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SURFACES GENERATED BY BLENDING
INTERPOLATION ON A TRIANGLE

ALINA BABOŞ

Abstract.
We use some interpolation operators of Lagrange, Hermite and Birkhoff

type in order to generate surfaces which satisfy some given conditions.

1. Introduction

There have been constructed interpolation operators of Lagrange,
Hermite and Birkhoff type on a triangle with all straight sides, starting
with the paper [5] of R.E. Barnhil, G. Birkhoff and W.J. Gordon, and
in many others papers (see, e.g., [4], [6], [7], [10], [11]). Further there
were considered interpolation operators on triangles with curved sides
(one, two or all curved sides), many of them in connection with their
applications in computer aided geometric design and in finite element
analysis (see, e.g, [1], [2], [8], [9], [18], [19], [20]).
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In [18] the authors have considered a standard triangle, T̃h, having
the vertices V1 = (h, 0), V2 = (0, h) and V3 = (0, 0), two straight sides
Γ1,Γ2, along the coordinate axes, and the third side Γ3 (opposite to
the vertex V3), which is defined by the one-to-one functions f and g,
where g is the inverse of the function f, i.e. y = f(x) and x = g(y),
with f(0) = g(0) = h and F a real-valued function defined on T̃h. (See
Figure 1).

Figure 1.
They constructed certain Lagrange, Hermite and Birkhoff type op-

erators, which interpolate a given function and some of its derivatives
on the border of this triangle with one curved side, as well as some of
their product and Boolean sum operators.

In [1] we have introduced an Lagrange operator which interpolates
the function F on cathetus, on the curved side, but also on an interior
line of the triangle T̃h. We considered the case when the interior line is
a median. Then in [2] we have introduced Hermite and Birkhoff type
operators which interpolate a given function and some of its derivatives
on median of the same triangle (see Figure 2).
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Figure 2.
The aim of this paper is to use some interpolation operators defined

by us in [1], [2] and by the authors of [18], for construction of surfaces
which satisfy some given conditions such as, for example, the roof of
the halls (see, e.g., [3], [13]-[16]).

2. Surfaces generated by Lagrange, Hermite and
Birkhoff type operators

Suppose that F is a real-valued function defined on T̃h, and it has
all partial derivatives needed.

Let us consider the Lagrange interpolation operators Ly
1 and Lx

2

defined by

(Ly
1F )(x, y) =

f(x)−y
f(x)

F (x, 0) + y
f(x)

F (x, f(x)),

(Lx
2F )(x, y) =

(2x−h+y)[x−g(y)]
(h−y)g(y)

F (0, y) + 4x[x−g(y)]
(h−y)[h−y−2g(y)]

F

(
h−y
2
, y

)
+ x(2x−h−y)

g(y)[2g(y)−h+y]
F (g(y), y),

the Hermite interpolation operators Hy
3 and Hx

2 , corresponding to
the double nodes, defined by
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(Hy
3F )(x, y) =

[f(x−y)]2[f(x)+2y]
f3(x)

F (x, 0) + y[f(x)−y]2

f2(x)
F (0,1)(x, 0)

+ y2[3f(x)−2y]
f3(x)

F (x, f(x)) + y2[y−f(x)]
f2(x)

F (0,1)(x, f(x))

and
(Hx

2F )(x, y) =
(2x−h+y)2[x−g(y)]2[g(y)(y−h)+2x(y−h−2g(y))]

(y−h)3g3(y)
F (0, y)

+ x(2x−h+y)2[x−g(y)]2

(h−y)2g2(y)
F (1,0)(0, y)

+ 16x2[x−g(y)]2[(h−y)(h−y−2g(y))−2(2x−h+y)2(h−y−g(y))]
(h−y)3[h−y−2g(y)]3

F
(

h−y
2
, y
)
+ 8x2[x−g(y)2](2x−h+y)

(h−y)2[h−y−2g(y)]2
F (1,0)

(
h−y
2
, y
)

+ x2(2x−h+y)2[g(y)(10g(y)−3h+3y)+2x(h−y−4g(y))]
g3(y)[2g(y)−h+y]3

F (g(y), y)

+ x2[x−g(y)](2x−h+y)2

g2(y)[2g(y)−h+y]2
F (1,0)(g(y), y),

and the Birkhoff interpolation operators By
1 and Bx

1 defined by
(By

1F )(x, y) = F (x, 0) + yF (0,1)(x, f(x)),

(Bx
1F )(x, y) = F (0, y)+ x[2g(y)−x]

2g(y)−h+y
F (1,0)

(
h−y
2
, y
)
+ x(x−h+y)

2g(y)−h+y
F (1,0)(g(y), y).

A. Using the natural condition that the roof stays on its support, i.e.,

F |Γ3 = 0,
F |V2M = 0,

we get that

(Ly
1F )(x, y) =

f(x)−y
f(x)

F (x, 0),

(Lx
2F )(x, y) =

(2x−h+y)[x−g(y)]
(h−y)g(y)

F (0, y),

(Hy
3F )(x, y) =

[f(x−y)]2[f(x)+2y]
f3(x)

F (x, 0) + y[f(x)−y]2

f2(x)
F (0,1)(x, 0)

+ y2[y−f(x)]
f2(x)

F (0,1)(x, f(x)),

(Hx
2F )(x, y) =

(2x−h+y)2[x−g(y)]2[g(y)(y−h)+2x(y−h−2g(y))]
(y−h)3g3(y)

F (0, y)

+ x(2x−h+y)2[x−g(y)]2

(h−y)2g2(y)
F (1,0)(0, y)

+ 8x2[x−g(y)2](2x−h+y)
(h−y)2[h−y−2g(y)]2

F (1,0)
(

h−y
2
, y
)

+ x2[x−g(y)](2x−h+y)2

g2(y)[2g(y)−h+y]2
F (1,0)(g(y), y).

We consider the blending function generated by the Boolean sum of
the operators Ly

1 and Lx
2 , i.e.,

((Ly
1 ⊕ Lx

2)F )(x, y) =
f(x)−y
f(x)

F (x, 0) + (2x−h+y)[x−g(y)]
(h−y)g(y)

F (0, y)

− f(x)−y
f(x)

(2x−h)(x−h)
h2 F (0, 0).

In order to obtain a scalar approximation for F , in the second level
we use the following approximations:
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F (0, y) := (Hy
3F )(0, y) =

(h−y)2(h+2y)
h3 F (0, 0) + y(h−y)2

h2 F (0,1)(0, 0)

+ y2(y−h)
h2 F (0,1)(0, h),

F (x, 0) := (Hx
2F )(x, 0) =

(2x−h)2(x−h)2(h+6x)
h5 F (0, 0) +

x(2x−h)2(x−h)2

h4 F (1,0)(0, 0)

+ 8x2(x−h)2(2x−h)
h4 F (1,0)

(
h
2
, 0
)
+

x2(x−h)(2x−h)2

h4 F (1,0)(h, 0).
We consider the interpolation operator

P1 = Ly
1H

x
2 + Lx

2H
y
3 − L

y
1L

x
2 ,

with

(P1F )(x, y) =

[
(2x−h+y)(x−g(y))

(h−y)g(y)
(h−y)2(h+2y)

h3

+ f(x)−y
f(x)

(2x−h)2(x−h)2(h+6x)
h5 − f(x)−y

f(x)
(2x−h)(x−h)

h2

]
F (0, 0)

+ f(x)−y
f(x)

x(2x−h)2(x−h)2

h4 F (1,0)(0, 0)

+ f(x)−y
f(x)

8x2(x−h)2(2x−h)
h4 F (1,0)

(
h
2
, 0
)

+ f(x)−y
f(x)

x2(x−h)(2x−h)2

h4 F (1,0)(h, 0)

+ (2x−h+y)(x−g(y))
(h−y)g(y)

y(h−y)2

h2 F (0,1)(0, 0)

+ (2x−h+y)(x−g(y))
(h−y)g(y)

y2(y−h)
h2 F (0,1)(0, h).

Example 1. Consider the function f(x) =
√
h2 − x2 with h = 4 and

F : T̃h → R. In Figure 3 we plot the graph of the surface P1F assigning

to the data (F (0, 0), F (1,0)(0, 0), F (1,0)
(

h
2
, 0
)
, F (1,0)(h, 0), F (0,1)(0, 0), F (0,1)(0, h))

the values (4,−1,−1,−1,−1, 1).
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Figure 3.
B. Using the conditions

F |Γ3 = F (0,1)|Γ3 = F (1,0)|Γ3 = 0, F |V2M = F (1,0)|V2M = 0,

we get that

(Ly
1F )(x, y) =

f(x)−y
f(x)

F (x, 0),

(Lx
2F )(x, y) =

(2x−h+y)[x−g(y)]
(h−y)g(y)

F (0, y),

(Hy
3F )(x, y) =

[f(x)−y]2[f(x)+2y]
f3(x)

F (x, 0) + y[f(x)−y]2

f2(x)
F (0,1)(x, 0),

(Hx
2F )(x, y) =

(2x−h+y)2[x−g(y)]2[g(y)(y−h)+2x(y−h−2g(y))]
(y−h)3g3(y)

F (0, y)

+ x(2x−h+y)2[x−g(y)]2

(h−y)2g2(y)
F (1,0)(0, y).

We obtain the interpolation operator
P2 = Ly

1H
x
2 + Lx

2H
y
3 − L

y
1L

x
2 ,

with

(P2F )(x, y) =

[
(2x−h+y)(x−g(y))

(h−y)g(y)
(h−y)2(h+2y)

h3

+ f(x)−y
f(x)

(2x−h)2(x−h)2(h+6x)
h5 − f(x)−y

f(x)
(2x−h)(x−h)

h2

]
F (0, 0)
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+ f(x)−y
f(x)

x(2x−h)2(x−h)2

h4 F (1,0)(0, 0)

+ (2x−h+y)(x−g(y))
(h−y)g(y)

y(h−y)2

h2 F (0,1)(0, 0).

Example 2. Consider the function f(x) =
√
h2 − x2, h = 4 and F :

T̃h → R. In Figure 4 we plot the graph of the surface P2F assigning
to the data

(F (0, 0), F (1,0)(0, 0), F (0,1)(0, 0)) the values (4, 0, 0).

Figure 4.
C. We consider the conditions

F |Γ3 = 0, F |V2M = 0,

and the interpolation operator
P3 = Ly

1B
x
1 + Lx

2B
y
1 − L

y
1L

x
2 ,

with

(P3F )(x, y) =

[
f(x)−y
f(x)

+ (2x−h+y)(x−g(y))
(h−y)g(y)

− f(x)−y
f(x)

(2x−h)(x−h)
h2

]
F (0, 0)
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+ f(x)−y
f(x)

x(2h−x)
h+y

F (1,0)
(

h
2
, 0
)
+ f(x)−y

f(x)
x(x−h)
h+y

F (1,0)(h, 0)

+ y(2x−h+y)(x−g(y))
(h−y)g(y)

F (0,1)(0, h).

Example 3. Consider the function f(x) =
√
h2 − x2 with h = 4 and

F : T̃h → R. In Figure 5 we plot the graph of the surface P3F assigning

to the data (F (0, 0), F (1,0)
(

h
2
, 0
)
, F (1,0)(h, 0)), F (0,1)(0, h)) the values

(−1,−1,−1, 1).

Figure 5.
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