

 205

"Vasile Alecsandri" University of Bacău

Faculty of Sciences

Scientific Studies and Research

Series Mathematics and Informatics

Vol. 25 (2015), No. 1, 205-224

BUILDING AN AVATAR IN HASKELL 98

PRELIMINARIES: IS HOPENGL ENOUGH ?

DAN POPA

Abstract. In this paper the author is trying to put the HOPENGL, the 3D

graphic library available in Haskell to work, in order to check if it's good

enough to conveniently build a 3D avatar.

1. THE IDEA

Usually, in standard structured programming languages, there is a property

of the statements which is actually missing. The commands can not be

manipulated like data pieces. So, implementing a flexible program, which is

building a graphic representation according to an other description usually

needs special interpretation or compiling on the fly technologies and some

kind of data structures, usually trees , in order to represent the avatar. But …

2. HASKELL IS DIFFERENT

In the functional language Haskell, the IO is based on a different kind of

algebraic data structure: the IO monad. The elements of the IO monad are

called actions, and they are simultaneously commands which can be

(apparently imperatively) used, and, in the same time, data structures (see

Haskell Reference and Report....[6] or other manuals available, like [4]).

Keywords and phrases: HOpenGL, Avatar, Haskell, IO monad

(2010) Mathematics Subject Classification: 68U05

206

D.POPA

This fact had leading us to a different method of building avatars, which is

not based on interpretation or compilation, but on what was called in [7]

pseudoconstructors on monadic values. The notion is also presented on the

internet, having a separate page on the website, at the time when this article

was written [10]. We have also to mention some other properties of this kind

of tree representation: it is flexible and modular, can be spread across many

modules of the project and it is not depending on an unique, fixed declaration

of the tree data type – the usual kind of data declaration

used by Haskell programmers when they have to declare the data type of a

tree.

As we have already shown during the Rodin Project [11] and in some

compilers like [8], [9] and papers [Building a modular compiler], when using

pseudoconstructors as tree representations the compiler or the interpreter

becomes highly modular and the kernel of both of them become a small,

(almost generic) program, no longer than one or two lines of code.

The representation of an avatar being possibly to be made as a tree, it also

become possible as a tree of pseudoconstructors on monadic actions, as a tree

of pseudoconstructors on IO monadic actions, etc. And that leads us to the

idea of defining an avatar as a tree of pseudoconstructors on monadic IO

HOPENGL based actions.

Being a tree, a data structure, such a representation of the avatar can be

defined and modified interactively by the user, as he/she wish. But being

simultaneously a structure of actions in he IO() monad, it becomes

immediately run-able, because this actions are similar with those used in the

main() function of the program. (In Haskell, the main() function has the type

IO() - exactly the IO monad). A small practical problem remain: Is the

HOPENGL implementation of Swen Paine [HOPENGL implementation of

Swen Paine] usable for this task ?

3. AN IMPLEMENTATION IN HOPENGL AS A TEST

To check how powerful The HOPENGL library is, to check if it is suitable

for our task, we had imagine a simple test. A classic OpenGL program which

is drawing an avatar, selected from a course of by J.García held at The

Deusto University [1],[2],[3] was rewritten, (first of all being simply

translated) then being subject of re-engineering (not only simply translated,

rebuild based on pseudoconstructors). If can be done, the test is succeeding

207

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

and we can conclude that avatars can be built using pseudoconsructors over

graphic monadic values using the IO() monad and actions from the

HOPENGL library.

The original program, in C, which was used like a source of inspiration can

be found in various versions of [1],[2],[3], chapter 3.

4. DOCUMENTATION AND DEVELOPMENT STAGES,

STEP BY STEP

1. The work had begun by locating a course book in avatars design,

which uses the original C library: The OpenGL.

2. The selected book was, as we had said, [1],[2] . This is freely

available on the Internet and the v.1.1 version is based on a Creative

Common Licence. Reimplemented in C all the programs from the

first 5 chapters of the book was the second step. As a secondary

result, a translated edition of J.García's book [3] was published by

Alma Mater Publishing House.

3. Running an testing some HOPENGL demo programs by Swen Paine,

which are closely matching the examples from the [12] was an other

step. The examples was a bit more complicated than García's

examples, because the Red Book itself are treating more complex

questions than García introductory manual. That helped us to find

some technical details, to notice some differences between OpenGL

and HOPENGL and also makes us confident in the success of our

work. Such examples can be found accompanying the Hugs

distribution, nowadays.

4. The examples made by J.García for his course was then rewritten in

Haskell. The task was not trivial: Haskell is a pure functional

programming language and C was a de facto standard in imperative

programming. Finaly, what J.García called the simpleguy.c example

was rebuilt and tested. It was a success. Some pictures of those tests

are included here – in fact we was able to reproduce García's results

and examples in Haskell. But we do not make a course here, and as a

consequence, all those source codes are not included in this paper.

The notations was, more or less, preserved, in order for the reader to

spot the differences and similarities between OpenGL programing in

C [12] and HOPENGL programming in Haskell.

208

D.POPA

5. SOME NOTICES CONCERNING HOPENL

REENGINEERED CODE

Due to the differences in the nature of languages and some decisions made

by the designers of HOPENGL libraries and functions, some things should be

noticed and noted:

a) The names of the GL and GLUT libraries are, for Haskell programmers:

Graphics.UI.GLUT and, also, Graphics.Rendering.OpenGL. Both should

be included using the import (there is no #include in Haskell, but import is

used).

b) Even if theoretically the Haskell programs did not have a context of

variables,(a condition of being pure functional programming) a set of zero-

arguments functions can be used to define the constants we need. As a result

we can define constants like:

 body_height=4.0

even if Haskell did not have an assignement statement in the common

sense of this command in imperative languages.

c) The “gl” prefix of the functions from OpenGL libraries was removed

when HOPEGL was implemented. Also a $= operator was introduced, in

order to set up some parameters of the OpenGL environment from Haskell's

IO() monad.

d) Some parameters of the OpenGL – which can or cannot be used by a

specific application – are implemented via a specific Haskell data type: The

Maybe monad. For example:

 depthFunc $= Just Lequal

Remember: The Haskell programmer should know the names : Lequal /

Greater / Gequal which are used in that instance of the Maybe monad. And,

also notice that Haskell programmers can use Nothing as a value, in similar

contexts:

 depthFunc $= Nothing

e) Because Haskell language did not use commas, a 4 value color is

immediately represented by simply writing the values of the RGBA

components preceded by a data constructor, like:

 Colour4 0.0 0.0 0.0 0.0 -- this means non transparent black.

f) Sometime, especially when writing simple programs, due to some

overloaded definitions of functions like vertex, colour, rotate some let … in

... keywords shoud be used for dissambiguation. Swen P. noticed that in this

package of examples. And sometimes this let … in … can be used to speed

up a program, by computing some values just one time. The reader may want

to rebuild the “recusive_hierarchy.c” program from [1],[2],[3]. There

209

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

m=lat/2 and ml=-lat/2 can also be defined in that let... in... simplifying the

next recursive calls.

 g) PushMatrix() and PopMatrix() which are always working in pairs are

replaced in HOPENGL by a single function: preservingMatrix which is

usually applied to a do {…} sequence or an IO() action of any kind.

h) Sometimes, the programmer should work carefully when using types.

Haskell is a well typed and strongly typed language. An example: When

approximating a sphere by a sliced polyhedral object, the number of slices

should be integer (for example 10). So it should be written as:

 renderObject Solid (Sphere' Radius 10 10).

In our opinion, even if this differences exists, only two are of importance

and should be carefully handled: d) and g). The d) point requires the

programmer to learn one more times the names of some usual operators. But,

in fact, the g) point makes the life of the programmer easier because he/she

should not check if every pushMatrix() call have an corresponding

popMatrix() call. But the curve brackets {…} still should be correctly

paired. Functions like glBegin() and glEnd() are no longer needed.

6. THE FIRST VERSION OF THE REWRITTEN PROGRAM

Here is a version of our test code which was keep tight enough to he

standard OpenGL style of programming, even if Haskell allows more

differences:

-- garex5v3.hs

-- Desenare umanoid

import Graphics.UI.GLUT -- as GLUT

import Graphics.Rendering.OpenGL

body_Height= 4.0

body_Width = 2.5

body_Length= 1.0

arm_Height= 3.5

arm_Width = 1.0

arm_Length= 1.0

leg_Height= 4.5

leg_Width = 1.0

210

D.POPA

leg_Length= 1.0

head_Radius= 1.1

main = do

 (name,_)<-getArgsAndInitialize

 initialDisplayMode $=[SingleBuffered,RGBMode,WithDepthBuffer]

 initialWindowSize $= Size 500 500

 createMyWindow name

 mainLoop

createMyWindow windowname = do {

 createWindow windowname;

 clearDepth $= 1 ; -- Va lucra cu adancimi

 depthClamp $= Enabled; -- comparatiile fiind cu <=

 depthFunc $= Just Lequal; --Lequal | Greater | Gequal

 displayCallback $= display;

}

-- Ce putem scrie in let.. ul de mai sus ca sa simplifcam notatia

--si sa acceleram calculele ? Observati ce se repeta.

display = do {

 clearColor $= Color4 0.0 0.0 0.0 0.0;-- Culoarea de fond:negru

 clear [ColorBuffer,DepthBuffer]; -- Stergem bufferul de culori

 -- si cel de adancimi

 matrixMode $= Projection; -- Trecem in mod proiectie

 loadIdentity; -- Incarcam matricea identitate

 perspective 60.0 1.0 1.0 100.0;

 let translate3f=translate :: Vector3 GLfloat ->IO()

 color3f =color :: Color3 GLfloat -> IO()

 in do {color3f (Color3 1.0 0.0 0.0);

 translate3f (Vector3 0.0 0.0 (-16.0));

-- Este -16.0 matrixMode $= Modelview 1;

-- Trecem in modul desenare model desenareUmanoid;

 } ;

 flush; -- Fortam trecerea la desenare

 }

desenamCorpul= do {

211

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 translate (Vector3 0.0 (body_Height/2.0) 0.0) ;

-- Translatie cf.vectorului

 preservingMatrix $ do {

 scale body_Width body_Height body_Length ;

-- folosim scale

 color3f (Color3 0.0 0.3 0.8);

 renderObject Solid (Cube 1.0);

 };

 }

}

desenamManaDreapta= do{

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 translate (Vector3 0.0 (-(arm_Height+arm_Width)/2.0) 0.0) ;

 color3f (Color3 1.0 0.6 0.6);

 scale arm_Width arm_Width arm_Length ;

 renderObject Solid (Cube 1.0);

 }

}

desenamBratulDrept= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 -- color3f =color :: Color3 GLfloat -> IO()

 rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 preservingMatrix $ do {

 translate (Vector3 (-body_Width/2) ((body_Height-

arm_Height)/2.0) 0.0) ;

 translate (Vector3 0.0 (arm_Height/2.0) 0.0) ;

 rotatef (-30.0) (Vector3 0.0 0.0 1.0);

-- rotim cu 30 de grade

 translate (Vector3 0.0 (-arm_Height/2.0) 0.0) ;

 preservingMatrix $ do {

 scale arm_Width arm_Height arm_Length ;

-- la dimensiunile bratului

212

D.POPA

 renderObject Solid (Cube 1.0);

 };

 -- La capatul bratului este o mana

 desenamManaDreapta;

 };

 }

}

desenamManaStanga= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 translate (Vector3 0.0 (-(arm_Height+arm_Width)/2.0) 0.0) ;

 color3f (Color3 1.0 0.6 0.6);

 scale arm_Width arm_Width arm_Length ;

 renderObject Solid (Cube 1.0);

 }

}

desenamBratulStang = do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 color3f (Color3 0.0 0.3 0.8);

-- preserveMatrix nu restaureaza culoarea preservingMatrix

$ do {

 translate (Vector3 (body_Width/2.0) ((body_Height-

arm_Height)/2.0) 0.0) ;

 translate (Vector3 0.0 (arm_Height/2.0) 0.0) ;

 rotatef (30.0) (Vector3 0.0 0.0 1.0);

-- rotim invers 30 de grade

 translate (Vector3 0.0 (-arm_Height/2.0) 0.0) ;

 preservingMatrix $ do {

 scale arm_Width arm_Height arm_Length ;

-- la dimensiunile bratului

 renderObject Solid (Cube 1.0);

 };

 -- La capatul bratului este o mana

 desenamManaStanga;

 };

213

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

 }

}

desenamTalpaDreapta= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 translate (Vector3 0.0 (-(leg_Height+leg_Width)/2.0)

leg_Length) ;

 color3f (Color3 0.3 0.4 0.4);

 scale leg_Width leg_Width (leg_Length*2) ;

 renderObject Solid (Cube 1.0);

 }

}

desenamPiciorulDrept= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 color3f (Color3 0.0 0.3 0.8);

 -- preserveMatrix nu restaureaza culoarea

 preservingMatrix $ do {

 translate (Vector3 (-(body_Width-leg_Width)/2.0)

 (-(body_Height+leg_Height)/2.0) 0.0) ;

 preservingMatrix $ do {

 scale leg_Width leg_Height leg_Length ;

 -- la dimensiunile piciorului

 renderObject Solid (Cube 1.0);

 };

 -- La capatul piciorului este o ... talpa

 desenamTalpaDreapta;

 };

 }

}

desenamTalpaStanga= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

214

D.POPA

in do {

 translate (Vector3 0.0 (-(leg_Height+leg_Width)/2.0)

leg_Length) ;

 color3f (Color3 0.3 0.4 0.4);

 scale leg_Width leg_Width (leg_Length*2) ;

 renderObject Solid (Cube 1.0);

 }

}

desenamPiciorulStang= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 color3f (Color3 0.0 0.3 0.8);

-- preserveMatrix nu restaureaza culoarea

 preservingMatrix $ do {

 translate (Vector3 ((body_Width-leg_Width)/2.0)

 (-(body_Height+leg_Height)/2.0) 0.0) ;

 preservingMatrix $ do {

 scale leg_Width leg_Height leg_Length ;

-- la dimensiunile piciorului

 renderObject Solid (Cube 1.0);

 };

 -- La capatul piciorului este o ... talpa

 desenamTalpaStanga;

 };

 }

}

desenamCapul= do {

let -- vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 -- rotatef =rotate :: GLfloat->Vector3 GLfloat ->IO()

in do {

 color3f (Color3 1.0 0.6 0.6);

 preservingMatrix $ do {

 translate (Vector3 0.0

 (body_Height/2.0+head_Radius*3.0/4.0)

--Head Radius

 0.0) ;

 renderObject Solid (Sphere' head_Radius 10 10);

 --10 e nr intreg de parti

215

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

 };

 }

}

desenareUmanoid = do {

-- In order to draw the humanoid we should ...

 -- Desenam corpul / Draw the body

 desenamCorpul;

 -- Desenam bratul drept / Draw the right arm

 desenamBratulDrept;

 -- Desenam bratul stang / Draw the left arm

 desenamBratulStang;

 -- Desenam piciorul drept / Draw the right leg

 desenamPiciorulDrept;

 -- Desenam piciorul stang / Draw the left leg

 desenamPiciorulStang;

 -- Desenam ce ne-a mai ramas, capul / Draw the (remaining)

head

 desenamCapul;

}

The program of a simple avatar, (J.García's C code is rewritten in Haskell

).

We have used the Haskell Platform as it was included in the Ubuntu 12.04

for 32 bits machine distribution. In order to compile the source we had used

the ghc compiler. But the Hugs interpreter can also be used. (The .o and .hi

files remaining from a previous compilation should be deleted every time,

before recompiling the source).

And here is the expected result, which looks exactly like the example from

[1],[2],[3].

216

D.POPA

From statements in brackets to lists of actions
Fig 1. Runing the Haskell program to draw a simple avatar from J.García's book.

(we have also reuse the colors)

Usually, the computer graphic programmer creates images by executing

statements over the available API. In this case OpenGL (here actually

wrapped in Haskell). As an effect, in Haskell, the program have to be written

using what is called do notation. We used it above. Here is a simple example,

where the actual do notation used for drawing is marked using bold.

-- Ex: desenarea unui patrulater; Dan Popa dupa Swen Eric Panitz [5] si

J.Garcia

import Graphics.UI.GLUT

import Graphics.Rendering.OpenGL

main = do

 (name,_)<-getArgsAndInitialize

 createMyWindow name

217

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

 mainLoop

createMyWindow windowname = do

 createWindow windowname

 clear [ColorBuffer]

 displayCallback $= display

display = do {

 clearColor $= Color4 0.0 0.0 0.0 0.0; -- Culoarea de fond: negru

 clear [ColorBuffer]; -- Stergem bufferul de culori

 matrixMode $= Projection; -- Trecem in mod proiectie

 loadIdentity; -- Incarcam matricea identitate

 ortho (-1.0) 1.0 (-1.0) 1.0 (-1.0) 1.0;

 matrixMode $= Modelview 0; -- Trecem in modul desenare model

 let vertex3f =vertex :: Vertex3 GLfloat -> IO()

 color3f =color :: Color3 GLfloat -> IO()

 in

 renderPrimitive Quads $ -- nu uita 's'

 do {

 color3f (Color3 0.0 1.0 1.0); -- Culoarea varfului dintai: vernil

 vertex3f (Vertex3 (-0.5) 0.5 (-0.5));-- Coordonatele primului varf

 vertex3f (Vertex3 (-0.5) (-0.5) 0.5);--Coordonatele varfului #2

 vertex3f (Vertex3 0.5 (-0.5) 0.5); -- Coordonatele varfului #3

 vertex3f (Vertex3 0.5 0.5 (-0.5)); -- Coordonatele varfului #4

 };

 flush; -- Impunem trecerea la desenare

 }

An other example from García's book, rewriten in Haskell using the do-

notation

In order to run the previous example uisng GHC, the following commands

was used:

radacina@Seti:~/practica/hopengl$ ghc -package GLUT -o garex2v1 garex2v1.hs

[1 of 1] Compiling Main (garex2v1.hs, garex2v1.o)

Linking garex2v1 ...

radacina@Seti:~/practica/hopengl$./garex2v1

If the reader wants to run the example using the Hugs interpreter, it can be

done by using:

218

D.POPA

radacina@Seti:~/practica/hopengl$ hugs garex2v1.hs

Main> main

But the mathematician, especially when he or she is coming from the field

of geometry is less familiar with the do notation or with C like languages.

But is familiar with the concept of set. And because Haskell may use IO()

actions like elements of a set, too, and it is providing a sequence_ function

which is combining a list of type [IO()] in a single IO() action, others

approaches are possible, using lists and data structures of actions. Here is a

similar but more simple program, rewritten in order to to use lists of actions.

Note how simple can we write the action of rendering:

 done = renderPrimitive Quads $ sequence_ dots3

-- Desenarea unuor patrulatere din

liste de

-- actiuni de [IO()]

-- Dan Popa dupa Swen Eric Panitz

--[5] si J.Garcia

import Graphics.UI.GLUT

import Graphics.Rendering.OpenGL

vertex3f =vertex :: Vertex3

GLfloat -> IO()

color3f =color :: Color3

GLfloat -> IO()

vertex3fc ::

(GLfloat,GLfloat,GLfloat) -> IO()

vertex3fc (x, y, z) = vertex3f (Vertex3 x y z)

main = do

 (name,_) <- getArgsAndInitialize

 createMyWindow name

 mainLoop

dots::[IO()]

dots = [vertex3f (Vertex3 (-0.5) 0.5 (-0.5)),-- Coordonatele primului

varf

219

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

 vertex3f (Vertex3 (-0.5) (-0.5) 0.5), --Coordonatele varfului #2

 vertex3f (Vertex3 0.5 (-0.5) 0.5), -- Coordonatele varfului #3

 vertex3f (Vertex3 0.5 0.5 (-0.5)) -- Coordonatele varfului #4

]

dots2::[IO()]

dots2 = map vertex3f

 [(Vertex3 (-0.5) 0.5 (-0.5)), -- Coordonatele primului varf

 (Vertex3 (-0.5) (-0.5) 0.5), -- Coordonatele varfului #2

 (Vertex3 0.5 (-0.5) 0.5), -- Coordonatele varfului #3

 (Vertex3 0.5 0.5 (-0.5)) -- Coordonatele varfului #4

]

dots3::[IO()]

dots3 =

 [color3f (Color3 0.0 1.0 1.0)] ++

 map (vertex3fc)

 [((-0.5), 0.5, (-0.5)), -- Coordonatele primului varf

 ((-0.5), (-0.5), 0.5), -- Coordonatele varfului #2

 (0.5, (-0.5), 0.5), -- Coordonatele varfului #3

 (0.5, 0.5, (-0.5)) -- Coordonatele varfului #4

] ++

 [color3f (Color3 1.0 1.0 0.0)] ++

 map (vertex3fc)

 [((-0.25), 0.25, (-0.75)), -- Coordonatele primului varf

 ((-0.25), (-0.25), 0.75), --Coordonatele varfului #2

 (0.25, (-0.25), 0.75), -- Coordonatele varfului #3

 (0.25, 0.25, (-0.75)) -- Coordonatele varfului #4

]

 -- Grupam actiunile de pelista intr-o singura actiune compusa:

 --randarea

done = renderPrimitive Quads $ sequence_ dots3

-- incercati dots,dots2...

createMyWindow windowname = do

 createWindow windowname

 clear [ColorBuffer]

 displayCallback $= display

display = do {

 clearColor $= Color4 0.0 0.0 0.0 0.0; -- Culoarea de fond: negru

 clear [ColorBuffer]; -- Stergem bufferul de culori

220

D.POPA

 matrixMode $= Projection; -- Trecem in mod proiectie

 loadIdentity; -- Incarcam matricea identitate

 ortho (-1.0) 1.0 (-1.0) 1.0 (-1.0) 1.0;

 matrixMode $= Modelview 0; -- Trecem in modul desenare model

 -- color3f (Color3 0.0 1.0 1.0);

 -- Culoarea varfului dintai vernil

 done;

 -- Actiunea compusa de desenare

 flush;

 -- Impunem trecerea la desenare

 }

An other example from García's book, rewritten using lists of actions

(various forms)

In order to compile this example using GHC, the following commands can

be used:

radacina@Seti:~/practica/hopengl$ ghc -package GLUT -o myex2v1

myex2v1.hs

[1 of 1] Compiling Main (garex2v1.hs, garex2v1.o)

Linking garex2v1 ...

radacina@Seti:~/practica/hopengl$ ghc --make myex2v1.hs

If the reader wants to run the example using the Hugs interpreter, it can be

done by using:

radacina@Seti:~/practica/hopengl$ hugs myex2v1.hs

7. CONCLUSION

As a conclusion, working on Graphics using Haskell and HOpenGL have

some advantages:

1) We are not stick to a set of statements in a specific order. Now the

graphic statements can be placed on lists, on trees, selected from

there, combined in whatever order we need, combined in a big IO()

action. After that they can be drawn by running the program.

2) Graphics are made using the IO() actions which have a strong

algebraic structure (the IO() monad).

3) Haskell provides a system for type inferences, so it is simple to check

221

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

if your graphic expression fits somewhere in the program by checking

it's type. (Ex: type :t dot3 in the console to see the answer.)

4) We can use mathematics, especially sets and trees of graphic actions.

5) Lists of vertices can be immediately converted in lists of actions

using the common map function and then composed in a big action

using (monadic) sequence_ operator. There exist even a monadic

map_ operator in Haskell libraries. See [6].

There are also some things to take care of:

1) Some functions and constructors are overload so, in small programs,

they need specific type signatures. But both programmers and

mathematicians used to declare the type of a function, it's domain and

it's co-domain. In fact, in Haskell we did not need to declare the

domains for all of our functions, because the type inference system

(Hindley Milner Algorithm) is doing the rest.

2) Due to the need of color changes, the lists of IO actions for a vertex

are concatenated with other IO actions. (See: dot3s.). But when an

object have a lot of faces of the same color it's possible to use a list of

faces, for example Quads or Triangles.

3) The order of the vertices on the list is important for the rendering of

some primitives – that's inherited from OpenGL. This is a common

problem in graphic programming.

4) Sometime some conversion functions can be needed. This one creates

an IO() action from the triple of coordinates of a point in 3D space.

 vertex3fc :: (GLfloat,GLfloat,GLfloat) -> IO()

 vertex3fc (x, y, z) = vertex3f (Vertex3 x y z)

Next step of the experiment

There are something which have been teste dby us and should also be

tested by the reader:

1) To change the projection from orthographic to perspective.

2) To comment or uncomment or even add different colors.

3) To use this one or an other sets of actions. See dots, dots2, dots3, …

4) To rebuild the classic humanoid from the first program using sets or

pseudoconstructors. Pseudoconstructors, as in [7],[8],[9],[10] was

usefull for the build of composed structures of actions which can be

modulars and placed in different included files. Even entire languages

222

D.POPA

was built in such a modular way [11]. Let's do it:

The conversion from IO() actions like desenamManaStanga:: IO() to

pseudoconstructors is simple. It consist in the folowing steps:

1) First of all we have to locate all named internal actions in the

description of an action. For example the action of drawing the left hand

desenamManaStanga is including an other action desenamPalmaStanga

inside of it.

2) In the next phase, the included actions are replaced by at least one

parameter (named dps for example), and this parameter is included in the

signature of the function. As a result the new type of desenamManaStanga

will not be IO() but something like desenamManaStanga:: IO() -> IO(). This

will be used with the requested parameter, like: desenamManaStanga

desenamPalmaStanga.

3) The display action will also be changed in the same way, becoming a

pseudoconstructor itself.

4) Finaly the new display action will be called with parameters (which are

describing the whole structured image) when the displayCallback of the

HOpenGL is defined:

createMyWindow windowname = do {

 createWindow windowname;

 clearDepth $= 1 ; -- Va lucra cu adancimi

 depthClamp $= Enabled; -- comparatiile fiind cu <=

 depthFunc $= Just Lequal; --Lequal | Greater | Gequal

 displayCallback

 $= display (desenareUmanoid

 desenamCorpul

 (desenamBratulDrept desenamTalpaDreapta)

 (desenamBratulStang desenamTalpaStanga)

 (desenamPiciorulDrept desenamManaDreapta)

 (desenamPiciorulStang desenamManaStanga)

 desenamCapul

)

}

 The display Callback is now including the entire structure of the drawing,

represented as a tree creating using pseudoconstructors over IO() actions.

Exchanging the positions of the body's parts.

223

FUNCTIONAL FOLD BASED PROGRAMMING IN SWI-PROLOG

References

[1] García Jorge (Bardok), Curso de introduccion a OpenGL (v1.0), 2003

[2] García Jorge (Bardok), Curso de introduccion a OpenGL (v1.1), 2003

[3] García Jorge , Manual introductiv de OpenGL, Alma Mater Publishing

House, ISBN 978-606-527-349-8

[4] Hudak Paul , John Peterson, Joseph H. Fasel, A Gentle Introduction to

Haskell 98, 2000

[5] Paniz Sven Eric, HopenGL – 3D Graphics with Haskell, A small

tutorial (Draft), version 9th October 2003, TFH Berlin

[6] Peyton Jones,Simon : "Haskell 98 language and libraries: the Revised

Report", Cambridge University Press, 2003, ISBN 0521826144

[7] Popa Dan , Adaptable Software – Modular extensible monadic

evaluator and typechecker based on pseudoconstructors, ARA35-119, ARA

Congress, Timisoara, 2011,

http://www.haskell.org/wikiupload/7/78/Popa_Dan_fullpaper_template.pdf.zi

p (draft)

[8] Popa Dan , How to build a modular monadic extensible compiler using

The State Monad and pseudoconstructors over monadic values, Scientific

224

D.POPA

Studies and Research. Series Mathematics and Informatics, vol. 21, no.2,

2011, pag. 97-116

[9] Popa Dan , Modular Monadic Compilers for Programming Languages

http://www.haskell.org/haskellwiki/Modular_Monadic_Compilers_for_Progr

amming_Languages

[10] Popa Dan, Pseudoconstructors over monadic values.

 http://www.haskell.org/haskellwiki/Pseudoconstructors

[11] Popa Dan, The Rodin Language Project,

http://www.haskell.org/haskellwiki/Rodin

[12] Shreiner Dave, OpenGL programming guide: The official guide to

learn OpenGL versions 3.0 and 3.1, Pearson Education Inc., 2010

http://www.opengl-redbook.com/ .

Extra references and resources

Panne Swen - HOpenGL implementation -

http://www.haskell.org/haskellwiki/Applications_and_libraries/Games

http://www.haskell.org/haskellwiki/OpenGLTutorial1

http://www.haskell.org/haskellwiki/OpenGLTutorial2 [HOPENGL

implementation of Swen Panne]

http://www.ics.uci.edu/~gopi/CS211B/opengl_programming_guide_8th_e

dition.pdf

OpenGL Code Resources, http://www.opengl.org/wiki/Code_Resources

Department of Mathematics, Informatics and Education Sciences

Faculty of Sciences

“Vasile Alecsandri” University of Bacău

157 Calea Mărăşeşti, Bacău, 600115, ROMANIA

 e-mail: popavdan@yahoo.com

