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ωβ−SEPARATION AXIOMS

H. H. ALJARRAH, M. S. M. NOORANI AND T. NOIRI

Abstract The separation axioms are important and interesting con-
cepts in topological spaces. In this paper we introduce and investigate
some weak separation axioms by using the notion of ωβ−open set.

1. Introduction

The notion of ωβ−open set was introduced by Aljarrah and Noorani
[3]. In [2, 3] ωβ−T1 and ωβ−T2 were defined, respectively, by replac-
ing the word ”open” in the definition of T1, T2 by ”ωβ−open”. In this
paper, we offer some new low separation axioms by utilizing ωβ−open
sets. We also obtain their fundamental properties. Throughout the
present paper, a space (X, τ) means a topological space on which no
separation axiom is assumed unless explicitly stated. Let A be a sub-
set of a space (X, τ). The closure of A and interior of A in (X, τ) are
denoted by Cl(A) and Int(A), respectively. A subset A of a space
(X, τ) is said to be β−open [6] if A ⊆ Cl(Int(Cl(A))).

————————————–
Keywords and phrases: ωβ−Ti space for i = 0, 1, 2; ωβ−Ri space
for i = 0, 1; ωβ −Di space for i = 0, 1, 2; ωβ−open set.
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Recall that a subset A of a space (X, τ) is said to be ωβ−open
[3] (resp. ω−open [5]) if for every x ∈ A there exists a β−open (resp.
open) set U containing x such that U − A is countable. The comple-
ment of an ωβ−open set is said to be ωβ−closed [3]. The intersection
of all ωβ−closed sets of X containing A is called the ωβ−closure of A
and is denoted by ωβCl(A). The union of all ωβ−open sets of X con-
tained in A is called the ωβ−interior of A and is denoted by ωβInt(A).
A subset A is called an ωβ−neighborhood of a point x ∈ X [1] if there
exists an ωβ−open set U containing x such that U ⊆ A.

In this paper, first we give characterizations of ωβ − Ti spaces for
i = 0, 1, 2. Second, we give characterizations of ωβ − Ri spaces for
i = 1, 2. Finally, we introduce the notion of Dωβ−sets as the differ-
ence sets of ωβ−open sets and investigate some preservation theorems.
We recall some definitions used in the sequel.

Definition 1.1. [4] A subset A ⊆ X is called a generalized ωβ−closed
set (briefly gωβ−closed) if ωβCl(A) ⊆ U whenever A ⊆ U and U is
open in (X, τ). Note that every ωβ−closed set is gωβ−closed.

Remember that a space (X, τ) is called an ωβ − T1/2 [4] space if
every generalized ωβ−closed set is ωβ−closed.

Theorem 1.2. [4] A space (X, τ) is an ωβ−T1/2 space if and only if
every singleton is either closed or ωβ−open.

Lemma 1.3. [3] Let (X, τ) be a topological space. The following prop-
erties hold:

(i) The union of any family of ωβ−open sets is ωβ−open.
(ii) The intersection of an ωβ−open set and an ω−open set is

ωβ−open.

Definition 1.4. [1] A function f : (X, τ) → (Y, σ) is called ωβ−irresolute
if f−1(V ) is ωβ−open in (X, τ) for every ωβ−open set V in (Y, σ).

Lemma 1.5. [1] A function f : (X, τ) → (Y, σ) is ωβ−closed if and
only if ωβCl(f(A)) ⊆ f(ωβCl(A)) for each subset A of X.

Definition 1.6. [4] Let A be a subset of a space X. A point x ∈ X is
said to be a ωβ−limit point of A if for each ωβ−open set U containing
x, we have U ∩ (A− {x}) ̸= ϕ. The set of all ωβ−limit points of A is
called the ωβ−derived set of A and is denoted by Dωβ(A).

Lemma 1.7. [4] If D(A) = Dωβ(A), then we have Cl(A) = ωβCl(A),
where D(A) is the derived set of A.
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2. ωβ − Ti spaces

In this section we give some properties and characterizations of ωβ−
T0, ωβ − T1 and ωβ − T2 spaces.

Definition 2.1. A space (X, τ) is said to be:
(i) ωβ − T0 if for each pair of distinct point x and y in X, there

exist an ωβ−open set U such that x ∈ U but y /∈ U or y ∈ U but
x /∈ U .

(ii) ωβ − T1 [2] if for each pair of distinct point x and y in X, there
exist two ωβ−open sets U and V containing x and y, respectively,
such that y /∈ U and x /∈ V .

(iii) ωβ−T2 [3] if for each pair of distinct point x and y in X, there
exist two ωβ−open sets U and V containing x and y, respectively,
such that U ∩ V = ϕ.

Theorem 2.2. A space (X, τ) is ωβ−T0 if and only if ωβCl({x}) ̸=
ωβCl({y}) for each x, y ∈ X and x ̸= y.

Proof. Necessity. Let (X, τ) be an ωβ − T0 space and x, y ∈ X such
that x ̸= y. Then there exists an ωβ−open set U containing x, say
but not y, and therefore X − U is an ωβ−closed set which contains y
but not x. Since ωβCl({y}) is the smallest ωβ−closed set containing
y, ωβCl({y}) ⊆ X − U , and so x /∈ ωβCl({y}). Thus, ωβCl({x}) ̸=
ωβCl({y}).
Sufficiency. Suppose that x, y ∈ X and x ̸= y. Then by assumption,
ωβCl({x}) ̸= ωβCl({y}). Let z ∈ X such that z ∈ ωβCl({x}) and z /∈
ωβCl({y}), say. We claim that x /∈ ωβCl({y}). For, if x ∈ ωβCl({y}),
then ωβCl({x}) ⊆ ωβCl({y}), which contradicts to z /∈ ωβCl({y}).
Thus, x ∈ (ωβCl({y}))c, but (ωβCl({y}))c is an ωβ−open set that
does not contain y. Hence, (X, τ) is ωβ − T0.

Theorem 2.3. For a topological space (X, τ), the following properties
are equivalent:

(i) (X, τ) is an ωβ − T1 space.
(ii) For each x ∈ X, {x} is an ωβ−closed set.
(iii) Each subset of X is the intersection of all ωβ−open sets con-

taining it.

Proof. (i) → (ii) Suppose that (X, τ) is ωβ − T1 and x ∈ X. Let
y ∈ {x}c. Then x ̸= y and so there exists an ωβ−open set Uy such
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that y ∈ Uy but x /∈ Uy. Therefore, y ∈ Uy ⊆ {x}c, i.e. {x}c = ∪{Uy :
y ∈ {x}c} which is ωβ−open.
(ii) → (iii) Suppose that for each x ∈ X, {x} is an ωβ−closed set.
Given A ⊆ X and define the set A∗ as follows: A∗ = ∩{U : A ⊆
U andU is ωβ −open}. We will prove that A = A∗. In general, A ⊂
A∗. Suppose that x /∈ A. Then A ⊆ X−{x} and X−{x} is ωβ−open.
Therefore, x /∈ A∗ and hence A∗ ⊆ A. So A = A∗.
(iii) → (i) Let A∗

x = {U : x ∈ U andU is ωβ − open}. By hypothesis,
{x} = ∩

U∈A∗
x

U . Therefore if y ̸= x then y /∈ ∩
U∈A∗

x

U and there exists

an ωβ−open set U such that x ∈ U and y /∈ U . Analogously, if
x /∈ ∩

U1∈A∗
y

U1 and there exists an ωβ−open set U1 such that y ∈ U1

and x /∈ U1. This shows that (X, τ) is an ωβ − T1 space.

Proposition 2.4. Let (X, τ) be a topological space.
(i) If (X, τ) is ωβ − Ti, then it is ωβ − Ti−1, i = 1, 2.
(ii) If (X, τ) is ωβ −Ti, then it is ωβ −Ti−1/2, i = 1, 1/2, provided

that D(A) = Dωβ(A).

Proof. (i) The proof is obvious.
(ii) If i = 1, then we claim that every ωβ−T1 space is ωβ−T1/2. Let
(X, τ) be ωβ−T1. Then by Theorem 2.3, for each x ∈ X, the singleton
{x} is ωβ−closed. Therefore, by Lemma 1.7 and Theorem 1.2, (X, τ)
is ωβ − T1/2. And if i = 1/2, we claim that every ωβ − T1/2 space is
ωβ−T0. Let x, y ∈ X with x ̸= y. By Theorem 1.2, the singleton {x}
is an ωβ−open or closed. If {x} is ωβ−open, x ∈ {x} and y /∈ {x}. If
{x} is closed, then X−{x} is open and hence ωβ−open, y ∈ X−{x}
and x /∈ X − {x}. Therefore, (X, τ) is ωβ − T0.

The converse of (i) in Proposition 2.4 need not be true in general as
the following example shows.

Example 2.5. Let X = R and τ be a topology on X such that the all
ωβ−open set has the form (−∞, a) where a ∈ R. For any two distant
point x, y where x < y, there exists an ωβ−open set (−∞, y) such
that x ∈ (−∞, y) but not y, which means that the space is ωβ − T0.
However, there is no way of getting an ωβ−open set containing y to
exclude x. So that the space is not ωβ − T1.

Example 2.6. Let X = R and τ be a topology on X such that every
ωβ−open set can we write as {U ⊆ R : R − Ufinite}. It is easy to
check that the space is ωβ − T1. However, it is not ωβ − T2 because
the intersection of any two ωβ−open set are non empty.
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Definition 2.7. A topological space (X, τ) is said to be ωβ−symmetric
if for each x, y ∈ X, x ∈ ωβCl({y}) implies y ∈ ωβCl({x}).

Proposition 2.8. Let (X, τ) be a topological space, then the following
properties hold:

(i) (X, τ) is ωβ−symmetric if and only if the singleton {x} is gωβ−closed
for each x ∈ X.

(ii) (X, τ) is ωβ−symmetric and ωβ − T0 if and only if (X, τ) is
ωβ − T1.

Proof. (i) Suppose that U is an ωβ−open set such that {x} ⊆ U but
ωβCl({x}) ̸⊂ U . This means that ωβCl({x}) ∩ (X − U) ̸= ϕ. Let
y ∈ ωβCl({x}) ∩ (X − U). Now we have x ∈ ωβCl({y}) ⊆ (X − U)
and x /∈ U . But this is a contradiction. Conversely, Assume that
x ∈ ωβCl({y}) but y /∈ ωβCl({x}). This means that (ωβCl({x}))c

contains y. This implies that ωβCl({y}) ⊆ (ωβCl({x}))c. Now
(ωβCl({x}))c contains x which is a contradiction.
(ii) Let x, y ∈ X such that x ̸= y. Since (X, τ) is ωβ − T0, we
can assume that x ∈ U and y /∈ U for some ωβ−open set U . Then
x /∈ ωβCl({y}) and hence y /∈ ωβCl({x}). Therefore, there exist an
ωβ−open set V such that y ∈ V and x /∈ V . This shows that (X, τ) is
ωβ−T1. Conversely, by Theorem 2.3, every singleton set is ωβ−closed
and therefore gωβ−closed . By (i) the space (X, τ) is ωβ−symmetric.
Also, by Proposition 2.4, the space (X, τ) is ωβ − T0.

Theorem 2.9. Let (X, τ) be an ωβ−symmetric space. Then the fol-
lowing are equivalent:

(i) (X, τ) is ωβ − T0.
(ii) (X, τ) is ωβ − T1/2.
(iii) (X, τ) is ωβ − T1.

Proof. The proof follows from Propositions 2.4 and 2.8.

3. ωβ −R0 and ωβ −R1 spaces

In this section we introduce separation axioms ωβ−R0 and ωβ−R1

in a topological space and study some of their properties.

Definition 3.1. A topological space (X, τ) is said to be
(i) ωβ − R0 if every ωβ−open set contains the ωβ−closure of each

of its singletons.
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(ii) ωβ−R1 if for each points x, y ∈ X with ωβCl({x}) ̸= ωβCl({y}),
there exist disjoint ωβ−open sets U and V such that ωβCl({x}) ⊆ U
and ωβCl({y}) ⊆ V .

Theorem 3.2. If (X, τ) is ωβ −R1, then it is ωβ −R0.

Proof. Let U be an ωβ−open set and x ∈ U . If y /∈ U , then x /∈
ωβCl({y}) and thus ωβCl({x}) ̸= ωβCl({y}). So there exists an
ωβ−open set Vy such that ωβCl({y}) ⊆ Vy and x /∈ Vy. Thus, y /∈
ωβCl({x}). Therefore, ωβCl({x}) ⊆ U , hence (X, τ) is ωβ −R0.

Example 2.5 shows that the converse of Theorem 3.2 need not be
true in general, also we will see that in Corollary 3.22.

Theorem 3.3. A topological space (X, τ) is ωβ − R0 if and only if
(X, τ) is ωβ−symmetric.

Proof. Necessity. Assume that (X, τ) is ωβ −R0. Let x ∈ ωβCl({y})
and let U be any ωβ−open set such that y ∈ U . Then by hypothesis,
x ∈ U . Therefore, every ωβ−open set which contains y contains x.
Hence, y ∈ ωβCl({x}).
Sufficiency. Let U be an ωβ−open set and x ∈ U . If y /∈ U , then
x /∈ ωβCl({y}) and thus by assumption, y /∈ ωβCl({x}). Therefore,
ωβCl({x}) ⊆ U and hence (X, τ) is ωβ −R0.

Proposition 3.4. A topological space (X, τ) is ωβ−T1 if and only if
one of the following hold:

(i) it is ωβ − T0 and ωβ −R0.
(ii) it is ωβ − T1/2 and ωβ −R0.

Proof. (i) This follows from Proposition 2.8 and Theorem 3.3.
(ii) This follows from (i) and Proposition 2.4.

It is clear from Proposition 3.4 (part i) that if (X, τ) is ωβ−T0 but
not ωβ − T1, then (X, τ) is not ωβ −R0 (see Example 2.5).

Proposition 3.5. For a topological space (X, τ), the following are
equivalent:

(i) (X, τ) is an ωβ −R0 space.
(ii)For each ωβ−closed set F with x /∈ F , then F ⊆ U and x /∈ U

for some ωβ−open set U .
(iii) For any ωβ−closed set F with x /∈ F , F ∩ ωβCl({x}) = ϕ.
(iv) For any x, y ∈ X with x ̸= y, either ωβCl({x}) = ωβCl({y})

or ωβCl({x}) ∩ ωβCl({y}) = ϕ.
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Proof. (i) → (ii) Let F be an ωβ−closed set such that x /∈ F . Then
by (i) ωβCl({x}) ⊆ X − F . Set U = X − ωβCl({x}), then U is an
ωβ−open set with F ⊆ U and x /∈ U .
(ii) → (iii) Let F be an ωβ−closed set such that x /∈ F . Then by (ii),
there exists an ωβ−open set U such that F ⊆ U and x /∈ U . Since U
is ωβ−open, U ∩ ωβCl({x}) = ϕ and hence F ∩ ωβCl({x}) = ϕ.
(iii) → (iv) Let x, y ∈ X and x ̸= y such that ωβCl({x}) ̸= ωβCl({y}).
Then there exists a point z ∈ ωβCl({x}) such that z /∈ ωβCl({y})
(or, z ∈ ωβCl({y})) such that z /∈ ωβCl({x}). Thus there exists
an ωβ−open set V containing z such that y /∈ V and x ∈ V . Thus
x /∈ ωβCl({y}). Now by (iii), we have ωβCl({x}) ∩ ωβCl({y}) = ϕ.
The proof for the other case is similar.
(iv) → (i) Let V be an ωβ−open set with x ∈ V . We need to show that
ωβCl({x}) ⊆ V . Let y /∈ V . Then x ̸= y and x /∈ ωβCl({y}). Thus
ωβCl({x}) ̸= ωβCl({y}). Hence by (iv), ωβCl({x})∩ωβCl({y}) = ϕ
for each y /∈ V and hence (ωβCl({x})) ∩ [ ∪

y∈X−V
ωβCl({y})] = ϕ.

Again, since V is an ωβ−open set and y ∈ X − V , we have y ∈
ωβCl({y}) ⊆ (X − V ). Thus we have X − V = ∪

y∈X−V
ωβCl({y}).

Therefore, we obtain (X−V )∩ωβCl({x}) = ϕ and hence ωβCl({x}) ⊆
V .

Definition 3.6. Let A be a subset of a topological space and x ∈ X.
(i) ωβ−kernel of A, denoted by kerωβ(A), is defined to be the set

kerωβ(A) = ∩{U : U is ωβ − open and A ⊆ U}.
(ii) ≺ x ≻ωβ = ωβCl({x}) ∩ kerωβ({x}).

Note that if there is no ωβ−open set containing A, then kerωβ(A) =
X.

Lemma 3.7. Let (X, τ) be a topological space and A,B ⊆ X. Then
(i) A ⊆ B implies kerωβ(A) ⊆ kerωβ(B).
(ii) kerωβ(kerωβ(A)) = kerωβ(A).
(iii) kerωβ(A) = {x ∈ X : ωβCl({x}) ∩ A ̸= ϕ}.
(iv) For each x ∈ X, y ∈ kerωβ({x}) if and only if x ∈ ωβCl({y}).
(v) For each x ∈ X, kerωβ(≺ x ≻ωβ) = kerωβ({x}).
(vi) For each x ∈ X, ωβCl(≺ x ≻ωβ) = ωβCl({x}).
(vii) For each ωβ−open set U ⊆ X, if x ∈ U then ≺ x ≻ωβ ⊆ U .
(viii) For each ωβ−closed set F ⊆ X, if x ∈ F then ≺ x ≻ωβ ⊆ F .

Proof. The proofs of (i) and (ii) are obvious.
(iii) Let x ∈ kerωβ(A) and ωβCl({x}) ∩ A = ϕ. Hence x /∈ X −
ωβCl({x}) which is an ωβ−open set containingA. Hence x /∈ kerωβ(A)
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which is a contradiction. Consequently, ωβCl({x})∩A ̸= ϕ. Next sup-
pose that x /∈ kerωβ(A), there exists an ωβ−open set U such that A ⊆
U and x /∈ U . Then (ωβCl({x})) ∩ U = ϕ, thus ωβCl({x}) ∩ A = ϕ.
We obtain the claim.
(iv) Suppose that y /∈ kerωβ({x}). Then there exists an ωβ−open set
V containing x such that y /∈ V . Therefore, we have x /∈ ωβCl({y}).
The proof of the converse case can be done similarly.
(v) The proof follows easily from Definition 3.6 and Lemma 3.7 (i) and
(ii).
(vi) The proof is quite similar to that of (v).
(vii) Since x ∈ U and U is an ωβ−open set, we have kerωβ({x}) ⊆ U .
Hence ≺ x ≻ωβ ⊆ U .
(viii) Since x ∈ F and F is an ωβ−closed set, we have that ≺ x ≻ωβ =
ωβCl({x}) ∩ kerωβ({x}) ⊆ ωβCl({x}) ⊆ F .

Lemma 3.8. For any points x and y in a topological space (X, τ), the
following statements are equivalent:

(i) kerωβ({x}) ̸= kerωβ({y}).
(ii) ωβCl({x}) ̸= ωβCl({y}).

Proof. (i) → (ii) Suppose that kerωβ({x}) ̸= kerωβ({y}), then there
exists a point z ∈ X such that z ∈ kerωβ({x}) and z /∈ kerωβ({y}), it
follows from z ∈ kerωβ({x}) that x ∈ ωβCl({z}) by Lemma 3.7. By
z /∈ kerωβ({y}), we have {y} ∩ ωβCl({z}) = ϕ. Since x ∈ ωβCl({z}),
ωβCl({x}) ⊆ ωβCl({z}) and {y} ∩ ωβCl({x}) = ϕ. Therefore,
ωβCl({x}) ̸= ωβCl({y}).
(ii) → (i) Suppose that ωβCl({x}) ̸= ωβCl({y}). There exists a point
z ∈ X such that z ∈ ωβCl({x}) and z /∈ ωβCl({y}). Then, there ex-
ists an ωβ−open set U containing z such that x ∈ U and y /∈ U , i.e
y /∈ kerωβ({x}). Hence kerωβ({x}) ̸= kerωβ({y}).

Theorem 3.9. A topological space (X, τ) is ωβ−R0 if and only if for
any x, y ∈ X, one of the following hold:

(i) ωβCl({x}) ̸= ωβCl({y}) implies ωβCl({x}) ∩ ωβCl({y}) = ϕ.
(ii) kerωβ({x}) ̸= kerωβ({y}) implies kerωβ({x}) ∩ kerωβ({y}) = ϕ.

Proof. (i) Necessity. Suppose that (X, τ) is ωβ−R0 and x, y ∈ X such
that ωβCl({x}) ̸= ωβCl({y}). Then, there exist z ∈ ωβCl({x}) such
that z /∈ ωβCl({y}) (or z ∈ ωβCl({y}) such that z /∈ ωβCl({x})).
There exists an ωβ−open set V in (X, τ) such that y /∈ V and
z ∈ V ; hence x ∈ V . Therefore, we have x /∈ ωβCl({y}). Thus
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x ∈ X − ωβCl({y}) which is ωβ−open in (X, τ), so ωβCl({x}) ⊆
X − ωβCl({y}) and ωβCl({x}) ∩ ωβCl({y}) = ϕ. The proof for oth-
erwise is similar.
Sufficiency. Let V be ωβ−open in (X, τ) and let x ∈ V . We will
show that ωβCl({x}) ⊆ V . Suppose that y /∈ V , i.e, y ∈ X − V .
Then x ̸= y and x /∈ ωβCl({y}). Thus ωβCl({x}) ̸= ωβCl({y}). By
assumption, ωβCl({x}) ∩ ωβCl({y}) = ϕ. Hence y /∈ ωβCl({x}) and
hence ωβCl({x}) ⊆ V .
(ii) Necessity. Suppose that (X, τ) is an ωβ − R0 space. Thus by
Lemma 3.8, for any points x, y ∈ X if kerωβ({x}) ̸= kerωβ({y})
then ωβCl({x}) ̸= ωβCl({y}). Now we prove that kerωβ({x}) ∩
kerωβ({y}) = ϕ. Assume that z ∈ kerωβ({x}) ∩ kerωβ({y}). By
z ∈ kerωβ({x}) and Lemma 3.7, it follows that x ∈ ωβCl({z}).
Since x ∈ ωβCl({x}), by (i) ωβCl({x}) = ωβCl({z}). Similarly,
we have ωβCl({y}) = ωβCl({z}) = ωβCl({x}). This is a contradic-
tion. Therefore, we have kerωβ({x}) ∩ kerωβ({y}) = ϕ.
Sufficiency. Let (X, τ) be a topological space such that for any points
x, y ∈ X, kerωβ({x}) ̸= kerωβ({y}) implies kerωβ({x}) ∩ kerωβ({y}) =
ϕ. If ωβCl({x}) ̸= ωβCl({y}), then by Lemma 3.8, kerωβ({x}) ̸=
kerωβ({y}). Hence kerωβ({x})∩kerωβ({y}) = ϕ which implies ωβCl({x})∩
ωβCl({y}) = ϕ. Because z ∈ ωβCl({x}) implies that x ∈ kerωβ({z}).
Therefore, kerωβ({x}) ∩ kerωβ({z}) ̸= ϕ. By hypothesis, we have
kerωβ({x}) = kerωβ({z}). Then z ∈ ωβCl({x}) ∩ ωβCl({y}) implies
that kerωβ({x}) = kerωβ({z}) = kerωβ({y}). This is a contradiction.
Hence, ωβCl({x}) ∩ ωβCl({y}) = ϕ. By (i) the space (X, τ) is a
ωβ −R0 space.

Theorem 3.10. For a topological space (X, τ), the following proper-
ties are equivalent:

(i) (X, τ) is an ωβ −R0 space.
(ii) For any A ̸= ϕ and an ωβ−open set U in (X, τ) such that

A∩U ̸= ϕ, there exists an ωβ−closed set F in (X, τ) such that A∩F ̸=
ϕ and F ⊆ U .

(iii) For any ωβ−open set U in (X, τ), U = ∪{F : F isωβ −
closed, F ⊆ U}.

(iv) For any ωβ−closed set F in (X, τ), F = ∩{U : U isωβ −
open, F ⊆ U}.

(v) For any x ∈ X, ωβCl({x}) ⊆ kerωβ({x}).
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Proof. (i) → (ii) Let A be a non-empty set of (X, τ) and U be any
ωβ−open set in (X, τ) such that A ∩ U ̸= ϕ. There exists x ∈ A ∩ U .
Since x ∈ U and U is ωβ−open in (X, τ), ωβCl({x}) ⊆ U . Set
F = ωβCl({x}), then F is ωβ−closed in (X, τ), F ⊆ U and A∩F ̸= ϕ.
(ii) → (iii) Let U be any ωβ−open set in (X, τ), then ∪{F : F isωβ−
closed in (X, τ), F ⊆ U} ⊆ U . Let x ∈ U , there exists an ωβ−closed
set F in (X, τ) such that x ∈ F and F ⊆ U . Therefore, we have
x ∈ F ⊆ ∪{F : F is ωβ − closed in (X, τ), F ⊆ U} and hence U =
∪{F : F isωβ − closed in (X, τ), F ⊆ U}.
(iii) → (iv) This is obvious.
(iv) → (v) Let x ∈ X and y /∈ kerωβ({x}). There exists an ωβ−open
set V in (X, τ) such that x ∈ V and y /∈ V ; hence ωβCl({y})∩V = ϕ.
By (iv) (∩{U : U isωβ − open in (X, τ), ωβCl({y}) ⊆ U}) ∩ V = ϕ
and hence there exists an ωβ−open sets U0 such that ωβCl({y}) ⊆ U0

and x /∈ U0. Therefore, ωβCl({x}) ∩ U0 = ϕ and y /∈ ωβCl({x}).
Consequently, we obtain ωβCl({x}) ⊆ kerωβ({x}).
(v) → (i) Let U be any ωβ−open in (X, τ) and x ∈ U . Suppose
y ∈ kerωβ({x}), then x ∈ ωβCl({y}) and y ∈ U . This implies that
ωβCl({x}) ⊆ kerωβ({x}) ⊆ U . Therefore, (X, τ) is an ωβ−R0 space.

Theorem 3.11. For a topological space (X, τ), the following proper-
ties are equivalent:

(i)(X, τ) is an ωβ −R0 space.
(ii) If F is ωβ−closed and x ∈ F , then kerωβ({x}) ⊆ F .
(iii) If x ∈ X, then kerωβ({x}) ⊆ ωβCl({x}).

Proof. (i) → (ii) Let F be ωβ−closed and x ∈ F . Then kerωβ({x}) ⊆
kerωβ(F ). By (i), it follows from Theorem 3.10 that kerωβ(F ) = F .
Thus, kerωβ({x}) ⊆ F .
(ii) → (iii) Since x ∈ ωβCl({x}) and ωβCl({x}) is ωβ−closed, by (ii),
kerωβ({x}) ⊆ ωβCl({x}).
(iii) → (i) Let x ∈ ωβCl({y}). Then by Lemma 3.7, y ∈ kerωβ({x}).
By (iii), y ∈ ωβCl({x}). Therefore, x ∈ ωβCl({y}) implies that
y ∈ ωβCl({x}). Hence by Theorem 3.3 (X, τ) is ωβ −R0.

Corollary 3.12. Let (X, τ) be a topological space, then the following
properties hold for all x ∈ X:

(i) (X, τ) is ωβ −R0 if and only if ωβCl({x}) = kerωβ({x}).
(ii) If (X, τ) is ωβ−R0 and ≺ x ≻ωβ = {x}, then ωβCl({x}) = {x}.

Proof. (i) The proof follows from Theorems 3.10 and 3.11.
(ii) This is a consequence of (i).
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Proposition 3.13. For a topological space (X, τ), the following prop-
erties are equivalent:

(i) (X, τ) is an ωβ −R0 space.
(ii) For each x ∈ X, ≺ x ≻ωβ = ωβCl({x}).
(iii) For each x ∈ X, ≺ x ≻ωβ is ωβ−closed.

Proof. (i) → (ii) By Corollary 3.12, ωβCl({x}) = kerωβ({x}) for each
x ∈ X. Hence ωβCl({x}) = ωβCl({x}) ∩ kerωβ({x}) =≺ x ≻ωβ.
(ii) → (i) Since ωβCl({x}) =≺ x ≻ωβ for each x ∈ X, we have
ωβCl({x}) ⊆ kerωβ({x}). By Theorem 3.10, (X, τ) is ωβ −R0.
(ii) ↔ (iii) This is a consequence of Lemma 3.7.

Definition 3.14. A net {xα}α∈∆ in a topological space (X, τ) is called
ωβ−convergent to a point x ∈ X, if for any ωβ−open subset U of
(X, τ) containing x, there exists α◦ ∈ ∆ such that xα ∈ U for each
α◦ ≤ α.

Lemma 3.15. Let (X, τ) be a topological space and let x and y be
any two points of X such that every net in X ωβ−converging to y
ωβ−converges to x. Then x ∈ ωβCl({y}).

Proof. Suppose that xn = y for each n ∈ N. Then {xn}n∈N is a
net in X that ωβ−converges to y. Thus by assumption {xn}n∈N
ωβ−converges to x. Hence, x ∈ ωβCl({y}).

Theorem 3.16. For a topological space (X, τ), the following state-
ments are equivalent:

(i) (X, τ) is an ωβ −R0 space.
(ii) If x, y ∈ X, then y ∈ ωβCl({x}) if and only if every net in

(X, τ) ωβ−converging to y ωβ−converges to x.

Proof. (i → ii) Let x, y ∈ X be such that y ∈ ωβCl({x}). Let {xα}α∈∆
be a net in (X, τ) such that {xα}α∈∆ ωβ−converges to y. Since
y ∈ ωβCl({x}), by Theorem 3.3, x ∈ ωβCl({y}). Since {xα}α∈∆
ωβ−converges to y and x ∈ ωβCl({y}), {xα}α∈∆ ωβ−converges to
x. Conversely, let x, y ∈ X such that every net in X ωβ−converging
to y ωβ−converges to x. Then x ∈ ωβCl({y}) by Lemma 3.15. By
Theorem 3.3 y ∈ ωβCl({x}).
(ii → i) Assume that x, y ∈ X such that y ∈ ωβCl({x}). Suppose
that xn = y for each n ∈ N. Then {xn}n∈N is a net in (X, τ) that
ωβ−converges to y. Since y ∈ ωβCl({x}) and {xn}n∈N ωβ−converges
to y, it follows from (ii) that {xn}n∈N ωβ−converges to x. Thus,
x ∈ ωβCl({y}). Hence by Theorem 3.3, (X, τ) is ωβ −R0.
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Theorem 3.17. For a topological space (X, τ), the following state-
ments are equivalent:

(i) (X, τ) is an ωβ −R1 space.
(ii) For each x, y ∈ X one of the following holds:

a) For any ωβ−open set U , x ∈ U if and only if y ∈ U .
b) There exist disjoint ωβ−open sets U and V such that x ∈ U and
y ∈ V .

(iii) If x, y ∈ X such that ωβCl({x}) ̸= ωβCl({y}), then there exist
ωβ−closed sets F1 and F2 such that x ∈ F1, y /∈ F1, y ∈ F2, x /∈
F2 andX = F1 ∪ F2.

Proof. (i) → (ii) Let x, y ∈ X. Then ωβCl({x}) = ωβCl({y}), or
ωβCl({x}) ̸= ωβCl({y}). If ωβCl({x}) = ωβCl({y}) and U is an
ωβ−open set, then x ∈ U implies y ∈ ωβCl({x}) ⊆ U (as (X, τ) is
ωβ − R0) and y ∈ U implies x ∈ ωβCl({y}) ⊆ U . Thus consider
the case ωβCl({x}) ̸= ωβCl({y}). Then there exist disjoint ωβ−open
sets U and V such that x ∈ ωβCl({x}) ⊆ U and y ∈ ωβCl({y}) ⊆ V .
(ii) → (iii) Let x, y ∈ X be such that ωβCl({x}) ̸= ωβCl({y}). Then
x /∈ ωβCl({y}) or y /∈ ωβCl({x}). Then by (ii), there exist disjoint
ωβ−open sets U and V such that x ∈ U and y ∈ V . Let F1 = X − V
and F2 = X − U . Then F1 and F2 are ωβ−closed sets such that
x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2 andX = F1 ∪ F2.
(iii) → (i) We shall first show that (X, τ) is an ωβ −R0 space. Let U
be an ωβ−open set such that x ∈ U . We claim that ωβCl({x}) ⊆ U .
For suppose y ∈ ωβCl({x})∩(X−U). Then ωβCl({x}) ̸= ωβCl({y})
(for if ωβCl({x}) = ωβCl({y}), then y ∈ U) and hence by (iii), there
exist ωβ−closed sets F1 and F2 such that x ∈ F1, y /∈ F1, y ∈ F2, x /∈
F2 andX = F1 ∪ F2. Then y ∈ F2 − F1 ⊂ X − F1 which is ωβ−open
and x /∈ X − F1, which contradicts the fact that y ∈ ωβCl({x}).
Hence (X, τ) is an ωβ − R0 space. Now let p, q be points of X such
that ωβCl({p}) ̸= ωβCl({q}). Then by the given condition there
exists ωβ−closed sets H1 and H2 such that p ∈ H1, q /∈ H1, q ∈
H2, p /∈ H2 andX = H1 ∪ H2. Thus p ∈ X − H2 and q ∈ X − H1,
where X − H2 and X − H1 are disjoint ωβ−open sets. Since (X, τ)
is ωβ − R0, ωβCl({p}) ⊆ X − H2 and hence ωβCl({q}) ⊆ X − H1.
Hence (X, τ) is an ωβ −R1 space.

Lemma 3.18. A topological space (X, τ) is ωβ − R1 if and only if
for each x, y ∈ X with kerωβ({x}) ̸= kerωβ({y}) there exist disjoint
ωβ−open sets U and V such that ωβCl({x}) ⊆ U and ωβCl({y}) ⊆
V .
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Proof. This follows from Lemma 3.8.

Theorem 3.19. For a topological space (X, τ), the following are equiv-
alent:

(i) (X, τ) is ωβ − T2.
(ii) (X, τ) is ωβ − T1 and ωβ −R1.
(iii) (X, τ) is ωβ − T1/2 and ωβ −R1.
(iv) (X, τ) is ωβ − T0 and ωβ −R1.

Proof. (i) → (ii) This follows from Proposition 2.4 and Theorem 2.3.
(ii) → (iii) This follows from Proposition 2.4.
(iii) → (iv) This follows from Proposition 2.4.
(iv) → (i) It follows from Theorem 3.2 and Proposition 3.4 that (X, τ)
is ωβ−T1. Since (X, τ) is ωβ−R1, by Theorem 2.3, (X, τ) is ωβ−T2.

Corollary 3.20. For an ωβ−R1 topological space (X, τ), the following
are equivalent.

(i) (X, τ) is ωβ − T2.
(ii) (X, τ) is ωβ − T1.
(iii) (X, τ) is ωβ − T1/2

(iv) (X, τ) is ωβ − T0.

It is clear from Proposition 3.4 and Theorem 3.19 that any topolog-
ical space that is ωβ−T1 but not ωβ−T2 is ωβ−R0 but not ωβ−R1

(see Example 2.6).

A point x of a topological space (X, τ) is ωβ − θ−accumulation
point of a subset A ⊆ X, if for each ωβ−open set U containing x,
ωβCl(U) ∩A ̸= ϕ. The set of all ωβ − θ−accumulation points of A is
called the ωβ − θ−closure of A and denoted by ωβClθ(A). The set A
is said to be ωβ − θ−closed if ωβClθ(A) = A. The complement of an
ωβ − θ−closed set is said to be ωβ − θ−open.

Theorem 3.21. For a topological space (X, τ), the following are equiv-
alent:

(i) (X, τ) is ωβ −R1.
(ii) For each x ∈ X, ≺ x ≻ωβ = ωβClθ({x}).

Proof. (i) → (ii) First we claim that ωβClθ({x}) ⊆≺ x ≻ωβ for each
x ∈ X. For any x ∈ X, let y /∈≺ x ≻ωβ. Then ≺ x ≻ωβ ̸=≺ y ≻ωβ and
since (X, τ) is ωβ−R0, by Proposition 3.13 ωβCl({x}) ̸= ωβCl({y}).
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It follows from assumption that there exist disjoint ωβ−open sets
U and V such that ωβCl({x}) ⊆ U and ωβCl({y}) ⊆ V . Since
U ∩ ωβCl(V ) = ϕ, {x} ∩ ωβCl(V ) = ϕ and hence y /∈ ωβClθ({x}).
This shows that ωβClθ({x}) ⊆≺ x ≻ωβ. Last we can obtain that
≺ x ≻ωβ ⊆ ωβClθ({x}) by definitions.
(ii) → (i) For each x ∈ X, ≺ x ≻ωβ = ωβClθ({x}) ⊃ ωβCl({x}) ⊃≺
x ≻ωβ and hence ≺ x ≻ωβ = ωβCl({x}). By Proposition 3.13, (X, τ)
is ωβ−R0. Suppose that ωβCl({x}) ̸= ωβCl({y}). Then, since (X, τ)
is ωβ − R0, by Theorem 3.9 ωβCl({x}) ∩ ωβCl({y}) = ϕ and hence
≺ x ≻ωβ∩ ≺ y ≻ωβ = ϕ. By hypothesis, ωβClθ({x})∩ωβClθ({y}) =
ϕ. Since y /∈ ωβClθ({x}), there exists an ωβ−open set Uy such that
y ∈ Uy and ωβCl(Uy) ∩ ({x}) = ϕ. Let Ux = X − ωβCl(Uy), then
x ∈ Ux and Ux is ωβ−open. Since (X, τ) is ωβ−R0, ωβCl({y}) ⊂ Uy,
ωβCl({x}) ⊂ Ux and Ux∩Uy = ϕ. This shows that (X, τ) is ωβ−R1.

Combining proposition 3.13 and Theorem 3.21, it is shown that the
converse of Theorem 3.2 is true.

Corollary 3.22. Suppose that ωβClθ({x}) ⊆ ωβCl({x}) for any
point x of (X, τ). Then, if (X, τ) is ωβ −R0, then it is ωβ −R1.

Proof. We note that ωβCl({x}) ⊆ ωβClθ({x}) holds for any point x
of (X, τ). Let (X, τ) be an ωβ−R0 space. Using Proposition 3.13, we
have ωβCl({x}) =≺ x ≻ωβ for any point x of (X, τ). It follows from
assumption that ωβClθ({x}) =≺ x ≻ωβ for any point x of (X, τ). By
Theorem 3.21, (X, τ) is ωβ −R1.

4. Dωβ−sets and associated separation axioms

The notion of Dωβ−sets is introduced in this section as the difference
sets of ωβ−open sets. Also we investigate some preservation theorems.

Definition 4.1. A subset A of a space (X, τ) is called a Dωβ−set if
there are two ωβ−open sets U and V such that U ̸= X and A = U−V .

We see from the above definition that every proper ωβ−open set U
is a Dωβ−set, by setting A = U and V = ϕ. But the converse is not
true as the next example shows.

Example 4.2. Let X = R with the topology τ = τcoc and A = Q, then
A is a Dωβ−set (take U = Q ∪ (0, 1) and V = (0, 1)) but it is not an
ωβ−open set.

Definition 4.3. A topological space (X, τ) is said to be
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(i) ωβ−D0 if for any pair of distinct points x and y of X there exists
a Dωβ−set of X containing x but not y or a Dωβ−set of X containing
y but not x.

(ii) ωβ − D1 if for any pair of distinct points x and y of X there
exist a Dωβ−set of X containing x but not y and a Dωβ−set of X
containing y but not x.

(iii) ωβ − D2 if for any pair of distinct points x and y of X there
exist disjoint Dωβ−sets U and V of X containing x and y, respectively.

(iv) Weakly ωβ −D1 if ∩
x∈X

ωβCl({x}) = ϕ.

Proposition 4.4. For a topological space (X, τ), the following state-
ments hold:

(i) If (X, τ) is ωβ − Ti, then it is ωβ −Di, i = 0, 1, 2.
(ii) If (X, τ) is ωβ −Di, then it is ωβ −Di−1, i = 1, 2.
(iii) (X, τ) is ωβ −D0 if and only if it is ωβ − T0.
(iv) (X, τ) is ωβ −D1 if and only if it is ωβ −D2.
(v) If (X, τ) is ωβ −D1 then it is ωβ − T0.

Proof. The proofs of (i) and (ii) follow from definitions. And also the
sufficiency for (iii) and (iv) follows from (i) and (ii).
(iii) Necessity. Let (X, τ) be ωβ − D0. Then for all distinct points
x, y ∈ X, at least one of x, y, say x, belongs to a Dωβ−set U but y /∈ U .
Suppose that U = U1 − U2 where U1 ̸= X and U1, U2 is ωβ−open in
(X, τ). Then x ∈ U1 and for y /∈ U we have two cases: the first one
if y /∈ U1; so U1 contains x but does not contain y. In second case
y ∈ U1 and y ∈ U2; so U2 contains y but does contain x. Hence, (X, τ)
is ωβ − T0.
(iv) Necessity. Let (X, τ) be ωβ−D1. Then for all x, y ∈ X such that
x ̸= y, we have Dωβ−sets such that x ∈ V1, y /∈ V1, y ∈ V2 and x /∈ V2.
Let V1 = U1 − U2 and V2 = U3 − U4. From x /∈ V2, we have either
x /∈ U3 or x ∈ U3 and x ∈ U4. We discuss the two cases separately.

1. x /∈ U3. From y /∈ V1, we obtain the following two subcases:
a) y /∈ U1. From x ∈ U1 − U2 we have x ∈ U1 − (U2 ∪ U3) and
from y ∈ U3 − U4 we have y ∈ U3 − (U2 ∪ U4). It easy to see that
(U1 − (U2 ∪ U3)) ∩ (U3 − (U1 ∪ U4)) = ϕ. b) y ∈ U1 and y ∈ U2. We
have x ∈ U1 − U2 , y ∈ U2 and (U1 − U2) ∩ U2 = ϕ.

2. x ∈ U3 and x ∈ U4. We have y ∈ U3 − U4 , x ∈ U4 and
(U3 − U4) ∩ U4 = ϕ. Hence, (X, τ) is ωβ −D2.

(v) This follows from (i) and (iii).

The following diagram summarizes the implications shown in Propo-
sition 2.4 and 4.4.
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ωβ − T2 → ωβ − T1 → ωβ − T0

↓ ↓ ↕
ωβ −D2 ↔ ωβ −D1 → ωβ −D0

From Example 2.5, we see that there exists an ωβ−D1 space which
is not ωβ − T1 and also an ωβ −D2 space which is not ωβ − T2.

Proposition 4.5. Let (X, τ) be an ωβ−symmetric space. Then the
following statements are equivalent:

(i) (X, τ) is ωβ − T0 .
(ii) (X, τ) is ωβ −D1.
(iii) (X, τ) is ωβ − T1/2.
(iv) (X, τ) is ωβ − T1.

Proof. This follows from Theorem 3.3 and Propositions 3.4 and 4.4.

Corollary 4.6. For an ωβ−R0 space (X, τ), the following are equiv-
alent:

(i) (X, τ) is ωβ − T0.
(ii) (X, τ) is ωβ − T1.
(iii) (X, τ) is ωβ −D1.

Proof. This is an immediate consequence of Theorem 3.3 and Propo-
sition 4.5.

Definition 4.7. A point x of a topological space (X, τ) which has X
as the only ωβ−neighborhood is called an ωβ−neat point.

Observe that if an ωβ − T0 space (X, τ) has an ωβ−neat points,
then it is unique, because if x and y are distinct ωβ−neat points in
X,at least one of them, say x, has an ωβ−neighborhood U containing
x but not y. Thus, U ̸= X, a contradiction.

Theorem 4.8. Let (X, τ) be a topological space, then the following
statement hold:

(i) (X, τ) is ωβ−D1 if and only if it is ωβ−T0 and has no ωβ−neat
points.

(ii) (X, τ) is weakly ωβ−D1 if and only if it has no ωβ−neat points.
(iii) (X, τ) is ωβ−D1 if and only if it is ωβ−T0 and weakly ωβ−D1.
(iv) (X, τ) is weakly ωβ − D1 if and only if kerωβ({x}) ̸= X for

every x ∈ X.

Proof. (i) Necessity. Since (X, τ) is ωβ − D1, each point x ∈ X is
contained in a Dωβ−set W = U − V and thus in U . By definition
U ̸= X. Hence, x is not an ωβ−neat point (X, τ) being ωβ − T0
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follows from Proposition 4.4.
Sufficiency. Since (X, τ) is ωβ−T0, for each x, y ∈ X such that x ̸= y,
there exists an ωβ−open set U containing x, say but not y. Thus U is
a Dωβ−set, but (X, τ) has no ωβ−neat point, so y is not an ωβ−neat
point. Thus, there exists an ωβ−open set V containing y such that
V ̸= X, and therefore, y ∈ V −U , x /∈ V −U and V −U is a Dωβ−set.
Hence (X, τ) is ωβ −D1.
(ii) Necessity. Suppose that (X, τ) is weakly ωβ −D1 and that (X, τ)
has an ωβ−neat point y. Then y ∈ ωβCl({x}) for each x ∈ X. This
is a contradiction.
Sufficiency. Suppose that (X, τ) has no ωβ−neat points and that
(X, τ) is not weakly ωβ − D1. Then there exists y ∈ ∩

x∈X
ωβCl({x})

and thus any ωβ−open set containing y must be X, that is, y is an
ωβ−neat point of (X, τ). This is a contradiction.
(iii) This follows from (i) and (ii).
iv) Necessity. Suppose that (X, τ) is weakly ωβ − D1. Assume that
there exist a point y ∈ X such that kerωβ({y}) = X. Thus by Lemma
3.7, y ∈ ∩

x∈X
ωβCl({x}). This is a contradiction.

Sufficiency. Assume that kerωβ({x}) ̸= X for every x ∈ X. If (X, τ)
is not weakly ωβ −D1, then by Theorem 4.8, (X, τ) has an ωβ−neat
point y. Hence kerωβ({y}) = X. This is a contradiction.

Corollary 4.9. For an ωβ−T0 space (X, τ), the following are equiv-
alent:

(i) (X, τ) is ωβ −D1.
(ii) (X, τ) has no ωβ−neat points.

Now we study and give some preservation theorems for these sepa-
ration axioms.

Theorem 4.10. Let f : (X, τ) → (Y, σ) be an ωβ−irresolute function.
Then the following properties hold:

(i) If U is a Dωβ−set in (Y, σ) and f is surjective, then f−1(U) is
a Dωβ−set in (X, τ).

(ii) If (Y, σ) is ωβ −D1 and f is bijective, then (X, τ) is ωβ −D1.

Proof. (i) Let U be a Dωβ−set in (Y, σ). Then exists an ωβ−open
sets U1 and U2 in (Y, σ) such that U = U1 − U2 and U1 ̸= Y . By
ωβ−irresoluteness of f , f−1(U1) and f−1(U2) are ωβ−open in (X, τ).
Since U1 ̸= Y and f is surjective, f−1(U1) ̸= X. Hence, f−1(U) =
f−1(U1) − f−1(U2) is a Dωβ−set.
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ii) Suppose that (Y, σ) is an ωβ −D1 space. Let x, y ∈ X and x ̸= y.
Since f is injective and (Y, σ) is ωβ−D1, there exist Dωβ−sets Ux and
Uy of (Y, σ) containing f(x) and f(y), respectively, such that f(y) /∈
Ux and f(x) /∈ Uy. By (i), f−1(Ux) and f−1(Uy) are Dωβ−sets in
(X, τ) containing x and y, respectively, and y /∈ f−1(Ux), x /∈ f−1(Uy).
Hence, (X, τ) is ωβ −D1.

Theorem 4.11. A topological space (X, τ) is ωβ −D1 if and only if
for each pair of distinct points x, y ∈ X, there exists an ωβ−irresolute
surjective function f : (X, τ) → (Y, σ), where (Y, σ) is an ωβ − D1

space, such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of (X, τ), it suffices
to take the identity function on (X, τ).
Sufficiency. Let x, y ∈ X and x ̸= y. By hypothesis, there exists
an ωβ−irresolute surjective function f from (X, τ) onto an ωβ − D1

space (Y, σ) such that f(x) ̸= f(y). Thus by Proposition 4.4, there
exist disjoint Dωβ−sets Ux and Uy in (Y, σ) such that f(x) ∈ Ux and
f(y) ∈ Uy. Since f is ωβ−irresolute and surjective, by Theorem 4.10,
f−1(Ux) and f−1(Uy) are disjoint Dωβ−sets in (X, τ) containing x and
y,respectively. Hence, (X, τ) is ωβ −D1.

Theorem 4.12. If f : (X, τ) → (Y, σ) is an ωβ−closed injection and
(X, τ) is weakly ωβ −D1, then (Y, σ) is weakly ωβ −D1.

Proof. Since (X, τ) is weakly ωβ − D1, ∩
x∈X

ωβCl({x}) = ϕ. Since f

is an injection, ϕ = f( ∩
x∈X

ωβCl({x})) = ∩
x∈X

f(ωβCl({x})). Since f is

an ωβ−closed function, it follows from Lemma 1.5 that ∩
y∈Y

ωβCl({y}) ⊆

∩
x∈X

ωβCl({f(x)}) ⊆ ∩
x∈X

f(ωβCl({x})). Hence, ∩
y∈Y

ωβCl({y}) = ϕ,

that is, (Y, σ) is weakly ωβ −D1.
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