, where Ap+1 = A1

If the inequality

(4.2)
F (G(Tx, Ty, Ty), G(x, y, y), G(x, Tx, Tx),

G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) ≤ 0

holds for all x ∈ Ai, y ∈ Ai+1, i = 1, p and F ∈ FG.
Then T has an unique fixed point in ∩p

i=1Ai.

Proof. Let x0 be an arbitrary point in A1. We define the sequence
xn = Txn−1, n = 1, 2, ... . Then, by (4.1) we have x0 ∈ A1,
x1 = Tx0 ∈ A2, ..., xp−1 = Txp−2 ∈ Ap, xp = Txp−1 ∈ Ap+1 = A1,
xp+1 = Txp ∈ Ap+2 = A2, ... .

By (4.2) we have successively

F (G(Tx0, Tx1, Tx1), G(x0, x1, x1), G(x0, Tx0, Tx0),
G(x1, Tx1, Tx1), G(x0, Tx1, Tx1), G(x1, Tx0, Tx0)) ≤ 0,

F (G(x1, x2, x2), G(x0, x1, x1), G(x0, x1, x1),
G(x1, x2, x2), G(x0, x2, x2), 0) ≤ 0.

By (F1) and (G5) we obtain

F (G(x1, x2, x2), G(x0, x1, x1), G(x0, x1, x1),
G(x1, x2, x2), G(x0, x1, x1) +G(x1, x2, x2), 0) ≤ 0.

By (F2) we obtain

G(x1, x2, x2) ≤ h1G(x0, x1, x1).

Similarly, we obtain

G(xp−2, xp−1, xp−1) ≤ h1G(xp−3, xp−2, xp−2).

Again, by (4.2) we obtain

G(xp−1, xp, xp) ≤ h1G(xp−2, xp−1, xp−1)

...

By induction we have

G(xn, xn+1, xn+1) ≤ h1G(xn−1, xn, xn) ≤ ... ≤ hn1G(x0, x1, x1).
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By a routine computation, using (G5), it follows that (xn) is a G
- Cauchy sequence in X. Since (X,G) is G - complete it follows that
(xn) is G - convergent to x∗. Then, also the subsequences

(xnp+1) ⊂ A1, (xnp+2) ⊂ A2, ..., (x(n+1)p−1) ⊂ Ap, n = 0, 1, 2, ...

also converges to x∗. Hence x∗ ∈ ∩p
i=1Ai.

We prove that x∗ is a fixed point of T .
Let (xn) ∈ An+1 and x∗ ∈ ∩p

i=1Ai. Then by (4.2) we have
successively

F (G(Txn, Tx
∗, Tx∗), G(xn, x

∗, x∗), G(xn, Txn, Txn),
G(x∗, Tx∗, Tx∗), G(xn, Tx

∗, Tx∗), G(x∗, Txn, Txn)) ≤ 0,

F (G(xn+1, Tx
∗, Tx∗), G(xn, x

∗, x∗), G(xn, xn+1, xn+1),
G(x∗, Tx∗, Tx∗), G(xn, Tx

∗, Tx∗), G(x∗, xn+1, xn+1)) ≤ 0.

Letting n tend to infinity we have

F (G(x∗, Tx∗, Tx∗), 0, 0, G(x∗, Tx∗, Tx∗), G(x∗, Tx∗, Tx∗), 0) ≤ 0.

By (F2) we have G(x∗, Tx∗, Tx∗) = 0, i.e. x∗ = Tx∗. Hence, x∗ is a
fixed point and x∗ ∈ ∩p

i=1Ai. Suppose that there exists another fixed
point y∗ ∈ ∩p

i=1Ai. Since, x∗, y∗ ∈ ∩p
i=1Ai, then x∗ ∈ A1, y

∗ ∈ A2. By
(4.2) we have successively

F (G(Tx∗, T y∗, T y∗), G(x∗, y∗, y∗), G(x∗, Tx∗, Tx∗),
G(y∗, T y∗, T y∗), G(x∗, T y∗, T y∗), G(y∗, Tx∗, Tx∗)) ≤ 0,

F (G(x∗, y∗, y∗), G(x∗, y∗, y∗), 0, 0, G(x∗, y∗, y∗), G(y∗, x∗, x∗)) ≤ 0.

By (F3) we obtain

G(x∗, y∗, y∗) ≤ h2G(y∗, x∗, x∗).

Since, x∗, y∗ ∈ ∩p
i=1Ai, then y∗ ∈ A2 and x∗ ∈ A3. By (4.2) we

obtain

G(y∗, x∗, x∗) ≤ h2G(x∗, y∗, y∗).

Hence, G(x∗, y∗, y∗)(1 − h22) ≤ 0, a contradiction. Therefore,
x∗ = y∗. �

Remark 4.2. 1) By Theorem 4.1 and Example 3.7 with a = b = 0 we
obtain a cyclical extension of Theorem 2.7.

2) By Theorem 4.1 and Example 3.8 we obtain a cyclical extension
of Theorem 2.8.

3) By Theorem 4.1 and Example 3.2 with a = α, b = c = d = e = 0
we obtain an extension of Theorem 2.9 in G - metric spaces.
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4) By Theorem 4.1 and Example 3.2 with a = b = c = 0 and
d = e = α we obtain an extension of Theorem 2.11 in G - metric
spaces.

5) By Theorem 4.1 and Example 3.2 with a = α, b = c = β, d =
e = 0 we obtain an extension of Theorem 2.12 in G - metric spaces.

6) By Theorem 4.1 and Example 3.2 with d = e = 0 we obtain an
extension of Theorem 2.13 a) in G - metric spaces.

7) By Theorem 4.1 and Example 3.5 with c = 0 we obtain an exten-
sion of Theorem 2.13 b) in G - metric spaces.

8) By Theorem 4.1 and Example 3.5 with b = 0 we obtain an exten-
sion of Theorem 2.13 c) in G - metric spaces.

9) By Theorem 4.1 and Example 3.6 we obtain an extension of The-
orem 2.14 in G - metric spaces.

10) By Theorem 4.1 and Example 3.3 we obtain an extension of
Theorem 2.15 in G - metric spaces.

11) By Theorem 4.1 and Example 3.8 we obtain an extension of
Theorem 2.17 in G - metric spaces.
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