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A WEAK CONVERGENCE THEOREM FOR A
KRASNOSELSKIJ TYPE FIXED POINT ITERATIVE
METHOD IN HILBERT SPACES USING AN
ADMISSIBLE PERTURBATION

CRISTINA TICALA

Abstract. The aim of this paper is to prove a weak convergence
theorem for a general Krasnoselskij type fixed point iterative method
defined by means of the new concept of admissible perturbation of a
firmly nonexpansive mapping and a nonspreading mapping in Hilbert
spaces.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Then a mapping T : C' — (' is said to be nonexpansive
if |Tx —Ty|| < ||z —y| for all z,y € C. We denote by F(T') the set
of fixed points of T. A mapping F is said to be firmly nonexpansive
if |Fz — Fy||* < (x —y, Fx — Fy), for all z,y € C; see, for instance,
(7,8, 9, 21, 23]. On the other hand, a mapping @ : C' — C is said to
be quasi-nonexpansive if F'()) is nonempty and
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1Qz —yl| < [l =yl

for all x € C and y € F(Q), where F(Q) is the set of fixed points
of Q. If T : C — C is nonexpansive and the set F(T") of fixed points
of T is nonempty, then T is quasi-nonexpansive.

In 2007, Aoyama et al. [1] proved the following strong convergence
theorem of Halpern’s iterative sequence for finding a common fixed
point of a countable family of nonexpansive mappings. Let v; =z € C
and

(1) Tl = apr + (1 — ) Thx,

for all n € N, where C' is a nonempty closed convex subset of a Banach
space, «, is a sequence in [0, 1] and T, is a sequence of nonexpansive
mappings of C' into itself which satisfies the AKTT-condition, that is,

(2) Zsup{HTnHz —Tnz||: z € C} < 0.

n=1
They proved that the sequence {x,} defined by (1) converges strongly
to a common fixed point of {7}

In 2008, Kohsaka and Takahashi [11] introduced the notion of non-
spreading mapping, which is defined as a nonlinear mapping from a
nonempty closed convex subset of C' of a smooth, strictly convex and
reflexive Banach space F into C', satisfying some contractive condi-
tion. In the special case where F is a Hilbert space, it is said that a
mapping S : C'— C is nonspreading if

(3) 2|z — SylI* < 1Sz — ylI* + ll= — Syl*,
for all z,y € C.
Example 1. [17] Define T : [0,2] — [0,2] by

0, ifzel0,2),
T:v—{ 1, ifx=2.
We have F(T) = {0}, T is neither nonexpansive nor continuous.
Howewver, T is nonspreading.

Definition 1. [22] Let X be a nonempty set. A mapping G : X x X —
X is called admissible if it satisfies the following two conditions:
(Al) G(z,z) ==z, foral ze€ X,
(A2) G(z,y) =z implies y=ux.
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Definition 2. [22] Let X be a nonempty set. If f : X — X is a given
mapping and G : X X X — X s an admissible mapping, then the
operator fo : X — X, defined by

(4) fa (@) =Gz, f(z);z € X;
15 called the admissible perturbation of f with respect to G.

Let (V,4,R) be a real vector space, X C V a convex subset, A €
(0,1), f: X - X and G : X x X — X be defined by
G(r,y)=1=XNzx+ Ny, z,y € X.

The admissible perturbation fg is called in this case the Krasnosel-
skij perturbation of f. Let f : X — X be a nonlinear operator and
G : X x X — X be an admissible mapping. The the iterative algo-
rithm generating the sequence {z,} given by z, € X and

is called the Krasnoselskij algorithm corresponding to G or the GK-
algorithm.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers
and by R the set of real numbers. Let H be a real Hilbert space with
inner product (-, -) and norm || - ||. In a Hilbert space, it is known that

loz + (1 = a)y|* = allz|* + (1 — o) [ly* — o (1 — a) |z — y*

A space X is said to satisfy Opial’s condition [20] if for each sequence
{x,}.2, in X which converges weakly to a point x € X, we have

liminf ||z, — 2| < liminf ||z, —y|, Vy € X, v #y
n—oo n—oo

Lemma 1. [10] Let H be a Hilbert space, C' a closed convex subset of
H, and S : C — C a nonspreading mapping with F(S) # ¢ . Then S
is demiclosed, i.e., v, = u and x,Sx, — 0 imply u € F(9).

Lemma 2. [10] Let H be a Hilbert space, C' a nonempty closed convex
subset of a real Hilbert space H and let S be a nonspreading mapping
of C into itself and let A=1—S. Then

1
14z — Ay|* < (z =y, Az — Ay) + 5 ([ A=[* + [ Az]])
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In [19] the following theorem is proved:

Theorem 3. [19] Let H be a real Hilbert space and let C' be a nonempty
closed conver subset of H. Let S be a nonspreading mapping of C' into
itself and let {T,,} be the sequences of firmly nonexpansive mappings of
C into itself such that F'(S)( (o, F'(Ty)) is nonempty. Let {ay,} C
la,b] for some a,b e (0,1).

Suppose that {T,} satisfy the AKTT-condition and T be the map-
pings of C into itself defined by Ty = lim,,_, T,y for ally € C and
suppose that F(T) = (., F(Tn). Let x, be a sequence defined by
o=z € C and x 11 = oz, + (1 — ) STz, n > 0.

Then {x,} converges weakly to z2 € F(S)((N,—, F(Tn)).

3. THE RESULT

The result of this paper is a modification of the above theorem. The
changes are the following: first we replace the sequence {a,} C [a,b]
with the constant a € [a,b] where a, b € (0,1), secondly we replace
the sequence {z,} in the conclusion of the theorem with a much more
general sequence {z,} defined by zo € X and the recurrence z,; =
G (T, [ (x,)), n > 0, where G is an admissible perturbation operator.

Theorem 4. Let H be a real Hilbert space and let C' be a nonempty
closed conver subset of H. Let S be a nonspreading mapping of C' into
itself and let {T,,} be a sequence of firmly nonexpansive mappings of C
into itself such that F(S) (N (N,—, F(T5)) is nonempty. Let a € [a,b]
for some a,b € (0,1).

Suppose that {T,,} satisfy the AKTT-condition and that T is a map-
ping of C into itself defined by Ty = lim,, o T,y for all y € C' and
suppose that F(T) = (" _, F(T,).

Let G : C x C — C be an addmisible perturbation operator which
is affine Lipschitzian with constant o € [0,1]. Let {z,} be a sequence

defined by xo = x € C and
(6) T+l = G (:Una STnxn) ;

Then {x,} converges weakly to z € F(S)( (Mo~ F(T7)).

Proof. Take a point v € F(S) (N, —, F(T,)) and put y,, = T,,x,,. We
shall show that the sequence {z,} is bounded. First, we note that
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15yn — vl < llyn — 0|

= [|Thzn — ||
< ||z, —ol|.
We obtain:
|41 — 0l =
= ||G (20, Syn) — G (v,0) ||?

v)
= llor (@ —v) + (1 = @) (Syn — v) |I”
= allz, = v[? + (1= @) |Syn — za|* — o (1 = @) || Sy — v|”
< aflzn = vl + (1 = a) llyn = 2ol — o (1 =) [|Sya — o]
= [t — o]* — (1 = @) 1Sy — @l
<z —off?
Hence {||z,, — v||} is a decreasing sequence and therefore lim,, ||z, —
v|| exists and is finite. This implies that {z,}, {y,} and {Sy,} are
bounded. Since {7},} is firmly nonexpansive, it follows that for all

ve F(S)N (N2, F(T,)) we have

| Ty — UHQ = Tz, — Tnv|l2
< (Tpx, — v, 2, — V)
= % (HTnxn - U||2 + Hxn - U||2 - Hxn - Tnl"n||2)
and hence

| Tzn — UHQ < o, — UH2 — ||zn — Tnmn”2

Thus, we get:
[Zns1 = 0I? = [la(zn —v) + (1 — @) (Syn — Towa) ||

< al|z, —v|> + (1 — @) | Sy — v|]?

< allzy —ol* + (1 — @) [lyn — v|]?

= allzy —v|* + (1 — @) | Thzy — v|?

< allzy —ol? + (1 = @) ([lzn — vl = |20 — Tozal?).
We obtain

(1= ) l2n=Town|* < aflzn—vlP+]| (1 = @) 20 —0l* = lzn41 =]
= [lzn = vlI* = llen1 — v
Since 0 < a < a < b <1 and lim, . ||z, —v||* = lim, o || Tns1 — v]?
this implies

|lzn — Thznl = |20 — ynl| — 0 as n — 0.
Put A, =1 — ST,. From A,v = 0 it follows using Lemma 2 that
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[2n 11— v]]? = [lor (2 — v) = (1 = @) (Syn — v) ||?
= ||laz, + (1 — a) Sy, — v|?
= ||z, —v—(1-a)(x, — ST,z,) |
= ||z, — (1 — ) AnanQ
= ||zn — ]2 = 2(1 — @) (T, — v, Apzp — Apv) + (1 — @)* || Apn ||
< lzn = v? =2(1 = a) {[[Anzn — Avoll? = 5 ([ Anzall” + [[Auo]*) }
+ (1= @) | Azl
= ||l —v[]* = (1 = @) [Apzn* + (1 — @) | Apz, |2
= [l —v[l* —a (1 —a) | Az,
and hence

a(l—a) | Awzall® < llzn — vl = [#ns1 — ol

Since a (1 — a) > 0 we have

lim ||A,z,| = lim ||z, — ST,z,| = 0.
n—oo n—oo
So, we have
|y — Synll = |Tnxn — SThmy |

= | Thxy — Ty + T — SThxy||
<|NThzn — || + ||xn — SThzs| — 0 as n — o0

Since {y,} is bounded, there exists a subsequence {y,,} of {y,}
which converges weakly to some zZ € C, i.e. y, — Z as i — oco. By
Lemma 1, we have Z € F(S). From lim,_,, ||z, —y.|| = 0 and y,, — 2
as 1 — 0o we get x,, — Z as ¢ — 00.

We shall show that z € F(T).

Since ||Tx,, — x| < [Tz — Tozn|| + || Tnzn — xy]], from
lim, o || Tnxn — x,|| = 0 and the AKTT-condition (that implies the
uniform convergence of (75,), -, to T" it follows that

|Tx, — x,]| = 0 as n — 0.

Assume z ¢ F(T). Since z,,, — 2z and 2z # Tz, by the Opial’s
condition we have

liminf ||z, — 2| < liminf|z,, — TZ|
11— 00 1— 00
< liminf {||x,, — Tx,,
1— 00

+ | Twn, — TZ[]}.
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But lim ||x,,—Tz,,|| = 0, therefore lim inf ||x,,,— 2| < liminf ||Tz,,—
1—>00 1—00 1—00
TZ|| < liminf ||z, — 2||, a contradiction.
n—oo
So, we get Z € F(T'). Moreover, 2 € F(S)( (.~ F(T,)).
Let {z,, } be another subsequence of {x, } such that {z,, } converges
weakly to some Z € C'. We show that 2 = Z.

Suppose Z # Z. Since lim,,_, ||z, — v|| exists for all
ve F(S)N (N2, F(T,)), it follows by the Opial’s condition that

lim ||z, — 2|| = liminf ||z, — 2| < liminf ||z,, — Z||
n—o0 1—00 71— 00
= lim ||z, — Z|| = liminf ||z, — Z||
oo oy e .
< liminf ||z, — 2| = lim, s ||z, — 2|,
k—o00

hence, lim ||z, — 2| < lim ||z, — ||, a contradiction.
n—o0 n—oo

Thus, we have Z = Z. This implies that {z,} converges weakly to
ze F(S)N (N2, F(T,)) and the proof is completed. &

4. CONCLUSIONS

In order to obtain theorem 4 we modified a theorem in [19] where
we replaced the sequence {a,} with the constant A and therefore we
were able to use the GK-algorithm as it was defined by Rus in [22].

In the particular case in which G (z,y) = (1 —\)z + Ay in the
main theorem we obtain a convergence theorem for the Krasnoselskij
1teration.

A more general case for the Mann algorithm associated to G or the
GM-algorithm

Gn(z,y)=(1—=X\)z+ \y

will be studied in a forthcoming paper.
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