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FUZZY UPPER AND LOWER M-CONTINUOUS
MULTIFUNCTIONS

ANJANA BHATTACHARYYA

Abstract. In this paper we introduce the notion of fuzzy upper
and lower M -continuous multifunctions as generalizations of upper
and lower M -continuous multifunctions [28], as fuzzy multifunctions
between sets having certain minimal structures. We also prove that
m-compact sets from a space with minimal structures have fuzzy m-
compact images under surjective fuzzy upper M -continuous multifunc-
tions, provided that some natural conditions are satisfied. Lastly we
show that the notions of fuzzy upper and lower M -continuous multi-
functions unify several forms of generalized continuity for fuzzy mul-
tifunctions from a topological space into a fuzzy topological space.

1. Introduction and preliminaries

In the past few years, different types of fuzzy open-like sets, viz.,
fuzzy semiopen, fuzzy preopen, fuzzy θ-open, fuzzy δ-open, fuzzy δ-
preopen, fuzzy α-open, fuzzy β-open have been introduced and studied
by many researchers and using these concepts several types of fuzzy
non-continuous functions are introduced and studied in [1], [4], [5],
[14], [18], [22].
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It has been shown that certain of these fuzzy non-continuous func-
tions have properties similar to those fuzzy continuous function. Using
these concepts different types of fuzzy multifunctions have been intro-
duced in [6], [9], [23], [29].

Let X be a non-empty set and I = [0, 1]. Then IX is the family of
all fuzzy sets [36] in X. The support [33] of a fuzzy set A in X will
be denoted by suppA and is defined by suppA = {x ∈ X : A(x) ̸= 0}.
A fuzzy point [33] with the singleton support x ∈ X and the value α
(0 < α ≤ 1) at x will be denoted by xα. 0X and 1X are the constant
fuzzy sets taking respectively the constant values 0 and 1 on X. The
complement of a fuzzy set A in X will be denoted by 1X \A [36] and is
defined by (1X \A)(x) = 1−A(x), for all x ∈ X. For two fuzzy sets A
and B in X, we write A ≤ B iff A(x) ≤ B(x), for each x ∈ X, while we
write AqB to mean A is quasi-coincident (q-coincident, for short) with
B [33] if there is some x ∈ X such that A(x) +B(x) > 1; the negation
of these two statements are written as A ̸≤ B and A /qB respectively.
It is to be noted that AqB iff BqA. Also A /qB iff A ≤ 1X \ B iff
B ≤ 1X \ A. If A and B are crisp sets, A /qB iff A and B are disjoint.
For a fuzzy point xα and a fuzzy set A in an fts X, xα ∈ A means
xα ≤ A, i.e., A(x) ≥ α. Moreover xαqA is equivalent to A(x) > 1−α.
Let τ be a fuzzy topology (in the sense of Chang [11]) on a nonempty
set X. Then (X, τ) is called a fuzzy topological space (fts, for short).
clA and intA of a fuzzy set A in an fts respectively stand for the fuzzy
closure and fuzzy interior of A in X [11]. A set A (or a fuzzy set A) in
a topological space X (in an fts X) is said to be semiopen [15] (fuzzy
semiopen [1]) if there exists an open set (respectively a fuzzy open set)
U in X (in an fts X) such that U ⊆ A ⊆ clU (resp. U ≤ A ≤ clU),
or equivalently, if A ⊆ cl (intA) (resp. A ≤ cl(intA)). The set of all
semiopen sets in a topological space X (resp. fuzzy semiopen sets in
an fts X) will be denoted by SO(X) (resp. FSO(X)). The comple-
ment of a semiopen set (resp. fuzzy semiopen set) in a topological
space X (resp. in an fts X) is called a semiclosed (fuzzy semiclosed)
set. The semiclosure (resp. fuzzy semiclosure) of a set A in a topo-
logical space X (resp. of a fuzzy set A in an fts X), to be written
as sclA, is the set of all points (resp. the union of all fuzzy points)
x in a topological space X (resp. yα in an fts X) such that for every
semiopen set (resp. fuzzy semiopen set) U in a topological space X (in
an fts X) with x ∈ U (resp. xαqU), it follows that U

∩
A ̸= ϕ (resp.

UqA). A set A in a topological space X (resp. a fuzzy set A in an
fts X) is semiclosed (fuzzy semiclosed) iff A = sclA. The union of all
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semiopen (resp. fuzzy semiopen) sets in a topological space X (resp.
in an fts X) contained in a set (fuzzy set) A is called the semi-interior
(resp. fuzzy semi-interior) of A, denoted by sintA. It is clear that a
set (fuzzy set) A is semiopen (fuzzy semiopen) iff A = sintA. If a set
A in a topological space X is semi-open as well as semi-closed, it is
called semi-regular [12]. A (fuzzy) set A in a topological space X is
called (fuzzy) regular open if A = int(clA) ([1]).
A (fuzzy) set A in (an fts) a topological space X is called (fuzzy) pre-
open [19] ([22]) if A ⊆ int(clA) (A ≤ intclA). The complement of this
is called (fuzzy) preclosed. For a fuzzy set A, pclA =

∧
{B : A ≤ B,B

is fuzzy preclosed }.
The fuzzy θ-closure [24] (resp., fuzzy δ-closure [14]) of a fuzzy set
A in an fts (X, τ), denoted by θ − clA (resp., δ − clA) is the union
of all those fuzzy points xα such that clUqA (resp., UqA) whenever
xαqU ∈ τ (resp., xαqU where U is fuzzy regular open set in X). A
fuzzy set A in X is called fuzzy θ-closed [24] (resp., fuzzy δ-closed
[14]) if A = θ− clA (resp., A = δ− clA) and the complement of fuzzy
θ-closed (resp., fuzzy δ-closed) set is known as a fuzzy θ-open (resp.,
fuzzy δ-open) set. The union of all fuzzy δ-open sets contained in a
fuzzy set A is called fuzzy δ-interior of A and is denoted by δ − intA.
A (fuzzy) set A in (an fts) a topological space X ((X, τ)) is called
(fuzzy) δ-preopen [34] ([5]) (resp., (fuzzy) α-open [26] ([21]), (fuzzy) β-
open [13] ([3]) ifA ⊆ int(δclA) (resp., A ≤ int(δclA), A ⊆ int(cl(intA))
(A ≤ int(cl(intA))), A ⊆ cl(int(clA)) (A ≤ cl(int(clA))) and the com-
plement of them are respectively called (fuzzy) δ-preclosed, (fuzzy)
α-closed, (fuzzy) β-closed sets. For a fuzzy set A in an fts (X, τ),
δ − pclA =

∧
{B : A ≤ B and B is fuzzy δ-preclosed in X} (resp.,

α−clA =
∧
{B : A ≤ B and B is fuzzy α-closed }, βclA =

∧
{B : A ≤

B and B is fuzzy β-closed }. A fuzzy set A in X is fuzzy δ-preclosed
(resp., fuzzy α-closed [21], fuzzy β-closed [3]) iff A = δ − pclA [5]
(resp., A = α− clA [21], A = β− clA [3]). We note that the collection
of all fuzzy open (resp., fuzzy semiopen, fuzzy preopen, fuzzy θ-open,
fuzzy δ-open, fuzzy δ-preopen, fuzzy α-open, fuzzy β-open, fuzzy reg-
ular open) sets are denoted by (resp., FSO(X), FPO(X), FθO(X),
FδO(X), Fδ − PO(X), FαO(X), FβO(X), FRO(X)).

2. Some well known definitions and theorems

In this section we recall some definitions and theorems for ready
references.
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Definition 2.1[29]. Let (X, τ) and (Y, τY ) be respectively an ordi-
nary topological space and an fts. We say that F : X → Y is a fuzzy
multifunction if corresponding to each x ∈ X, F (x) is a unique fuzzy
set in Y .
Henceforth by F : X → Y we shall mean a fuzzy multifunction in the
above sense.

Definition 2.2[29, 23]. For a fuzzy multifunction F : X → Y , the
upper inverse F+ and lower inverse F− are defined as follows:
For any fuzzy set A in Y , F+(A) = {x ∈ X : F (x) ≤ A} and F−(A)
= {x ∈ X : F (x)qA}.

The relationship between the upper and the lower inverses of a fuzzy
multifunction is known to be as follows.

Theorem 2.3 [23]. For a fuzzy multifunction F : X → Y , we have
F−(1X \ A) = X \ F+(A), for any fuzzy set A in Y .

Definition 2.4. A fuzzy multifunction F : X → Y is said to be
fuzzy
(i) upper continuous [29] (resp. upper semi-continuous [23], upper
precontinuous, upper δ-precontinuous [6], upper α-continuous, upper
β-continuous, upper s-θ-continuous) if for each x ∈ X and each fuzzy
open set V of Y with F (x) ≤ V , there exists an open (resp., semiopen,
preopen, δ-preopen, α-open, β-open, semi-regular) set U of X contain-
ing x such that F (U) ≤ V ,
(ii) lower continuous [29] (resp. lower semi-continuous [23], lower pre-
continuous, lower δ-precontinuous [6], lower α-continuous, lower β-
continuous, lower s-θ-continuous) if for each x ∈ X and each fuzzy
open set V in Y with F (x)qV , there exists an open (resp., semi-open,
preopen, δ-preopen, α-open, β-open, semi-regular) set U in X con-
taining x such that F (u)qV for all u ∈ U .

Definition 2.5. A fuzzy multifunction F : X → Y is said to be
fuzzy
(i) upper irresolute [9] (resp., upper preirrsolute, upper α-irresolute,
upper β-irresolute) if for each x ∈ X and each fuzzy semiopen (resp.,
fuzzy preopen, fuzzy α-open, fuzzy β-open) set V of Y with F (x) ≤ V ,
there exists a semiopen (resp., preopen, α-open, β-open) set U of X
containing x such that F (U) ≤ V ,
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(ii) lower irresolute [9] (resp., lower preirresolute, lower α-irresolute,
lower β-irresolute) if for each x ∈ X and each fuzzy semiopen (resp.,
fuzzy preopen, fuzzy α-open, fuzzy β-open) set V in Y with F (x)qV ,
there exists a semiopen (resp., preopen, α-open, β-open) set U in X
containing x such that F (u)qV for all u ∈ U .

3. Fuzzy minimal structures

The notion of fuzzy minimal structure (in the sense of Lowen) has
been introduced in [2] as follows : A family M of fuzzy sets in X
is said to be a fuzzy minimal structure on X if α1X ∈ M for every
α ∈ [0, 1]. Another notion of fuzzy minimal structure, more general
than the above one, has been introduced in [25] and in [7] where it is
said that a family F of fuzzy sets in X is a fuzzy minimal structure (in
the sense of Chang) on X if 0X ∈ F and 1X ∈ F . It is easy to see that
every fuzzy minimal structure in the sense of Lowen, as well as every
minimal structure in the sense of Noiri and Popa [28], is also a fuzzy
minimal structure in the sense of Chang. In the present paper the
notion of fuzzy minimal structure in the sense of Chang is used. The
notion of minimal structure as appears in [28] has been introduced by
Popa and Noiri in [31] and [32].

Definition 3.1. A subfamily mIX of IX is called a fuzzy minimal
structure (m-structure, for short) on X if 0X ∈ mIX and 1X ∈ mIX .
Each member of mIX is said to be mIX -open and the complement of
an mIX -open set is called mIX -closed.

Remark 3.2. Let (X, τ) be an fts. Then the families τ , FSO(X),
Fδ − PO(X), FRO(X), FPO(X), FαO(X), FβO(X) are all m-
structures on X.

Definition 3.3. Let X be a nonempty set and mIX an m-structure
on X. For A ∈ IX , the mIX -closure of A and mIX -interior of A are
defined as follows :
mIX − clA =

∧
{F : A ≤ F, 1X \ F ∈ mIX}

mIX − intA =
∨
{D : D ≤ A,D ∈ mIX}.

Remark 3.4. Let (X, τ) be an fts and A ∈ IX . If mIX = τ (resp.
FSO(X), FPO(X), FδO(X), FαO(X), FβO(X), FθO(X)), then we
have
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mIX − clA = clA (resp., sclA, pclA, δpclA, αclA, βclA, θclA)
mIX−intA = intA (resp., sintA, pintA, δintA, αintA, βintA, θintA).

Proposition 3.5. Let X be a nonempty set and mIX , an m-
structure on X. Then for any A ∈ IX , a fuzzy point xα ∈ mIX − clA
if and only if for any U ∈ mIX with xαqU , UqA.

Proof. Let xα be a fuzzy point. xα ∈ mIX − clA is equivalent, by
definition of mIX−clA to : xα ∈ F whenever A ≤ F and 1X\F ∈ mIX .
We denote 1X \ F = U and use the equivalence between A ≤ F and
1X \ F ≤ 1X \ A. It follows that xα ∈ mIX − clA is equivalent to
xα ∈ 1X \ U whenever U ≤ 1X \ A and U ∈ mIX , which implies that
U /qA and U ∈ mIX imply that xα /qU ... (1).
Necessity: Assume that xα ∈ mIX − clA. Let U ∈ mIX with xαqU . If
U /qA, then by (1) we have xα /qU , a contradiction. Hence UqA.
Sufficiency: Assume that U ∈ mIX and xαqU implies that UqA. We
have to prove that (1) is true. Let U ∈ mIX such that U /qA. If xαqU ,
then our assumption shows that UqA, a contradiction. Then xα /qU ,
therefore (1) holds.

Lemma 3.6. Let X be a non empty set and mIX an m-structure
on X. For A,B ∈ IX , the following hold :
(i) A ≤ B implies

(a) mIX − intA ≤ mIX − intB,
(b) mIX − clA ≤ mIX − clB.
(ii) (a) mIX − cl0X = 0X , mIX − cl1X = 1X ,
(b) mIX − int0X = 0X , mIX − int1X = 1X .
(iii) mIX − intA ≤ A ≤ mIX − clA.
(iv) (a) mIX − clA = A if 1X \ A ∈ mIX ,
(b) mIX − intA = A, if A ∈ mIX .
(v) mIX − cl(1X \ A) = 1X \mIX − intA,
(b) mIX − int(1X \ A) = 1X \mIX − clA.
(vi) (a) mIX − cl(mIX − clA) = mIX − clA,
(b) mIX − int(mIX − intA) = mIX − intA.

Proof. (i) Assume that A ≤ B.
(a) Then {D : D ≤ A and D ∈ mIX} ⊆ {D : D ≤ B and D ∈ mIX},
hence applying

∨
to both members we obtain mIX − intA ≤ mIX −

intB.
(b) Similarly, {F : B ≤ F and 1X \ F ∈ mIX} ⊇ {F : A ≤ F
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and 1X \ F ∈ mIX}, hence applying
∧

to both members we get
mIX − clB ≥ mIX − clA.

(ii) (a) mIX − cl0X = 0X since F0 = 0X satisfies 0X ≤ F0 and
1X \ F0 ∈ mIX .
mIX − cl1X = 1X since the only fuzzy set F with 1X ≤ F and
1X \ F ∈ mIX is F = 1X .
(b) mIX − int0X = 0X , since the only fuzzy set D with D ≤ 0X and
D ∈ mIX is D = 0X .
mIX − int1X = 1X , since D0 ≤ 1X and D0 ∈ mIX .

(iii) Let x ∈ X. Since (mIX − intA)(x) =
∨
{D(x) : D ≤ A and

D ∈ mIX} and {D(x) : D ≤ A and D ∈ mIX} ⊆ {C(x) : C ≤ A} ⊆
[0, A(x)], it follows that (mIX − intA)(x) ≤ A(x). On the other hand,
(mIX − clA)(x) =

∧
{F (x) : A ≤ F and 1X \ F ∈ mIX} and {F (x) :

A ≤ F and 1X \F ∈ mIX} ⊆ [A(x), 1], hence (mIX − clA)(x) ≥ A(x).

(iv) (a) A ≤ mIX − clA by (iii).
Assume that 1X \ A ∈ mIX . Then F1 = A satisfies A ≤ F1 and
1X \ F1 ∈ mIX , hence

∧
{F : A ≤ F and 1X \ F ∈ mIX} ≤ F1, i.e.,

mIX − clA ≤ A.
(b) mIX − intB ≤ B by (iii).
Assume that B ∈ mIX . Then D1 = B satisfies D1 ≤ A and D1 ∈ mIX ,
hence D1 ≤

∨
{D : D ≤ B and D ∈ mIX}, i.e., B ≤ mIX − intB.

(v) (a)mIX−cl(1X\A) =
∧
{F : 1X\A ≤ F and 1X\F ∈ mIX}. But

1X \A ≤ F is equivalent to 1X \F ≤ A. Therefore, mIX −cl(1X \A) =∧
{1X \ (1X \ F ) : 1X \ F ≤ A and 1X \ F ∈ mIX}. Using the substi-

tution D = 1X \ F , we obtain mIX − cl(1X \A) =
∧
{1X \D : D ≤ A

and D ∈ mIX}. But
∧
{1X \M : M ∈ F} = 1X \

∨
{M : M ∈ F} for

every family F ⊆ IX , hence mIX − cl(1X \ A) = 1X \
∨
{D : D ≤ A

and D ∈ mIX} = 1X \mIX − intA.
(b) Note that M = 1X \N iff N = 1X \M . Denote U = mIX − clA.
Writing U = mIX − cl(1X \ (1X \ A)) and using (v) (a) we obtain
U = 1X \mIX − int(1X \ A), hence mIX − int(1X \ A) = 1X \ U .

(vi) (a) By (iii),

(1) mIX − clA ≤ mIX − cl(mIX − clA)

We have to show that mIX − cl(mIX − clA) ≤ mIX − clA. Let xα ̸∈
mIX − clA. Then there exists U ∈ mIX with xαqU , U /qA. Then by
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Proposition 3.5, U /qmIX −clA which implies that xα ̸∈ mIX −cl(mIX −
clA). Consequently,

(2) mIX − cl(mIX − clA) ≤ mIX − clA

Combining (1) and (2) we get the result.

(b) Let A ∈ IX . Then 1X \ A ∈ IX . By (vi) (a), mIX − cl(mIX −
cl(1X \A)) = mIX −cl(1X \A) which implies that mIX −cl(1X \mIX −
intA) = 1X\mIX−intA which implies that 1X\mIX−int(mIX−intA)
(by (v) (a)) = 1X\mIX−intA. Consequently, mIX−int(mIX−intA) =
mIX − intA.

Proposition 3.7. Let X be a non empty set with an m−structure
mIX and A ∈ IX . Then for any U ∈ mIX , U /qA this implies that
U /qmIX − clA.

Proof. U ̸ qA which implies that U(x) + A(x) ≤ 1, for all x ∈ X
i.e., A ≤ 1X \ U and so mIX − clA ≤ mIX − cl(1X \ U) = 1X \ U , as
U ∈ mIX . Therefore, U ̸ qmIX − clA.

Definition 3.8. An m−structure mIX on a non empty set X is
said to have property (B) if the union of any family of members of
mIX belongs to mIX .

The following lemma is a generalization of Lemma 3.3 from [31].

Lemma 3.9. For a fuzzy minimal structure mIX on a non empty
set X, the following are equivalent :
(i) mIX has property B.
(ii) mIX − int(A) ∈ mIX for every A ∈ IX .
(iii) If mIX − intV = V , then V ∈ mIX ,
(iv) 1X \mIX − cl(B) ∈ mIX for every B ∈ IX .
(v) if mIX − clV = V , then 1X \ V ∈ mIX .

Proof. (i) ⇒ (ii) : Let A ∈ IX . Since mIX − int(A) is the
union of fuzzy sets belonging to mIX , if mIX has property B, then
mIX − int(A) ∈ mIX .

(ii) ⇒ (iii) : Let V ∈ IX be such that mIX − int(V ) = V . By (ii)
mIX − int(V ) ∈ mIX , hence V ∈ mIX .
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(iii) ⇒ (i) : Let Ai ∈ mIX for every i ∈ ∆. Denote V =
∨
{Ai : i ∈

∆}. We prove that V ∈ mIX . By Lemma 3.6, mIX − intV ) ≤ V ...
(1).
Since Ai ≤ V for each i ∈ ∆ and Ai ∈ mIX for every i ∈ ∆, we have
{Ai : i ∈ ∆} ⊆ {U : U ≤ V, U ∈ mIX}, hence V =

∨
{Ai : i ∈ ∆} ≤∨

{U : U ≤ V, U ∈ mIX} = mIX − int(V ) ... (2).
Combining (1) and (2) we get mIX − int(V ) = V . By (iii), V ∈ mIX .

(iv) ⇒ (v) : Let F ∈ IX be such that mIX − cl(F ) = F . By (iv)
1X \mIX − cl(F ) ∈ mIX , hence 1X \ F ∈ mIX .

(v) ⇒ (iv) : Let B ∈ IX . By Lemma 3.6, mIX − cl(mIX − cl(B)) =
mIX − cl(B). Using (v) with F = mIX − cl(B), it follows that
1X \mIX − cl(B) ∈ mIX .

(ii) ⇔ (iv) : This follows from Lemma 3.6 (v).

Lemma 3.10. Let X be a non empty set and mIX an m− structure
on X satisfying (B). For A ∈ IX , the following properties hold :
(i) A ∈ mIX iff mIX − intA = A.
(ii) 1X \ A ∈ mIX iff mIX − clA = A.
(iii) mIX − intA ∈ mIX and mIX − clA is mIX -closed.

Proof. The proof follows from Lemma 3.6 and Lemma 3.9.

4. Fuzzy upper and lower M-continuous multifunctions

In this section M -continuous multifunctions, introduced by Noiri
and Popa [28] have been generalized in fuzzy topological space by us-
ing minimal structure on a non empty set X.
We first recall the following definitions and lemma from [28].

Definition 4.1. A subfamily mX of the power set P(X) of a non
empty set X is called a minimal structure (briefly, m-structure) on X
if ∅ ∈ mX and X ∈ mX . Each member of mX is said to be mX-open
and the complement of an mX-open set is said to be mX-closed.
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Definition 4.2. A minimal structure mX on a non empty set X is
said to have property (B) if the union of any family of subsets belong-
ing to mX belongs to mX .

Definition 4.3. Let X be a non empty set and mX an m-structure
on X. For a subset A of X, the mX-closure of A and the mX-interior
of A are defined as follows :
mX − clA =

∩
{F : A ⊂ F,X \ F ∈ mX},

mX − intA =
∪
{U : U ⊂ A,U ∈ mX}.

Lemma 4.4. Let X be a nonempty set and mX an m-structure on
X. For subsets A and B of X, the following hold :
(i) mx−cl(X\A) = X\mX−intA and mX−int(X\A) = X\mX−clA,
(ii) if X \ A ∈ mX , then mX − clA = A and if A ∈ mX , then
mX − intA = A,
(iii) mX−cl∅ = ∅, mX−clX = X, mX−int∅ = ∅ and mX−intX =
X,
(iv) if A ⊂ B, then mX − clA ⊂ mX − clB and mX − intA ⊂
mX − intB,
(v) A ⊂ mX − clA and mX − intA ⊂ A,
(vi) mX − cl(mX − clA) = mX − clA and mX − int(mX − intA) =
mX − intA.

Now we give the following definition which extends Definition 3.4
[28].

Definition 4.5. Let X and Y be two non empty sets and mX and
mIY be the minimal structure and fuzzy minimal structure on X and
Y respectively. A fuzzy multifunction F : (X,mX) → (Y,mIY ) is said
to be
(i) fuzzy upper M -continuous (f.u.M .c., for short) if for each x ∈ X
and each V ∈ mIY with F (x) ≤ V , there exists U ∈ mX containing x
such that F (U) ≤ V ,
(ii) fuzzy lower M -continuous (f.l.M .c., for short) if for each x ∈ X
and each V ∈ mIY with F (x)qV , there exists U ∈ mX containing x
such that F (u)qV , for each u ∈ U .

The next two theorems generalize Theorem 3.1 and Theorem 3.2
[28].
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Theorem 4.6. For a fuzzy multifunction F : (X,mX) →
(Y,mIY ) where (Y,mIY ) satisfies property (B), the following state-
ments are equivalent :
(i) F is f.u.M .c.
(ii) F+(V ) = mX − int(F+(V )), for every V ∈ mIY .
(iii) F−(K) = mX − cl(F−(K)), for every fuzzy mIY -closed set K.
(iv) mX − cl(F−(B)) ⊆ F−(mIY − clB), for every B ∈ IY .
(v) F+(mIY − intB) ⊆ mX − int(F+(B)), for every B ∈ IY .

Proof. (i) ⇒ (ii) Let V ∈ mIY and x ∈ F+(V ). Then F (x) ≤ V .
By (i), there exists U ∈ mX with x ∈ U such that F (U) ≤ V . Then
U ⊆ F+(V ). Therefore, x ∈ U ⊆ F+(V ) ⇒ x ∈ mX − int(F+(V )).
Thus F+(V ) ⊆ mX − int(F+(V )). Again by Lemma 4.4, mX −
int(F+(V )) ⊆ F+(V ). Consequently, F+(V ) = mX − int(F+(V ))
where V ∈ mIY .

(ii) ⇒ (iii) Let K be any fuzzy mIY -closed in Y . Then 1Y \F ∈ mIY .
By (ii), F+(1Y \K) = mX− int(F+(1Y \K)) = mX− int(X \F−(K)),
i.e., X \ F−(K) = X \mX − cl(F−(K)). Therefore, F−(K) = mX −
cl(F−(K)).

(iii) ⇒ (iv) Let B ∈ IY . Then by Lemma 3.10, mIY − clB is fuzzy
mIY -closed. Since B ≤ mIY − clB, F−(B) ⊆ F−(mIY − clB) and so
mX − cl(F−(B)) ⊆ mX − cl(F−(mIY − clB)). But mIY − clB is fuzzy
mIY -closed and hence by (iii), F−(mIY − clB) = mX − cl(F−(mIY −
clB)). Therefore, mX − cl(F−(B)) ⊆ F−(mIY − clB).

(iv) ⇒ (v) Let B ∈ IY . Then 1Y \ B ∈ IY and so by (iv),
mX − cl(F−(1Y \ B)) ⊆ F−(mIY − cl(1Y \ B)) which implies that
mX − cl(X \ F+(B)) ⊆ F−(1Y \ mIY − intB) which implies that
X \ mX − intF+(B) ⊆ X \ F+(mIY − intB) which implies that
F+(mIY − intB) ⊆ mX − int(F+(B)).

(v) ⇒ (i) Let x ∈ X and V ∈ mIY be such that F (x) ≤ V . Then
x ∈ F+(V ) = F+(mIY −intV ) ⊆ mX−int(F+(V )) by (v). Then there
exists U ∈ mX with x ∈ U such that U ⊆ F+(V ), i.e., F (U) ⊆ V .
This proves that F is f.u.M .c.

Theorem 4.7. For a fuzzy multifunction F : (X,mX) → (Y,mIY )
where (Y,mIY ) satisfies property (B), the following statements are
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equivalent :
(i) F is f.l.M .c.
(ii) F−(V ) = mX − int(F−(V )), for every V ∈ mIY .
(iii) F+(K) = m − cl(F+(K)), for every fuzzy mIY -closed set K.
(iv) mX − cl(F+(B)) ⊆ F+(mIY − clB), for every B ∈ IY .
(v) F (mX − clA) ≤ mIY − cl(F (A)), for every subset A of X.
(vi) F−(mIY − intB) ⊆ mX − int(F−(B)), for every B ∈ IY .

Proof. (i) ⇒ (ii) Let V ∈ mIY and x ∈ F−(V ). Then F (x)qV .
By (i), there exists U ∈ mX containing x such that F (u)qV , for every
u ∈ U ... (1).
We only have to show that U ⊆ F−(V ). Let y ∈ U be arbitrary. We
have to show that y ∈ F−(V ), i.e., F (y)qV . By (i), F (y)qV and so
x ∈ U ⊆ F−(V ) which implies that x ∈ mX − int(F−(V )). There-
fore, F−(V ) ⊆ mX − int(F−(V )). Again for any subset B of X,
mX − intB ⊆ B, and so mX − int(F−(V )) ⊆ F−(V ). Consequently
F−(V ) = mX − int(F−(V )).

(ii) ⇒ (iii) Let K be fuzzy mIY -closed. Then 1Y \ K ∈ mIY and
so by (ii), F−(1Y \ K) = mX − int(F−(1Y \ K)) which implies that
X\F+(K) = mX−int(X\F+(K)) = X\mX−cl(F+(K)). Therefore,
F+(K) = mX − cl(F+(K)).

(iii) ⇒ (iv) Let B ∈ IY and by Lemma 3.10, mIY − clB is fuzzy
mIY -closed. By (iii), F+(mIY − clB) = mX − cl(F+(mIY − clB)).
Since B ≤ mIY −clB, F+(B) ⊆ F+(mIY −clB) = mX −cl(F+(mIY −
clB)). Therefore, mX − cl(F+(B)) ⊆ mX − cl(F+((mIY − clB)) =
F+(mIY − clB) (by Lemma 4.4).

(iv) ⇒ (v) Let A ⊆ X. Since A ⊆ F+(F (A)), mX − clA ⊆ mX −
clF+(F (A)) ⊆ F+(mIY − clF (A)) by (iv). Therefore, F (mX − clA) ≤
FF+(mIY − clF (A)) ≤ mIY − clF (A).

(v) ⇒ (vi) Let B ∈ IY . Then 1Y \B ∈ IY and so F+(1Y \B) ⊆ X
and then by (v), F (mX − clF+(1Y \B)) ≤ mIY − clF (F+(1Y \B)) ≤
mIY − cl(1Y \B) ≤ 1Y \mIY − intB.
Again F (mX−clF+(1Y \B)) = F (mX−cl(X \F−(B)) = F (X \mX−
intF−(B)). Therefore, F (X \mX − intF−(B)) ≤ 1Y \mIY − intB ⇒
F+F (X \mX − int(F−(B))) ⊆ F+(1Y \mIY − intB). Therefore, X \
mX−int(F−(B)) ⊆ F+F (X\mX−intF−(B)) ⊆ X\F−(mIY −intB).
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Consequently, F−(mIY − intB) ⊆ mX − intF−(B).

(vi) ⇒ (i) Let x ∈ X and V ∈ mIY be such that F (x)qV . Then
x ∈ F−(V ) = F−(mIY − intV ) ⊆ mX − int(F−(V )), by (vi). Then
there exists U ∈ mX with x ∈ U such that x ∈ U ⊆ F−(V ). Then
for any u ∈ U , u ∈ F−(V ) ⇒ F (u)qV and this proves that F is f.l.M .c.

Remark 4.8. Let (X, τ) and (Y, τY ) be topological space and an
fts respectively.
(i) We putmX = τ (resp., SO(X), PO(X), αO(X), βO(X), SRO(X))
and mIY = τY . Then an f.u.(l.).M .c. multifunction F : (X,mX) →
(Y,mIY ) is an f.u.(l.).c. (resp., semi-continuous, precontinuous, α-
continuous, β-continuous, s-θ-continuous).
(ii) We put mX = SO(X) (resp., PO(X), αO(X), βO(X)) and mIY =
SO(Y ) (resp., PO(Y ), αO(Y ), βO(Y )), then an f.u.(l.)M .c. multi-
function F : (X,mX) → (Y,mIY ) is f.u.(l.) irresolute (resp., preirres-
olute or M -precontinuous, α-irresolute or strongly feebly continuous,
β-irresolute).

5. Fuzzy m-Compact Sets

In this section different types of fuzzy compact-like sets have been
unified.

Definition 5.1[11]. Let A be a fuzzy set in a set Y . A collection U
of fuzzy sets in Y is called a fuzzy cover of A if sup{U(x) : U ∈ U} = 1,
for each x ∈ suppA. In particular, if A = 1Y , we get the definition of
fuzzy cover of Y .

Definition 5.2[28]. A non empty set X with a minimal structure
mX is said to be m-compact if every cover of X by mX-open sets has
a finite subcover.
A subset K of a non empty set X with a minimal structure mX is
said to be m-compact if every cover of K by mX-open sets has a finite
subcover.

Definition 5.3. A non empty set Y with a fuzzy minimal structure
mIY is said to be fuzzy m-compact if every fuzzy cover of Y by fuzzy
mIY -open sets has a finite subcover.
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Definition 5.4. A fuzzy set K in Y with a fuzzy minimal structure
mIY is said to be fuzzy m-compact if every fuzzy cover of K by fuzzy
mIY -open sets has a finite subcover.

Theorem 5.5. Let X and Y be two non empty sets and mX and
mIY be the minimal structure and fuzzy minimal structure on X and
Y respectively and let mIY satisfy property (B). If F : (X,mX) →
(Y,mIY ) is an f.u.M .c. surjective multifunction such that F (x) is fuzzy
m-compact for each x ∈ X and (X,mX) is m-compact, then (Y,mIY )
is fuzzy m-compact.

Proof. Let {Aα : α ∈ Λ} be a fuzzy cover of Y by fuzzy mIY -open
sets. Now, for each x ∈ X, F (x) is fuzzy m-compact set in Y , and
so there is a finite subset Λx of Λ such that F (x) ≤

∨
{Aα : α ∈ Λx}.

Let Ax =
∨

α∈Λx

Aα. Then F (x) ≤ Ax and Ax ∈ mIY . Since F is

f.u.M .c., there exists Ux ∈ mX containing x such that Ux ⊆ F+(Ax).
The family {Ux : x ∈ X} is a cover of X by mX-open sets. Since
X is m-compact, there exists finitely many points x1, x2, ..., xn in X

such that X =
n∪

i=1

Uxi
. As F is surjective, 1Y = F (X) = F (

n∪
i=1

Uxi
) =

n∨
i=1

F (Uxi
) ≤

n∨
i=1

Axi
=

n∨
i=1

∨
α∈Λxi

Aα. Hence Y is fuzzy m-compact.

Corollary 5.6. Let X and Y be two non empty sets with mini-
mal structure mX and fuzzy minimal structure mIY respectively. Let
mIY satisfy property (B). If F : (X,mX) → (Y,mIY ) is an f.u.M .c.
surjective multifunction such that F (x) is fuzzy m-compact for each
x ∈ X and A is an m-compact set of (X,mX), then F (A) is fuzzy
m-compact in (Y,mIY ).

Definition 5.7. A subset (resp., fuzzy set) A of a topological space
(resp., an fts) X is said to be compact (α-compact [27], semi compact
[8], strongly compact [20]) (resp., fuzzy compact [11], fuzzy α-compact
[21], fuzzy semi compact [10], fuzzy strongly compact) relative to X
if every cover (resp., fuzzy cover) of A by open (α-open, semiopen,
preopen) (resp., fuzzy open, fuzzy α-open, fuzzy semiopen, fuzzy pre-
open) sets has a finite subcover.
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A topological space (resp., an fts) X is said to be compact (α-
compact [16], semicompact [8], strongly compact [20]) (resp., fuzzy
compact [11], fuzzy α-compact [21], fuzzy semi compact [18], fuzzy
strongly compact) if the set X is compact (α-compact, semi compact,
strongly compact) (resp., fuzzy compact, fuzzy α-compact, fuzzy semi
compact, fuzzy strongly compact) relative to X.

Remark 5.8. Let (X, τ) and (Y, τY ) be a topological space and an
fts respectively and F : (X, τ) → (Y, τY ) be a surjective fuzzy multi-
function such that F (x) is fuzzy compact for each x ∈ X. If (X, τ)
is compact (resp., α-compact, semi compact, strongly compact) and
F is fuzzy upper continuous (resp., fuzzy upper α-continuous, fuzzy
upper semi-continuous, fuzzy upper pre-continuous), then (Y, τY ) is
fuzzy compact.

6. Applications

Let (X, τ) be a topological space. A subset A of X is said to be
δ-open [35] if for each x ∈ A, there exists a regular open set G such
that x ∈ G ⊂ A. A point x ∈ X is said to be a δ-cluster point of X
if intclV

∩
A ̸= ϕ for every open set V in X containing x. The set of

all δ-cluster points of A is called the δ-closure of A and is denoted by
δclA. The set {x ∈ X : x ∈ U ⊂ A for some regular open set U of X}
is called the δ-interior of A and is denoted by δ − intA.
A subset (fuzzy set) A of X (in an fts Y ) is said to be δ-preopen [34]
(resp., δ-semi-open [30]) (fuzzy δ-semi-open) if A ⊆ intδclA (resp.,
A ⊆ clδintA) (A ≤ clδintA). The family of all δ-preopen (resp., δ-
semi-open) (fuzzy δ-semi-open) sets in X (in Y ) is denoted by δPO(X)
(resp., δSO(X)) (FδSO(X)). The complement of a δ-preopen (resp.,
δ-semi-open) (fuzzy δ-semi-open) set is called δ-preclosed [34] (resp.,
δ-semi closed [30]) (fuzzy δ-semi closed). The intersection of all δ-
preclosed (resp., δ-semi-closed) (fuzzy δ-semi closed) set of X (in Y )
containing A is called the δ-preclosure [34] (resp., δ-semi-closure [30])
(fuzzy δ-semi closure) of A and is denoted by δpclA (resp., δsclA)
(FδsclA). The union of all δ-preopen (resp., δ-semiopen) (fuzzy δ-
semi-open) sets of X (in Y ) contained in A is called the δ-preinterior
(resp., δ-semi interior) (fuzzy δ-semi interior) of A and is denoted by
δpintA (resp., δ-sintA) (Fδ-sintA).
A fuzzy set is called fuzzy semi-clopen [1] if it is both fuzzy semi-open
as well as fuzzy semi-closed.



140 ANJANA BHATTACHARYYA

Let (X, τ) be a topological space and (Y, τY ) be an fts. We now define
some new types of fuzzy generalized continuity for fuzzy multifunc-
tions.

Definition 6.1. A fuzzy multifunction F : (X, τ) → (Y, τY ) is said
to be
(i) fuzzy upper δ-almost continuous (f.u.δ.a.c., for short) (resp., fuzzy
upper δ-semi continuous) (f.u.δ.s.c., for short) if for each x ∈ X and
V ∈ τY with F (x) ≤ V , there exists a δ-preopen (resp., δ-semi-open)
set U in X containing x such that F (U) ≤ V ,
(ii) fuzzy lower δ-almost continuous (f.l.δ.a.c., for short) (resp., fuzzy
lower δ-semi continuous) (f.l.δ.s.c., for short) if for each x ∈ X and
each V ∈ τY such that F (x)qV , there exists a δ-preopen (resp., δ-semi-
open) set U in X containing x such that F (u)qV , for each u ∈ U .

Definition 6.2. A fuzzy multifunction F : (X, τ) → (Y, τY ) is said
to be
(i) fuzzy upper δ-almost irresolute (f.u.δ.a.i., for short) (resp., fuzzy
upper δ-semi irresolute, fuzzy upper s-θ-irresolute) if for each x ∈ X
and each fuzzy δ-preopen (resp., fuzzy δ-semi open, fuzzy semi-clopen)
set V in Y with F (x) ≤ V , there exists a δ-preopen (resp., δ-semi open,
semi regular) set U of X containing x such that F (U) ≤ V ,
(ii) fuzzy lower δ-almost irresolute (f.l.δ.a.i., for short) (resp., fuzzy
lower δ-semi irresolute, fuzzy lower s-θ-irresolute) if for each x ∈ X
and each fuzzy δ-preopen (resp., fuzzy δ-semi open, fuzzy semi-clopen)
set V in Y such that F (x)qV , there exists a δ-preopen (resp., δ-semi
open, semi regular) set U of X containing x such that F (u)qV , for
each u ∈ U .

Remark 6.3 [28]. Let (X, τ) be a topological space. Then the
families δPO(X) and δSO(X) are all m-structures on X satisfying
property (B). If mX = δPO(X) (resp., δSO(X)), then for a subset A
of X, we have
(i) mX − clA = δ − pclA (resp., δsclA)
(ii) mX − intA = δ − pintA (resp., δsintA).

The following two theorems are the characterizations of f.u.(l.)
δ.a.c. multifunctions.
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Theorem 6.4. For a fuzzy multifunction F : (X, τ) → (Y, τY ), the
following are equivalent :
(i) F is f.u.δ.a.c.
(ii) F+(V ) ∈ δPO(X) for every V ∈ τY .
(iii) F−(K) is δ-preclosed in X for every fuzzy closed set K of Y .
(iv) δ − pcl(F−(B)) ⊂ F−(clB), for every fuzzy set B of Y .
(v) F+(intB) ⊂ δ-pint(F+(B)), for every fuzzy set B of Y .

Proof. Taking mX = δPO(X) and mIY = τY in Theorem 4.6, the
proof is immediate.

Theorem 6.5. For a fuzzy multifunction F : (X, τ) → (Y, τY ), the
following are equivalent :
(i) F is f.l.δ.a.c.
(ii) F−(V ) ∈ δPO(X) for every V ∈ τY .
(iii) F+(K) is δ-preclosed in X for every fuzzy closed set K of Y .
(iv) δ − pcl(F+(B)) ⊂ F+(clB), for every fuzzy set B of Y .
(v) F (δ − pclA) ≤ cl(F (A)), for every subset A of X.
(v) F−(intB) ⊂ δ − pint(F−(B)), for every fuzzy set B of Y .

Proof. Taking mX = δPO(X) and mIY = τY in Theorem 4.7, the
proof is immediate.

Again, we define the following fuzzy multifunctions. Using Theo-
rem 4.6 and Theorem 4.7, we can obtain their characterizations.

Definition 6.6. A fuzzy multifunction F : (X, τ) → (Y, τY ) is said
to be
(i) fuzzy upper strongly β-irresolute (resp., fuzzy upper strongly semi
irresolute, fuzzy upper stronglyM -precontinuous, fuzzy upper strongly
α-irresolute) if for each x ∈ X and each fuzzy β-open (resp., fuzzy semi
open, fuzzy α-open, fuzzy preopen) set V of Y with F (x) ≤ V , there
exists an open set U of X containing x such that F (U) ≤ V ,
(ii) fuzzy lower strongly β-irresolute (resp., fuzzy lower strongly semi
irresolute, fuzzy lower strongly M -precontinuous, fuzzy lower strongly
α-irresolute) if for each x ∈ X and each fuzzy β-open (resp., fuzzy semi
open, fuzzy preopen, fuzzy α-open) set V of Y withF (x)qV , there ex-
ists an open set U of X containing x such that F (u)qV , for each u ∈ U .
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Remark 6.7. Let F : (X, τ) → (Y, τY ) be a fuzzy multifunction.
Let us take mX = τ and mIY = FβO(Y ) (resp., FSO(Y ), FPO(Y ),
FαO(Y )). Then we obtain characterizations of
(i) fuzzy upper strongly β-irresolute (resp., fuzzy upper strongly semi
irresolute, fuzzy upper stronglyM -precontinuous, fuzzy upper strongly
α-irresolute) by Theorem 4.6.
(ii) fuzzy lower strongly β-irresolute (resp., fuzzy lower strongly semi
irresolute, fuzzy lower strongly M -precontinuous, fuzzy lower strongly
α-irresolute) by Theorem 4.7.
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