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RHEONOMIC INGARDEN SPACES

OTILIA LUNGU

Abstract. This paper presents a particular type of rheonomic
Finsler space, called rheonomic Ingarden space. The canonical semis-
pray, the local coefficients of the Lorentz connection and the expres-
sions for the curvature and for the torsion are established.

1. PRELIMINARY. INGARDEN SPACES

Let M be an n-dimensional real manifold. Denote by (T'M, 1, M)
the tangent bundle of M and let F'™" = (M, F (z, y)) be a Finsler space
with the fundamental function F'(z, y) = «a(z, y) + S (z, y) where
a(z, y) = Vaij (z) vyl and B(z, y) = b (2) ¥ ; a = a;; (x) do'da?
is a pseudo-Riemannian metric on M and it gives the gravitational
part of the metric F' ; b; (z) is an electromagnetic covector on M and
B (x, dz) = b; (z) dz' is the electromagnetic 1-form field on M . We
consider the integral of action of the energy F? (z, y) along a curve
c : tel0, 1] —»c(t)e M:
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(1.1) I(C):f(I)F2( ) dt) fo[ ( Z, dt)+ﬁ( Z, dt)} dt

The variational problem for I (¢) leads to the Euler-Lagrange equa-
tions:

el 2 O 2 i T
(1.2) E; (F?) = (a;@) -2 (a}ﬁ) =0,y =%

Let us fix a parametrization of the curve ¢, by natural parameter s
with respect to Riemannian metric « (z, y) . It is given by

(1.3) ds* = o (z, %) de*.

It follows F? (z, 2) =1 and % = 0.
Along to an extremal curve ¢ , canonical parametrized by (1.3) , the
equations (1.2) become

a? % 7
(1.4) 22— 2 (%) =2F @)y
where '
(15) Eg = axg 8x“ FZ( ) - aZSFSJ'

Theorem 1.1. The Euler-Lagrange equations (1.4) are equivalent
to the Lorentz equations:

2zt % ) dx % T
(1.6) dd? + 75 (2) dds] dds F () ddsj

where vjk are the Christoffel symbols of the Riemannian metric ten-
sor a;; () .

The Euler-Lagrange equations determines a canonical semispray S
on the total space of the tangent bundle :

where the coefficients G* (z, y) are:

(1.8) 2G" (x, y) = i () y'y" = Fj ()
This semispray determines the nonlinear connection N with the
coefficients

(1.9) N =7l () y* — F) (2),
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where F! (z) = § Fi (z).

Since the autoparallel curves of IV are given by the Lorentz equations
(1.6), we call it the Lorentz nonlinear connection of the metric a+ 3 .

The nonlinear connection N determines the horizontal distribution,
denoted by N too, with the property

T.TM =N,&V, ,YueTM
V,, being the natural vertical distribution on the tangent manifold T'M
The local adapted basis to the horizontal and vertical vector spaces

N, and V,, is given by (5:&7 a?, ) 1=1,..., n, where

(1.10)

1) - 0 k 0 B 0 i . o i o B g )
Szt Ot N; oyk — dzi Vis () y oy + F; o~ 5 + F! F
and )
(111) 5611 = le 723( )yS%

The adapted cobasis is (dz?, 6y'), i =1, ..., n with

(1.12) 6y = dyi—kN;dmj = dyi—l—vji-k (z) y"da? —F;dxj = Syi—F;dxj

where

(1.13) 5y' = dy' + 5 () y'da’!
Definition 1.1. The Finsler space F" = (M, F' = a + (3) equipped
with the Lorentz nonlinear connection NV is called an Ingarden space.

It is denoted TF™ .
The fundamental tensor g;; of IF™ is

(1.14) i = (ay; — L) + Ll

where [; —al e —gﬁ =1 +b;.

The followmg results holds :

Theorem 1.2. There exists an unique N -metrical connection
IT (N) = (Fi,,C%,) of the Ingarden space IF™ which verifies the fol-
lowing axioms:

i) Vigi; =0; V) gi; = 0;

i) Tj, = 0; S5, =0

The connection IT (N) has the coefficients expressed by the gener-
alized Christoffel symbols:
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T l 18 595]‘ 5gsk _ 5gjk
(1 13) F;k - 29 <5m dxd oxs
’ i 1 s dgsg + 09k o 8gjk
ik = 29 Oy’ dys )
) .
where % are given by (1.10).

2. RHEONOMIC FINSLER SPACES

We consider E = TM x R a 2n + 1- dimensional real manifold. In
a local chart U x (a,b) the points u = (x,y,t) € E have the local co-
ordinates (z',y',t). Let rF™ = (M, F (z,y,t)) be a theonomic Finsler
space where F': E — R is the fundamental function and the Hessian
of F given by g; (z,y,t) = 3 8‘91 8F -, called the fundamental tensor of
rF™, is positive defined.

The Cartan nonlinear connection N has the coefficients

(Ni(z,y,t), N? (z,y,t)) with

7 1 0 k, h
2.1) Ni(z,y,t) = et (Vin (z,y, t) y*y™)
2

— 1995k, k

and 7} ; are the Christoffel symbols of the fundamental tensor g;; (z, y, t).
N determines the horizontal distribution on £ which is supplementary
to the vertical distribution. The adapted basis to these distribution is

50
<5w Byt 8t) with

(2.2) o = oo — N (2,,1) 55 — NP (2,9, 0) &

The dual adapted basis is (dz*, dy*, dt) Where

5yt = dy' + N; (x,y,t)ds?

(2.3) B :
ot = dt + N} (z,y,t) da’.

Theorem 2.1 The canonical metrical N-connection has the coeffi-
cients expressed by the generalized Christoffel symbols:

i 1 is [ 69sj 89sk __ 99Yjk

ij =39 <6wk + oz xS

i1 s 8gsg Agsr _ 995k

(2'4) ik = 39 + Dy dy®
i 1 is 8950 895] __ 9g50

jo — 29 Oy’ + oy*

where 3% are given by (2.2).
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3. RHEONOMIC INGARDEN SPACES

Let a(z,y,t) = y/ai; (z,t) y'y? be a rheonomic Riemannian struc-
ture on M X R and S (z,y,t) = b; (x,t) y* with b; (z,t) a covector field
on M x R.

Now we consider the rheonomic metric

(3.1) F(z,y,t) = a(z,y,t)+ [ (z,y,t).

The pair rl/F™ = (M, F (z,y,t)) is a rheonomic Finsler space. The
tensor field g;; of rIF™

(3.2) 9ij (,9,1) = § s,

is positively defined on (T'M\ {0}) x R and it is called the funda-
mental tensor of the space rIF™.

We denote

i L (09 | 09k OG5k
(3.3) ik = 59 (m TS T o

the Christoffel symbols for the fundamental tensor g¢;; (z,y,1t).
We also denote

ob;  Ob;

and we consider

(3.5) Fj (,y,t) = g™ (2,y,1) Fij (2,1).

Theorem 3.1. For a rheonomic Finsler space rIF" the Euler-
Lagrange equations are equivalent with the Lorentz equations:

2 i 2-‘ 2t daP ; z o
(3.6) dd?‘f‘%'k (xayat)dd_tdd_t:F; (w,‘fl—t,t) ddt’

with %, (z,y,t) the Christoffel symbols of the rheonomic Riemann-
ian structure ¢ and )
i (0 dzop\ _ _ ihO9h;
37 Fy (z, G.t) = =g 5
The canonical spray S of rI F™ is

0 +2
dyt Ot

where
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(3 9) ‘]\TJZ (LU, Y, t) %aaj (77'3 (1: Y, >yrys)
. 8 _
N} (z,y.t) = 575y

L
Let us consider in a rI F™ space the nonlinear connection N whose

L L
local coefficients are (N]’ (z,y,t),N) (z,y, t)) with

L . . .
Ny = Nj— ]
NO N — Fi.

(3.10)

N is called Lorentz nonlinear connection of the space rIF™.

The local basis adapted to the Lorentz nonlinear connection is <

o
xi’ayi’at Y

where :
i 0 i 0
(3.11) s = M + I ayz + Fi g
The dual adapted basis is ( ) with
5y oyt — Fida?
(3.12) Oy = oy fydw
5t =0t — szdl‘j.
L
The weak torsion T}, of rIF™ space is
L L
L ON! ON!
(3.13) T, = —> - —=
j Iyt Oy
L
and the curvature tensor Rzk is
gAL[ L L
i H 5 N}
(3.14) Ry = 5 — 55
By a direct calculus we can state the following theorem:

L
Theorem 3.2. The torsion T}, of the Lorentz nonlinear connection

of the r1 F™ space vanishes and the curvature tensor is given by
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(3.15)
L i i 1 i i i
= (ah — ) - (s = 3) + (554 - 5
~(Bat - BG) + (B% - RS - (B% - A%
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