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VERTICAL FOLIATION ASSOCIATED TO A CARTAN
SPACE

MIHAI ANASTASIEI AND MANUELA GÎRŢU

Abstract The cotangent bundle of a smooth manifold, as a partic-
ular submersion, carries a natural foliation called vertical defined by
the kernel of the differential of the projection of the cotangent bundle
on its base manifold. The vertical foliation is a Lagrangian one with
respect to the natural symplectic structure of the cotangent bundle. It
has new properties if the cotangent bundle has additional geometrical
structures, for instance those induced by a non-degenerate homoge-
neous Hamiltonian.

A Cartan space is a manifold whose cotangent bundle is endowed
with a smooth non-degenerate Hamiltonian K2 which is positively
homogeneous of degree 2 in momenta. Then the vertical foliation be-
comes a semi Riemannian foliation whose transversal distribution is
completely determined by K and is orthogonal on the vertical distri-
bution with respect to a semi Riemannian metric of Sasaki type. In
this framework various linear connections will be associated to and
some properties of the vertical foliation will be pointed out.
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Introduction

The cotangent bundle T ∗M over a smooth manifold M carries the
so-called vertical foliation whose leaves are the cotangent spaces T ∗

xM
and the corresponding distribution is the so-called vertical distribu-
tion defined by the kernel of the differential of the projection map
τ ∗ : T ∗M → M . The vertical foliation has special properties if the
cotangent bundle is endowed with supplementary structures. In this
paper we shall assume that the cotangent bundle is endowed with a
positive non-degenerate (regular) Hamiltonian K2 which is positively
homogeneous of degree 2 in momenta. The geometry of regular Hamil-
tonians is useful in Mechanics as well as in some theories in Physics. It
is dual by the Legendre transformation to the geometry of regular La-
grangians (Lagrange geometry) for which we refer to [6]. The square
of a fundamental Finsler function is a regular Lagrangian. Thus the
Lagrange geometry generalizes the Finsler geometry which was devel-
oped by P.Finsler, E. Cartan, L. Berwald and many others, see [4] and
the graduate text [1]. The geometry of regular Hamiltonians (Hamil-
ton geometry ) due mainly to R. Miron is systematically presented in
the monograph [5]. A manifold endowed a positive regular Hamilton-
ian K2 that is positively 2− homogeneous in momenta was called by
R. Miron a Cartan space, [5]. These Cartan spaces are dual by the
Legendre transformation to Finsler spaces.

If (M,K) is a Cartan space, the vertical distribution (vertical sub-
bundle)is naturally endowed with a (semi-)Riemannian metric and the
vertical foliation becomes a (semi-) Riemannian foliation. Moreover,
the vertical distribution admits a canonical complementary distribu-
tion called horizontal. This is defined by a set of local functions which
generalizes the local coefficients of a linear connection, a reason to call
it sometimes a nonlinear connection. Furthermore, these two new ob-
jects ( metric and nonlinear connection) allow to construct a metrical
structure G on T ∗M similar to the Sasaki metric from the geometry
of the tangent bundle. The vertical foliation and its transversal dis-
tribution provide a pair of complementary distributions. Besides the
standard linear connections on T ∗M adapted to this pair and named
after Berwald, Cartan, Chern-Rund and Hashiguchi the Levi Civita
connection of G defines the other two called the Vrănceanu connection
and the Schouten-van Kampen connection. All these connections are
written in the frame adapted to the nonlinear connection defined by
K. Local resulting coefficients are used to compare the linear con-
nections above. They are also used to give necessary and sufficient
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conditions for vertical foliation be totally geodesic and its transversal
distribution be geodesically invariant or totally geodesic.

The paper is organized as follows. Section 1 contains generalities
from the geometry of cotangent bundle. In Section 2 the necessary
facts from the geometry of Cartan spaces are presented. Section 3 is
devoted to the vertical foliation.

1. Preliminaries

Let M be an n-dimensional C∞ manifold and τ ∗ : T ∗M → M its
cotangent bundle. If (xi) are local coordinates on M , then (xi, pi) will
be taken as local coordinates on T ∗M with the momenta (pi) pro-
vided by p = pidx

i where p ∈ T ∗
xM , x = (xi) and (dxi) is the natural

basis of T ∗
xM . The indices i, j, k... will run from 1 to n and the Ein-

stein convention on summation will be used. A change of coordinates
(xi, pi) → (x̃i, p̃i) on T ∗M has the form

(1.1)
x̃i = x̃i(x1, ..., xn), rank

(
∂x̃i

∂xj

)
= n

p̃i =
∂xj

∂x̃i
(x̃)pj,

where

(
∂xj

∂x̃i

)
is the inverse of the Jacobian matrix

(
∂x̃j

∂xk

)
.

Let

(
∂i :=

∂

∂xi
, ∂i :=

∂

∂pi

)
be the natural basis in T(x,p)T

∗M . The

change of coordinates (1.1) implies

(1.2)
∂i = (∂ix̃

j)∂̃j + (∂ip̃j)∂̃
j,

∂̃i = (∂jx̃
i)∂j.

The natural cobasis (dxi, dpi) from T ∗
(x,p)T

∗M transforms as follows

(1.3) dx̃i = (∂jx̃
i)dxj, dp̃i =

∂xj

∂x̃i
dpj +

∂2xj

∂x̃i∂x̃k
pj dx

k.

The kernel V(x,p) of the differential dτ ∗ : T(x,p)T
∗M → TxM is called

the vertical subspace of T(x,p)T
∗M and the mapping (x, p) → V(x,p) is

a regular distribution on T ∗M called the vertical distribution. This is
locally spanned by (∂i) . Hence it is integrable and defines a foliation
with the leaves T ∗

xM, x ∈ M . The vector field L = pi∂
i is called the

Liouville vector field and ω = pidx
i is called the Liouville 1-form on

T ∗M . Then θ = dω is the canonical symplectic structure on T ∗M .
For an easier handling of the geometrical objects on T ∗M it is usual
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to consider a complementary distribution to the vertical distribution,
(x, p) → N(x,p), called the horizontal distribution and to report all
geometrical objects on T ∗M to the decomposition

(1.4) T(x,p)T
∗M = N(x,p) ⊕ V(x,p).

The pieces produced by the decomposition (1.4) are called d–geometrical
objects (d is for distinguished) since their local components behave like
geometrical objects on M , although they depend on momenta p = (pi).

The horizontal distribution is taken as being locally spanned by the
local vector fields

(1.5) δi := ∂i +Nij(x, p)∂
j,

and for a change of coordinates (1.1), the condition

(1.6) δi = (∂ix̃
j)δ̃j for δ̃j := ∂̃j + Ñjk(x̃, p̃)∂̃k,

is equivalent with

(1.7) Ñij(x̃, p̃) =
∂xs

∂x̃i
∂xr

∂x̃j
Nsr(x, p) +

∂2xr

∂x̃i∂x̃j
pr.

The horizontal distribution is called also a nonlinear connection on
T ∗M and the functions (Nij) are called the local coefficients of this
nonlinear connection. It is important to note that any regular Hamil-
tonian on T ∗M determines a symmetric nonlinear connection, that is
its local coefficients verifyNij = Nji. The basis (δi, ∂

i) is adapted to the
decomposition (1.4). The dual of it is (dxi, δpi), for δpi = dpi−Njidx

j

and then δp̃i =
∂xj

∂x̃i
δpj.

2. Cartan spaces

A Cartan structure on M is a function K : T ∗M → [0,∞) with the
following properties:

(1) K is C∞ on T ∗
◦M := T ∗M \ 0 for 0 = {(x, 0), x ∈M},

(2) K is positive on T ∗
◦M ,

(3) K(x, λp) = λK(x, p) for all λ > 0,

(4) The quadratic form (gijζiζj, ζi ∈ Rn), where gij(x, p) =
1

2
∂i∂jK2(x, p),

has the same signature at all points of T ∗
◦M.

Some authors replace the condition ”the same signature” with the
stronger condition ”positive defined”. In this case we have K(x, p) >
0, whenever p ̸= 0.

Definition 2.1. The pair (M,K) is called a Cartan space.
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Example. Let (γij(x)) be the matrix of the local coefficients of a
Riemannian metric on M and (γij(x)) its inverse. Then K(x, p) =√
γij(x)pipj gives a Cartan structure. Thus any Riemannian manifold

can be regarded as a Cartan space. More examples can be found in
Ch. 6 of [5].

We put pi =
1

2
∂iK2 and C ijk = −1

4
∂i∂j∂kK2. The properties of

K imply

(2.1)
pi = gijpj, pi = gijp

j, K2 = gijpipj = pip
j,

Cijkpk = Cikjpk = Ckijpk = 0.

One considers the formal Christoffel symbols

(2.2) γijk(x, p) :=
1

2
gis(∂kgjs + ∂jgsk − ∂sgjk)

and the contractions γ◦jk(x, p) := γijk(x, p)pi, γ
◦
j◦ := γijkpip

k. Then the
functions

(2.3) Nij(x, p) = γ◦ij(x, p) −
1

2
γ◦h◦(x, p)∂

hgij(x, p),

verify (1.7). In other words, these functions define a nonlinear connec-
tion on T ∗

◦M . This nonlinear connection was discovered by R. Miron,
[5]. Thus a decomposition (1.4) holds. From now on we shall use only
the nonlinear connection given by (2.3).

The Lie brackets of the local vector fields (δi, ∂
j) are given by

(2.4) [δj, δk] = Rijk∂
i, [δj, ∂

k] = −∂kNji∂
i, [∂i, ∂j] = 0,

where

(2.5) Rijk = δjNki − δkNji.

By a direct computation it comes out that under a change of coor-
dinates (2.1), the functions Rijk(x, p) behave like the components of a
tensor field of type (3,0) on M (thus they define a d-tensor field) and
the functions ∂kNji(x, p) as the components of a linear connection on
M , that is, we have

(2.6) ∂̃iNjk =
∂x̃i

∂xr
∂xs

∂x̃j
∂xh

∂x̃k
∂rNsh +

∂x̃i

∂xr
∂2xr

∂x̃j∂x̃k
.

A vector field on T ∗M is called horizontal (vertical) if its values are
in the horizontal (vertical) distribution. By (2.4) the Lie bracket of
any two vertical vector fields is again a vertical vector field (thus the
vertical distribution is always integrable) and the Lie bracket of any
two horizontal vector fields is again an horizontal one if and only if
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Rijk = 0, that is the horizontal distribution is integrable if and only if
the d-tensor field defined by Rijk vanishes.

A linear connection D on T ∗M is said to be an N–linear connection
if

1◦ D preserves by parallelism the distributions N and V , equiva-
lently it is adapted to to decomposition (1.4),

2◦ Dθ = 0, for θ = δpi ∧ dxi.
The first condition shows that in the adapted basis (δi, ∂

i) the linear
connection D should be given as follows :

(2.7).
Dδjδi = Hk

ijδk, Dδj∂
i = H̃ i

kj∂
k,

D∂jδi = V kj
i δk, D∂j∂i = Ṽ ij

k ∂
k,

The second condition gives H̃ i
kj = −H i

kj, Ṽ
ij
k = −V ij

k .
Thus any N−linear connection is determined by the local coeffi-

cients ΓD = (Hk
ij, V

kj
i ). As an adapted linear connection it can be

thought as defined by the quadruple ΓD = (Hk
ij, V

kj
i ,−Hk

ij,−V
kj
i ),

where the first two coefficients define a linear connection in the hori-
zontal bundle and the next two define a linear connection in the ver-
tical bundle.

The coefficients V kj
i define a d–tensor field of type (2, 1) andHk

ij(x, p)
behave like the coefficients of a linear connection on M . We recall that
any linear connection on M of local coefficients Γi

jk defines a linear con-

nection in the cotangent bundle of local coefficients −Γi
jk. Thus H̃ i

kj

behave like the local coefficients of a linear connection in the cotangent
bundle.

The functions Hk
ij and V kj

i define operators of h–covariant and v-
covariant derivatives in the algebra of d-tensor fields, denoted by |k

and
∣∣k, respectively. For gij these are given by

(2.8)
gij |k = δkg

ij + gsjH i
sk + gisHj

sk,

gij
∣∣k = ∂kgij + gsjV ik

s + gisV jk
s .

An N -linear connection DΓ(N) = (H i
jk, V

ik
j ) is called metrical if

(2.9) gij |k = 0, gij
∣∣k = 0.

The first equation (2.8) is equivalent to gij |k := δkgij−gsjHs
ik−gisHs

jk =

0 and the second equation (2.8) is equivalent to gij
∣∣k := ∂kgij−gsjV sk

i −
gisV

sk
j = 0.
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One verifies that the N -linear connection CΓ(N) = (H i
jk, C

jk
i ) with

(2.10)
H i

jk =
1

2
gis(δjgsk + δkgjs − δsgjk),

Cjk
i = −1

2
gis(∂

jgsk + ∂kgsj − ∂sgjk) = gisC
sjk,

is metrical and its h-torsion T i
jk := H i

jk − H i
kj = 0, v-torsion Sjk

i :=

Cjk
i − Ckj

i = 0 and the deflection tensor ∆ij := Nij − pkH
k
ij = 0.

Moreover, it is unique with these properties. This is called the canon-
ical metrical connection of the Cartan space (M,K). It has also the
following properties:

(2.11)
K|j = 0, K

∣∣j =
pj

K
, K2

|j = 0, K2
∣∣j = 2pj,

pi|j = 0, pi
∣∣j = δji , pi|j = 0, pi

∣∣j = gij.

Besides CΓ(N) = (H i
jk, C

jk
i ,−H i

jk,−C
jk
i ) one may consider on T ∗

◦M
three other important N -linear connections which are partially or not
at all metrical:

(1) Chern–Rund connection CRΓ(N) = (H i
jk, 0,−H i

jk, 0). This is

only h−metrical :gij |k = 0 equivalently gij |k = 0.

(2) Hashiguchi connection HΓ(N) = (∂iNjk, C
kj
i ,−∂iNjk,−Ckj

i ).

This is only v− metrical : gij
∣∣k = 0 equivalently gij

∣∣k = 0.
(3) Berwald connection BΓ(N) = (∂iNjk, 0,−∂iNjk, 0). This is no

h− metrical nor v− metrical.

3. Vertical foliation of a Cartan space

Let (M,K(x, p)) be a Cartan space. Then on the manifold T ∗
◦M we

have two complementary distributions (horizontal Nx,p := HT ∗
◦M and

vertical V T ∗
◦M) the horizontal projector h, the vertical projector v

and an almost product structure P = h− v. Also, we have a metrical
structure vg = gij(x, p)δpiδpj in the vertical subbundle as well as a
metrical structure hg = gij(x, p)dx

idxj in the horizontal subbundle. In
other words, the pair (V T ∗

◦M, vg) is a semi-Riemannian foliation and
the pair (HT ∗

◦M,hg) is a semi-Riemannian distribution transversal to
the vertical foliation.

Using the metrical structures hg and vg one defines a metrical struc-
ture on T ∗

◦M by taking their sum

(3.1) G = gij(x, p)dx
idxj + gij(x, p)δpiδpj.
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This G is similar to the Sasaki metric from the geometry of the
tangent bundle. The horizontal and the vertical subbundles are or-
thogonal with respect to it.

By a theorem of Bejancu-Farran (see Theorem 5.1 in [2]) there exists
a unique linear connection D in V T ∗

◦M which is v−metrical i.e.
(3.2)
(DvXvg)(vY, vZ) := vX(vg(vY, vZ)) − vg(DvXvY, vZ) − vg(vY,DvXvZ) = 0,

and h−torsion free i.e.

(3.3) DXvY −DvY vX − v[X, vY ] = 0, ∀X,Y ∈ χ(T ∗
◦M).

Similarly, there exists a unique linear connection D⊥ in HT ∗
◦M

which is v−torsion free and h− metrical (in the previous formulae
v should be replaced by h).

The two linear connections D and D⊥ called the intrinsic connec-
tions define by the formula

(3.4) ∇̃XY = DXvY +D⊥
XhY, X, Y ∈ χ(T ∗

◦M),

a linear connection ∇̃ on T ∗
◦M which preserves by parallelism the

horizontal and vertical distributions.
Let ∇ be the Levi-Civita of G. Its torsion vanishes, that is

(3.5) ∇XY −∇YX − [X, Y ] = 0 ∀X,Y ∈ χ(T ∗
◦M).

The operator ∇ is determined by the equation
(3.6)

2G(∇XY, Z) = XG(Y, Z) + Y G(Z,X) − ZG(X, Y )
+G([X, Y ], Z) −G([Y, Z], X) +G([Z,X], Y ),∀X, Y, Z ∈ χ(T ∗

◦M).

According to Ch. 1 in [2] one associates to ∇ the next two interesting
adapted linear connections:the Schouten-van Kampen connection

(3.7) ∇◦
XY = h∇XhY + v∇XvY, ∀X, Y ∈ χ(T ∗

◦M)

and the Vrănceanu connection
(3.8)
∇∗

XY = h∇hXhY+v∇vXvY+h[vX, hY ]+v[hX, vY ], ∀X, Y ∈ χ(T ∗
◦M).

If the conditions determining ∇ are written in the adapted frame
(δi, ∂

i) one obtains
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Theorem 3.1. The Levi-Civita connection ∇ of the Sasaki metric G
is locally expressed as follows:

(3.9)

∇δjδi = Hk
ijδk +

1

2
(Rkji − ghk∂

hgij)∂
k,

∇∂jδi = Bjk
i δk +

1

2
gkhg

jh
||i ∂

k,

∇δj∂
i = Bik

j δk + (
1

2
gkhg

ih
||j − ∂iNjk)∂k,

∇∂j∂i = −1

2
gkhgij||hδk − Cij

k ∂
k,

where Bik
j =

1

2
gkh(∂ighj +Rshjg

si) and ||k denotes the Berwald covari-

ant derivative i.e. the covariant derivative constructed with ∂iNjk.

Then the Schouten-van Kampen connection defined by ∇ is locally
given by
(3.10)

∇◦
δj
δi = Hk

ijδk, ∇◦
δj
∂i = (

1

2
gkhg

ih
||j − ∂iNjk)∂k,

∇◦
∂jδi =

1

2
gkh(∂jghi +Rshig

sj)δk, ∇◦
∂j∂i = −C ij

h ∂
h,

and the Vrănceanu connection defined by ∇ is locally given by

(3.11)
∇∗

δj
δi = Hk

ijδk, ∇∗
δj
∂i = −∂iNjk∂

k,

∇∗
∂jδi = 0, ∇∗

∂j∂i = −ghkCijk∂h.

One easily verifies that the linear connection D in the (semi)- Rie-
mannian vertical bundle given locally by

(3.12) Dδj∂
i = −∂iNjk∂

k, D∂j∂i = −ghkCijk∂h,

is v−metrical and h− torsion free. By the uniqueness stated in the
Theorem 5.1 from [2] this is just the intrinsic connection associated to
the (semi)- Riemannian vertical foliation. Similarly, one proves that
the intrinsic connection D⊥ associated to its transversal distribution
is locally given by

(3.13) D⊥
δj
δi = Hk

ijδk, D
⊥
∂jδi = 0.

The local formulas (3.10)-(3.13) prove the following

Theorem 3.2. Let D and D⊥ the intrinsic connections associated
to the vertical foliation and its transversal (horizontal) distribution.
Then :



168 MIHAI ANASTASIEI AND MANUELA GÎRŢU

(1) D coincides to the restriction of the Hashiguchi connection as
well as to the restriction of the Vrânceanu connection to the
vertical foliation,

(2) D⊥ coincides to the restriction of the Rund connection as well
as to the restriction of the Vrânceanu connection to the transver-
sal (horizontal) distribution.

We recall some general notion following [3].
Let D be a distribution on a manifold M endowed with a linear con-

nection ∇. The distribution D =
∪
Dx, x ∈M is said to be geodesically

invariant if for every geodesic c : [a, b] →M such that c′(a) ∈ Dc(a) it
follows that c′(t) ∈ Dc(t) for each t ∈ (a, b]. Here c′ denotes the tangent
vector field to c. If the distribution D is integrable and geodesically
invariant, one says that D is totally geodesic.

In [3] A.D. Lewis proves that the distribution D is geodesically in-
variant if and only if for all D− valued vector fields X, Y it results
that the vector field ∇XY + ∇YX is also D− valued.

Theorem 3.3. Let (M,K) be a Cartan space and gij its metrical
structure.Then :

(1) The vertical foliation on T ∗
◦M is totally geodesic if and only if

the Berwald connection of the Cartan space (M,K) is h−metrical,
that is gij||k = 0 or if the Berwald connection coincides to the

Chern Rund connection.
(2) Its transversal (horizontal) distribution is geodesically invari-

ant if and only if the Cartan space (M,K) reduces to the Rie-
mannian space (M, gij(x)) and it is totally geodesic if and only
if this Riemannian space is flat.

Proof.
1. On T ∗

◦M we have the Sasaki metric G with its Levi-Civita con-
nection ∇. By the result just quoted of A. D. Lewis, the vertical
foliation on T ∗

◦M is totally geodesic if and only if the vector fields
∇∂j∂i +∇∂i∂j belong to the vertical distribution. By the Theorem 3.1
( the forth equation (3.9)) this fact is equivalent to gij||k = 0. The sec-

ond assertion follows from the remark that the equation H i
jk = ∂iNjk

implies gij||k = 0.

2. By the same Theorem 3.1, the horizontal distribution is geodesi-
cally invariant if and only if the vector fields ∇δjδi +∇δiδj = 2Hk

ijδk −
(ghk∂

hgij)∂
k are horizontal vector fields. This happens if and only
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if ∂hgij = 0, that is the tensor field gij does not depend on mo-
menta. Thus the Cartan space (M,K) reduces to the Riemannian
space (M, gij(x)). In this case, by (2.3) we have Nij = γkij(x)pk and

Rijk = Rh
ijk(x)ph, where Rh

ijk(x) is the curvature tensor of the Rie-
mannian space (M, gij(x)). The horizontal distribution is totally geo-
desic if, moreover, it is integrable and this holds if and only if Rijk = 0
or equivalently Rh

ijk(x) = 0, that is the Riemannian space (M, gij(x))
is flat. 2

Remark. A Cartan space (M,K) is said to be a Landsberg space
if its Berwald connection is h−metrical, that is if gij||k = 0 or gij||k = 0.

It follows that a Cartan space (M,K) is Landsberg if and only if
H i

jk = ∂iNjk . Thus by the Theorem 3.3 the vertical foliation is totally
geodesic if and only if the Cartan space (M,K) is Landsberg.

Theorem 3.4. Let (M.K) be a Landsberg space. Assume that gij(x, p)
is positive defined and that the horizontal distribution is integrable.
Then the sectional curvature of the Riemannian manifold (T ∗

◦M,G) is
non-positive.

Proof. Indeed, if there exists a point in T ∗
◦M for which the sectional

curvature is positive, by the Theorem 4.6 from Ch. 3 in [2] the hori-
zontal distribution should be non-integrable, which is a contradiction.
2

Corollary 3.5. Let (M, g) be a flat Riemannian manifold. The the
sectional curvature of the Riemannian manifold (T ∗

◦M,G) is non-positive.

This Corollary can be also derived from the fundamental equations
of the Riemannian submersion (T ∗

◦M,G) 7→ (M, g).

The first two equations from (3.9) are equivalent to

(3.14) ∇XhY = ∇h
XhY +B(X, hY ),

where ∇h
XhY = h∇XhY is a linear connection in the horizontal bundle

and B : χ(T ∗M) × Γ(HT ∗
◦M) → Γ(V T ∗

◦M) is an F(T ∗
◦M)- bilinear

mapping given by B(X, hY ) = v∇XhY .
The next two equations from (3.9) are equivalent to

(3.15) ∇XvY = B′(X, vY ) + ∇v
XvvY,

where ∇v
XvY = v∇XvY is a linear connection in the vertical bundle,

and B′ : χ(T ∗
◦M) × Γ(V T ∗

◦M) → Γ(HT ∗
◦M) is an F(M)−bilinear

mapping given by B′(X, vY ) = h∇XvY .
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The linear connections ∇h and ∇v are called induced by ∇ on hori-
zontal and vertical bundles, respectively and the mappings

b(hX, hY ) := B(hX, hY ) = v∇hXhY, b
′(hX, hY ) := B′(vX, vY ) = h∇vXvY

are called second fundamental forms ofHT ∗
◦M and V T ∗

◦M ,respectively.
The linear connection ∇h is locally determined by (Hk

ij, B
ik
j ) and we

have

(3.16) b(δi, δj) =
1

2
(Rkji − ghk∂

hgij)∂
k.

The linear connection ∇v is locally determined by (
1

2
gkhg

ih
||j−∂iNjk,−C ij

k )

and we have

(3.17) b′(∂i, ∂j) = −1

2
gkhgij||hδk.

The pairs (∇h,∇v) determines an adapted linear connection accord-
ing to (3.4). This is nothing but the Schouten-van Kampen connection
determined by ∇.

Next, we define the F(M)− linear operators

Av
hX : Γ(V T ∗

◦M) 7→ Γ(V T ∗
◦M), Av

hX(vY ) = −B(vY, hX),

Ah
vX : Γ(HT ∗

◦M) 7→ Γ(HT ∗
◦M), Ah

vX(hY ) = −B′(hY, vX).

These are called the shape operators of the vertical and horizontal
distributions with respect to the normal sections hX and vX, respec-
tively. The Theorem 3.1 yields

Av
δi

(∂j) = −v∇∂jδi = −1

2
gkhg

jh
||i ∂

k,

Ah
∂i(δj) = −h∇δj∂

i = −Bik
j δk.

Theorem 3.6. Let (M,K) be a Cartan space. The condition that the
vertical foliation is totally geodesic is equivalent to each of the following
assertions:

(1) The second fundamental form of the vertical foliation identi-
cally vanishes.

(2) The shape operators Av
δi
vanish.

(3) The induced connection ∇v coincides to the intrinsic connec-
tion D on the vertical foliation.

Proof. 1. By the Theorem 3.3 the vertical foliation is totally
geodesic if and only if gij||h = 0 and by (3.17) we have b′ ≡ 0 and

conversely.
The equivalence of 1 and 2 is obvious.
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2. By (3.12) the said connections coincide if and only if gij||h = 0,

that is if and only if the vertical foliation is totally geodesic. 2

Theorem 3.7. Let (M,K) be a Cartan space. Then the second funda-
mental form of its horizontal distribution identically vanishes ( b = 0
) if and only if the induced connection ∇h coincides to the intrinsic
connection D⊥ on the horizontal distribution. Moreover, if the hori-
zontal distribution is integrable then b = 0 if and only if the horizontal
foliation is totally geodesic.

Proof. A short examination shows that Bij
k = 0 is equivalent to

b = 0. If the horizontal distribution is integrable i.e. Rkij = 0, from
b = 0 it follows that (M,K) reduces to a Riemannian space and using
again Rkij = 0 it comes out that the said Riemannian space is flat.
By the Theorem 3.3 we conclude that the horizontal distribution is
totally geodesic. The converse is clear. 2

We recall that T ∗
◦M is endowed with a natural symplectic structure.

In the presence of the symmetric nonlinear connection defined by K
this is given by

(3.18) θ = δpi ∧ dxi.

In the adapted frame (δi, ∂
i) we have

(3.19) θ(δi, δj) = 0, θ(δi, ∂
j) = −δji , θ(∂i, ∂j) = 0.

Thus the vertical and horizontal distributions are Lagrangian distri-
butions with respect to θ. As the vertical distribution is integrable it
defines a Lagrangian foliation with the leaves T ∗

xM , x ∈M .
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