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SEPARATION AXIOMS BETWEEN
REGULAR SPACES AND R0-SPACES

J. K. KOHLI AND D. SINGH

Abstract: New separation axioms which lie strictly between reg-
ularity and R0-axiom are introduced and their basic properties are
studied. The interrelations and interconnections among them and the
separation axioms which already exist in the mathematical literature
are outlined. Their preservation under mappings is discussed. The
investigation reveals several new epireflective (monoreflective) subcat-
egories of TOP.

1. Introduction

The fundamental problem of topology is the homeomorphism / clas-
sification problem which yet remains to be resolved completely. How-
ever, a positive step in this direction is the formulation and investi-
gation of new topological invariants. The knowledge of topological
invariants is instrumental in solving the milder problem when two
topological spaces are not homeomorphic by proving the presence of a
topological property in one but not in the other.
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It is this very spirit which constitutes the theme of the present paper
as regards to lower separations axioms. Here we introduce several
new separation axioms which lie strictly between regularity and R0-
axiom. The notion of regularity was introduced by Vietoris [42] (1921),
while the class of R0-spaces was introduced by Shanin [32] (1943) and
rediscovered by Vaidyanathswamy [39] (1960), and by Davis [8] (1961).

Organization of the paper is as follows. Section 2 is devoted to
preliminaries and basic definitions. In Section 3 we introduce certain
weak regularity axioms and reflect upon their place in the hierarchy
of variants of separation axioms which lie between regularity and π0-
axiom [39] and already exist in the mathematical literature. Herein
examples are included to reflect upon the distinctiveness of (most of)
the new axioms from the existing ones and among themselves. Sec-
tion 4 is devoted to the study of basic properties of RDδ

-spaces and
Rdδ -spaces wherein it is shown that (i) every regular space is an RDδ

-
space; (ii) a T0 Rdδ -space is a DδT1-space, a property stronger than
Hausdorff axiom; (iii) the property of being an RDδ

-space (Rdδ -space)
is preserved under disjoint topological sums and initial sources so it
is hereditary, productive , sup-invariant, preimage invariant, inverse
limit invariant and projective and (iv) the category of RDδ

-spaces
(Rdδ -spaces) and continuous maps is a full isomorphism closed sub-
category of TOP(≡ the category of topological spaces and continuous
maps) which is monoreflective (epireflective) in TOP. In Section 5 we
study the properties of RD-spaces and Rd-spaces which have prop-
erties analogous to that of RDδ

-spaces and Rdδ -spaces, respectively.
The category of RD-spaces (Rd-spaces) and continuous maps is a full,
isomorphism closed monoreflective as well as epireflective subcategory
of TOP containing the category of RDδ

-spaces (Rdδ -spaces). Section
6 is devoted to investigate the properties of π2-spaces and Rδ-spaces.
Some properties of R1-spaces are discussed in Section 7.

2. Preliminaries and basic definitions

Let X be a topological space. A subset A of a space X is called a
regular Gδ -set [30] if A is an intersection of a sequence of closed
sets whose interiors contain A, i.e., A =

∩∞
n=1 Fn =

∩∞
n=1 F

0
n , where

each Fn is a closed subset of X (here F 0
n denotes the interior of Fn).

The complement of a regular Gδ-set is called a regular Fσ-set . Any
union of regular Fσ -sets is called dδ-open [22]. The complement of
a dδ-open set is referred to as a dδ-closed set.
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A collection β of subsets of a space X is called an open comple-
mentary system [12] if β consists of open sets such that for every
B ∈ β, there exist B1, B2, . . .∈β with B =

∪
{X\Bi : i ∈ N}. A

subset A of a space X is called a strongly open Fσ -set [12] if there
exists a countable open complementary system β(A) with A ∈ β(A).
The complement of a strongly open Fσ-set is called strongly closed
Gδ-set. Brandenberg calls strongly closed Gδ-sets as D-closed in ([4]
[5]). Any intersection of strongly closed Gδ -sets is called d∗-closed
set [34].

A point x ∈ X is called a θ-adherent point [41] of a set A ⊂ X if
every closed neigbourhood of x intersects A. Let Aθ denote the set of
all θ-adherent points of A. The set A is called θ-closed [41] if A = Aθ.
The complement of a θ-closed set is referred to as a θ-open set .

A subset A of a space X is said to be regular open if it is the
interior of its closure, i.e., A = A.

◦
The complement of a regular open

set is referred to as a regular closed set. Any union of regular open
sets is called a δ-open set [41]. The complement of a δ-open set is
referred to as a δ-closed set. Any intersection of closed Gδ-sets is
called a d-closed set [21].

2.1 Definitions: A space X is said to be
(i) Dδ-Hausdorff [22] if any two distinct points in X are con-

tained in disjoint regular Fσ - sets.
(ii) DδT1-space if for each pair of distinct points x , y in X , there

exist regular Fσ -sets U and V such that x∈ U, y /∈ U and y∈ V, x /∈
V.

(iii) DδT0-space [28] if for each pair of distinct points x , y in X ,
there is a regular Fσ -set U containing one of the points x and y but
not both.

(iv) D-Hausdorff [16] if any two distinct points in X are con-
tained in disjoint open Fσ -sets.

(v) D*-Hausdorff [33] if any two distinct points in X are con-
tained in disjoint strongly open Fσ -sets.

(vi) θ -Hausdorff [7] if any two distinct points in X are contained
in disjoint θ- open sets.
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The following implications hold.

ultra Hausdorff
↓

functionally Hausdorff
↓ ↓

D∗-Hausdorff Dδ-Hausdorff →θ-Hausdorff
↓ ↓ ↓ ↓

D-Hausdorff DδT1-space Urysohn
↓ ↓ ↓

Hausdorff DδT0-space → Hausdorff

Diagram-1

(Most of) the above implications are known to be irreversible as is
shown by the following examples / observations.

2.2 Examples / Observations.
(i) A non-degenerate connected Tychonoff space is a functionally

Hausdorff space which is not ultra Hausdorff.
(ii) Armentrout’s [1] and Younglove’s Moore spaces [47] on which

every real-valued continuous functions is constant are D∗-Hausdorff
spaces which are not functionally Hausdorff.

(iii) A space X is said to be Dδ-completely regular [24] if it has a
base of regular Fσ - sets. The space A due to Hewitt [14] and further
discussed in [24, Example 3.3] is a Hausdorff Dδ-completely regular
space which is not functionally Hausdorff, so it is a Dδ-Hausdorff space
which is not functionally Hausdorff.

(iv) Hewitt’s example [14] (or Thomas space [38]) being a T1-regular
space is θ-Hausdorff but not Dδ-Hausdorff.

(v) For an example of a Urysohn space which is not θ-Hausdorff see
[7].

(vi) The skyline space due to Heldermann [12] is a D-Hausdorff
space which is not D∗-Hausdorff (see [23, Example 4.6]).

(vii) The mountain chain space due to Heldermann [12] is a Haus-
dorff space which is not D-Hausdorff (see [23 , Example 4.8]).

2.3 Definitions: A space X is said to be an
(i) R0-space ([32] [39] [8]) if for each open set U in X and each

x ∈ U implies that {x} ⊂U .

(ii) R1-space ([39] [8]) if x /∈ {y} implies that x and y are contained
in disjoint open sets.
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(iii) π0-space ([39, p 98]) if every nonempty open set in X contains
a nonempty closed set.

(iv) weakly regular space [12] if it has a base of Fσ-neighbourhoods.

(v) π2-space [39] (≡ PΣ-space [44]≡ strongly s-regular space
[10]) if every open set in X is expressible as a union of regular closed
sets.

(vi) weakly Hausdorff space [36] if every x in X is the inter-
section of regular open sets in X ; or, equivalently, every x in X is the
intersection of regular closed sets..

(vii) δT1-space ([25] [9]) if for each pair of distinct points x and
y in X there exist regular open sets U and V such that x ∈ U, y /∈ U
and y ∈ V, x /∈ V ..

(viii) δT0-space [26] if for every pair of distinct points in X there
exists a regular open set containing one of the points but not both..

(ix) KC space [43] if every compact set in X is closed in X ..

(x) US space [43] if every convergent sequence in X has a unique
limit in X ..

(xi) sober space [11] if every nonempty irreducible set in X has
a unique dense point i.e. a T0-space in which every irreducible set is
a point closure. A closed set in X is said to be irreducible if it can
not be expressed as the union of two nonempty proper closed subsets..

(xii) TD-space [3] if {x}′ ,the derived set of {x}, is closed for every
x ∈ X.

2.4 Remarks: 1) Vaidyanathswamy [39] calls R0-axiom as π1-
axiom in his text book (see [39, p 98]).

Czászár calls R0-space as S1-space in [6] and Worrel and Wicke call
R0-space as essentially T1 space [45] .

2) Yang [46], while studying paracompactness, refers to R1-space as
a T

′
2-space. Czászár calls R1-spaces as S2-spaces in his text book [6].
3) π2-spaces were defined by Vaidyanathswamy [39] (1960) and re-

discovered by Wong [44] (1981) and Ganster [10] (1980) with different
terminologies.

4) Ekici [9] calls δT1-spaces as rT1-spaces.
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The following implications are either well known or immediate from
definitions.

Hausdorff → KC → US
↓ ↓ ↓

Sober space weakly Hausdorff (≡δT1-space) → T1-space
↓ ↓ ↓

T0-space ← δT0-space T0-space ← TD-space

Diagram-2

However, none of the above implications is reversible as is immediate
from the following assertions / examples.

2.5 (i) The implications

Hausdorff → KC → US → T1

and their irreversibility are due to Wilansky [43].
(ii) The implications

T1 -space → TD -space → T0 -space

and their irreversibility are due to Aull and Thron [3].

2.6 Non-Hausdorff sober spaces are widely used in domain theory
and occur in abundance in the literature. For example,

(i) Let L be a complete lattice endowed with the Scott topology
σ(L) such that sup operation in L is jointly continuous. Then the
space (L, σ(L)) is a non-Hausdorff sober space (see [11, p. 106]). For
the definition of Scott topology we refer the interested reader to [11].

(ii) Let L be a complete lattice and let SpecL be the prime spectrum
of L, i.e. the set of all prime elements of L different from endowed with
the hull kernel topology is a sober space [11, p.252]. For the definition
of hull kernel topology (see [11]).

(iii) Let L be a continuous lattice. Then the space (L, σ(L)) is a
non-Hausdorff sober space which is not even a T1-space space (see [11,
p.106]). A lattice L is a continuous lattice if and only if it is isomor-
phic to a subset of cube which is closed under arbitrary infimums and
directed supremums. [11, p.201].

2.7 An infinite (uncountable) set endowed with cofinite (cocount-
able) topology is a T1−space which is not a δT0-space.
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2.8 Proposition: A space X a weakly Hausdorff space if and only
if it is a δT1-space.

3. Weak regularity axioms

3.1 Definitions: A space X is said to be an
(i) RDδ

-space if for each open set U in X and each x ∈ U there
exists a regular Gδ-set H containing x such that H ⊂ U ; equivalently
U is expressible as a union of regular Gδ-sets..

(ii) Rdδ-space if for each open set U in X and each x ∈ U there
exists a dδ-closed set H containing x such that H ⊂ U ; equivalently
U is expressible as a union of dδ-closed sets..

(iii) Rδ -space [29] if for each open set U in X and each x ∈ U
there exists a δ –closed set H containing x such that H ⊂ U ; equiva-
lently, U is expressible as a union of δ -closed sets..

(iv) RD -space if for each open set U in X and each x ∈ U there
exists a closed Gδ-set H containing x such that H ⊂ U ; equivalently
U is expressible as a union of closed Gδ- sets..

(v) Rd -space if for each open set U in X and each x ∈ U there
exists a d-closed set H containing x such that H ⊂ U ; equivalently
U is expressible as a union of d-closed sets..

3.2 Remark: The class of RDδ
-spaces properly contains each of the

classes of regular spaces and functionally regular spaces ([3] [40]). The
class of Rdδ -spaces properly contains the class of Rz−spaces ([27] [35])
which in its turn properly contains each of the classes of functionally
regular spaces and functionally Hausdorff spaces.

The following diagram well illustrates the interrelations and inter-
connections that exist between weak variants of regularity defined in
Definitions 3.1 and the separations axioms which already exist in the
mathematical literature and are related to the theme of the present
paper.
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regular

space
→ π2−

space

(≡ PΣ−
space)

(≡strongly
s−regular space)

↓ ↓ ↓
↓ RDδ

−
space

→ Rdδ−
space

≡ Rdδ−
space

↓ ↓ ↓ ↓
↓ RD−

space

→ Rd−
space

R1−
space

↓ ↓ ↓
weakly

regular space
→ → → R0−

space

Rδ−
space

↓
π0−
space

Diagram-3

Most of the above implications are known to be not reversible as is
shown by the following examples / observations.

Examples / Observations.
3.3 Every expansion of a metric space is an RDδ

-space which need
not be regular. More generally every expansion of a T1 perfectly
normal space is an RDδ

-space which need not be regular. For example,
Smirnov’s deleted sequence topology [37, p.86] is an expansion of the
Euclidean topology on the real line and is an RDδ

-space which is not
regular.

3.4 The real line with cofinite or cocountable topology is an R0

–space which is not an Rδ-space.

3.5 Every weakly Hausdorff space X is an Rδ-space, since every
singleton in X is δ-closed being the intersection of regular closed sets.

3.6 In [39, Ex. 23, p.99] is given an example of π0-space which is
not an R0-space.

3.7 Example 3 of Ganster [10] gives a Hausdorff space which is not
a π2-space (≡ strongly s-regular space). So it is an Rδ-space which is
not a π2-space.

3.8 Soundararajan’s example in [36, Proposition 2.1] is a non-Hausdorff
weakly Hausdorff space and hence an Rδ-space which is not an R1-
space.
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3.9 The real line with right ray topology is not a π0-space. More
generally, a complete lattice endowed with Scott topology is not a
π0-space.

Next we give an example of an R1-space which is not an Rdδ -space.
The space E0 in the following example is due to Misra [31, Example
3.1, p.352].

3.10 Let w1 be the first uncountable ordinal. Let the space Eo be the
union of disjoint sets {a, b}, {aαβ : 0 ≤ α, β < w1}, {bαβ : 0 ≤ α, β <
w1} and {cγ : 0 ≤ γ < w1}. The basic neighbourhoods of various
points are as follows: all the points aαβ and bαβ, 0 ≤ α, are isolated; for
each fixed γ,a typical basic neighbourhood of the point cγcontains the
points aγβ and bγβ for all but countably many indices β, 0 ≤ β < w1;
a typical basic neighbourhood of a (respectively b) contains, for every
α greater than some ordinal δ < w1,all but countably many points
aαβ(respectively bαβ). The space Eo is a Hausdorff, non Urysohn P -
space. However, no neighbourhood of a or b is expressible as a union
of dδ-closed sets. So it is an R1-space which is not an Rd-space and
hence not an Rdδ -space.

3.11 Problem: At present we do not know the following examples
and leave it open for the interested reader. Example of

(i) an Rdδ -space which is not an RDδ
-space.

(ii) an Rd-space which is not an RD-space.
(iii) an RD-space which is not an RDδ

-space.
(iv) an Rd-space which is not an Rdδ -space.

4. Basic properties of RDδ
-spaces and Rdδ-spaces

4.1 Theorem: Every regular space is an RDδ
-space.

Proof: Let X be a regular space and let U be a nonempty open
subset ofX. Let x ∈ U . By regularity ofX there exists an open set V1,
such that x ∈ V1 ⊂ V̄1 ⊂ U. Another application of regularity yields
that there is an open set V2 such that x ∈ V2 ⊂ V̄2 ⊂ V1. Continuing
in this way obtain a nested sequence {Vn} of open sets satisfying

... ⊂ Vn+1 ⊂ V̄n+1 ⊂ Vn ⊂ V̄n ⊂ Vn−1 ⊂ ... ⊂ V1 ⊂ V̄1 ⊂ U.

Then
∩∞

n=1 Vn =
∩∞

n=1 V̄n = Ax. So Axis a regular Gδ-set containing
x and is contained in U . Thus X is an RDδ

-space.
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4.2 Theorem: A T0 Rdδ-space is a DδT1-space and so is a Haus-
dorff space.

Proof: Let X be a T0 Rdδ -space. Let x, y ∈ X with x ̸= y. Since
X is a T0-space, there exists an open set U containing one of the point
x and y but not both. To be precise assume that x ∈ U . Since X
is an Rdδ -space, there exists a dδ-closed set A such that x ∈ A ⊂ U .
Suppose that A =

∩
α∈ΛHα, where each Hα is a regular Gδ-set. There

exists an α0 ∈ Λ such that x ∈ Hα0 but y /∈ Hα0 . Then X\Hα0 is a
regular Fσ−set containing y but not x. So X is a DδT0-space. Now,
since every DδT0-space is Hausdorff, there exist disjoint open sets G1

and G2 containing x and y, respectively. So there exist dδ-closed sets B
and C such that x ∈ B ⊂ G1 and y ∈ C ⊂ G2. Let B =

∩
α∈ΛBα and

C =
∩

β∈ΣCβ, where each Bα and each Cβ is a regular Gδ-set. Then

there exist α0 ∈ Λ and β0 ∈ Σ such that x ∈ Bα0 but y /∈ Bα0 and
y ∈ Cβ0 but x /∈ Cβ0 . Then X\Bα0 and X\Cβ0 are regular Fσ−sets
such that x ∈ X\Cβ0 , y /∈ X\Cβ0 and y ∈ X\Bα0 , x /∈ X\Bα0 . Thus
X is a DδT1-space.

4.3 Corollary: A T0 Rdδ-space is a DδT0-space and so is a Haus-
dorff space.

4.4 Corollary: A T0 RDδ
-space is a DδT1-space.

4.5 Question: Is a T0 RDδ
-space Dδ-Hausdorff ?

4.6 Question: Is a T0 Rdδ-space Dδ-Hausdorff ?

4.7 Definition [22]: A point x in a space X is said to be a
dδ−adherent point of a set A ⊂ X if every regular Fσ−set U con-
taining x intersects A. Let Adδ denote the set of all dδ−adherent
points of A. The set Adδ is the smallest dδ-closed set containing A.

4.8 Lemma: The correspondence A→Adδ is a Kuratowski closure
operator.

4.9 Theorem: Let X be a topological space. Consider the following
statements:

(i) X is an Rdδ-space
(ii) For each x ∈ X and for each open set U containing x , we have

{x}dδ ⊂ U .
(iii) There exists a subbase S for X such that if x ∈S and S ∈S,

then {x}dδ ⊂ S
(iv) If x ∈ {y}dδ , then y ∈ {x}dδ
(v) If x ∈ {y}dδ , then {x}dδ = {y}dδ .
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Then (i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v).
Proof: (i) ⇒(ii). Let x ∈ X and let U be an open set containing

x. Since X is an Rdδ -space, there exists a dδ−closed set A such that
x ∈ A ⊂ U and so, in view of Lemma 4.8, {x}dδ ⊂ U .

(ii) ⇒(i). is obvious since {x}dδ is dδ−closed.
(ii)⇔(iii). is obvious.
(iii) ⇒(iv). Let x ∈ {y}dδ . Every subbasic open set containing y

contains {y}dδand so it contains x. This implies y ∈ {x}dδ .
(iv)⇒(v). x ∈ {y}dδ implies y ∈ {x}dδ . So, again in view of Lemma

4.6, ( x ∈ {y}dδ and y ∈ {x}dδ) implies that {x}dδ ⊂ {y}dδ and{y}dδ ⊂
{x}dδ . Hence {x}dδ = {y}dδ .

The implication (v)⇒ (iv) is obvious.

4.10 Theorem: For a topological space X the following statements
are equivalent.

(i) {x}dδ ̸= {y}dδ implies that x and y are contained in disjoint open
sets.

(ii) y /∈ {x}dδ implies x and y are contained in disjoint open sets.
(iii) A is compact and {x}dδ

∩
A = φ implies x and A are contained

in disjoint open sets.
(iv) If A and B are compact, and {a}dδ

∩
B =∅ for every a ∈ A,

then A and B are contained in disjoint open sets.
Proof: (i) ⇒(ii). Suppose that y /∈ {x}dδ . Then {x}dδ ̸= {y}dδand

so by (i) x and y are contained in disjoint open sets.
(ii) ⇒(iii). Suppose A is compact and {x}dδ

∩
A =∅. So, for each

a ∈ A, by (ii) there exist disjoint open sets Ua and Va containing a
and x, respectively. Thus U = {Ua : a ∈ A} is an open cover of the
compact set A and so there exists a finite subcollection {Ua1 , ..., Uan}
of U which covers A. Let U =

∪n
i=1 Uai and V =

∩n
i=1 Vai . Then U

and V are disjoint open sets containing A and x, respectively.
(iii) ⇒(iv). Suppose that A and B are compact and {a}dδ

∩
B =∅

for everya ∈ A. Then by (iii) for each a ∈ A there exist disjoint
open sets Ua and Va containing a and B, respectively. The collection
U = {Ua : a ∈ A} is an open cover of the compact set A and so there
exists a finite subcollection {Ua1 , ..., Uan} of U which covers A. Let
U =

∪n
i=1 Uai and V =

∩n
i=1 Vai . Then U and V are disjoint open sets

containing A and B, respectively.
(iv)⇒(i). Suppose that {x}dδ ̸= {y}dδ . Then either x /∈ {y}dδor y /∈

{x}dδ . For definiteness assume that y /∈ {x}dδ . Then {x}dδ
∩
{y} = ∅

and so by (iv) there exist disjoint open sets U and V containing x and
y, respectively.
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4.11 Theorem: The disjoint topological sum of any family of RDδ
-

spaces (Rdδ-spaces) is an RDδ
-space (Rdδ-space).

4.12 Theorem: The property of being an RDδ
-space as well as the

property of being an Rdδ-space is an initial property.
Proof: We shall prove the result in case of RDδ

-space only. Let {fα :
X → Yα : α ∈ Λ} be a family of functions, where each Yα is an RDδ

-
space and let X be endowed with the initial topology. Let U be any
open set in X and let x ∈ U.Then there exist α1, ..., αn ∈ Λ and open
sets Vi ∈ Yαi

(i = 1, ..., n) such that x ∈ f−1
α1

(V1)
∩
...
∩
f−1
αn

(Vn) ⊂ U.
Since each Yα is an RDδ

-space there exists a regular Gδ-set Aαi
in Yαi

(i = 1, ..., n) such that fαi
(x) ∈ Aαi

⊂ Vi. Since each fα is continuous,
it is easily verified that each f−1

αi
(Aαi

) is a regular Gδ-set in X. Let
A =

∩n
i=1 f

−1
αi

(Aαi
). Since finite intersection of regular Gδ-sets is a

regular Gδ-set, A is a regular Gδ-set in X and x ∈ A ⊂ U so X is an
RDδ

-space.
Th proof in other case is similar and hence omitted.
As an immediate consequence of Theorem 4.12 we have the follow-

ing.

4.13 Theorem: The property of being an RDδ
-space or an Rdδ-

space is hereditary, productive, sup-invariant, preimage invariant, in-
verse limit invariant and projective.

A topological property P is said to be projective if whenever a prod-
uct space has property P every co-ordinate space possesses property
P .

For the categorical terms used but not defined in the paper, we refer
the reader to Herrlich and Strecker [13].

4.14 Theorem: The category of RDδ
-spaces (Rdδ-spaces) and con-

tinuous maps is a full isomorphism closed subcategory of TOP which
is simultaneously epireflective and monoreflective in TOP.

4.15 Definition: A function f : X → Y from a topological space
X into a topological space Y is said to be

(i) Dδ -closed if f (H ) is a regular Gδ -set in Y for every regular
Gδ -set H in X .

(ii) d δ -closed if f (A) is a dδ -closed set in Y for every dδ-closed
set A in X .

4.16 Theorem: (a) Let f : X → Y be a continuous, Dδ -closed
surjection defined on an RDδ

-space X . Then Y is an RDδ
-space.
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(b) Let f : X → Y be a continuous, dδ-closed surjection defined on
an Rdδ-space X . Then Y is an Rdδ-space.

Proof: (a) Let V be an open set in Y and let y ∈ V . Then f−1(V )
is an open set in X containing f−1(y). Let x ∈ X. Since X is an RDδ

-
space, there exists a regularGδ -setH inX such that x ∈ H ⊂ f−1(V ).
Since f is a Dδ -closed surjection, f(H) is a regular Gδ -set in Y and
f(x) = y ∈ f(H) ⊂ V and so Y is an RDδ

-space.
The proof of (b) is similar and hence omitted.

5. Properties of RD-spaces and Rd-spaces

5.1 Definition [21]: Let X be a topological space. A point x ∈ X
is said to be a d-adherent point of a set A ⊂ X if every open Fσ-
set containing x intersects A. Let Ad denote the set of all d-adherent
points of A. The set Adis the smallest d-closed set containing A.

5.2 Lemma: The correspondence A→ Adis a Kuratowski closure
operator.

5.3 Theorem: For a topological space X the following statements
are equivalent:

(i) {x}d ̸= {y}dimplies x and y are contained in disjoint open sets.
(ii) y /∈ {x}d implies x and y are contained in disjoint open sets.
(iii) A is compact and {x}d

∩
A =∅ implies x and A are contained

in disjoint open sets.
(iv) If A and B are compact, and {a}d

∩
B =∅ for every a ∈ A,

then A and B are contained in disjoint open sets.
Proof: The proof of Theorem 5.3 is similar to that of the proof of

Theorem 4.10 and makes use of Lemma 5.2 instead of Lemma 4.8.

5.4 Theorem: Let X be a topological space. Consider the following
statements:

(i) X is an Rd-space.
(ii) For each x ∈ X and for each open set U containing x , we have

{x}d ⊂ U .
(iii) There exists a subbase S for X such that x ∈S ∈S ⇒ {x}d ⊂ S.
(iv) If x ∈ {y}d, then y ∈ {x}d.
(v) If x ∈ {y}d, then {x}d = {y}d
Then (i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v)
Proof: The proof of Theorem 5.4 is similar to that of the proof of

Theorem 4.9 and makes use of Lemma 5.2 instead of Lemma 4.8.
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5.5 Theorem: The disjoint topological sum of any family of RD-
spaces (Rd-spaces) is an RD-space (Rd-space).

5.6 Theorem: The property of being an RD-space as well as the
property of being an Rd-space is an initial property.

We omit the proof of Theorem 5.6 which is similar to that of the
proof of Theorem 4.12.

As an immediate consequence of Theorem 5.6 we have the following.
5.7 Theorem: The property of being an RD-space as well as the

property of being an Rd-space is hereditary, productive, sup-invariant,
preimage invariant, inverse limit invariant and projective.

5.8 Theorem: The category of RD-spaces (Rd-spaces) and contin-
uous maps is a full isomorphism closed subcategory of TOP which is
simultaneously monoreflective and epireflective subcategory of TOP.

5.9 Definition: A function f : X → Y from a topological space X
into a topological space Y is said to be

(i) D -closed if f(A) is a closed Gδ -set in Y for every closed
Gδ-set A in X .

(ii) d -closed if f (A) is a d -closed set in Y for every d -closed
set A in X .

5.10 Theorem: (a) Let f : X → Y be a continuous, D-closed
function from X onto Y . If X is an RD-space, then so is Y .

(b) Let f : X → Y be a continuous, d-closed surjection from X to
Y . If X is an Rd-space, then so is Y .

6. Properties of π2-spaces and Rδ-spaces

6.1 Definition [41]: Let X be a topological space. A point x ∈ X
is said to be a δ-adherent point of a set A ⊂ X if every regular open
set containing x intersects A. Let Aδ denote the set of all δ-adherent
points of the set A. Then Aδ is the smallest δ-closed set containing
A.

The following lemma is essentially due to Velic̆ko [41].
6.2 Lemma: The correspondence A→Aδis a Kuratowski closure

operator.

6.3 Theorem: For a topological space X ,.consider the following
statements

(i) X is an Rδ-space
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(ii) For each x ∈ X and each open set U containing x , we have
{x}δ ⊂ U .

(iii) There exists a subbase S for X such that x ∈S ∈S ⇒ {x}δ ⊂ S.
(iv) For any x , y ∈ X , x ∈ {y}δ implies y ∈ {x}δ.
(v) For any x , y ∈ X , x ∈ {y}δ implies {x}δ = {y}δ.
Then (i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v).
The proof of the Theorem 6.3 is similar to that of the proof of

Theorem 4.9 and makes use of Lemma 6.2 instead of Lemma 4.8.

6.4 Theorem: For a topological space X , the following statements
are equivalent:

(i) For any x , y ∈ X , {x}δ ̸= {y}δimplies x and y are contained in
disjoint open sets.

(ii) For any x , y ∈ X , y /∈ {x}δ implies x and y are contained in
disjoint open sets.

(iii) A is compact and {x}δ
∩
A =∅ implies x and A are contained

in disjoint open sets.
(iv) If A and B are compact, and {a}δ

∩
B =∅ for every a ∈ A,

then A and B are contained in disjoint open sets.
The proof of the Theorem 6.4 is similar to that of the proof of

Theorem 4.10 and makes use of Lemma 6.2 instead of Lemma 4.8.

6.5 Theorem: The disjoint topological sum of any family of Rδ-
spaces (π2-spaces) is an Rδ-space (π2-space).

6.6 Definition: A function f : X → Y from a topological space X
into a topological space Y is said to be:

(i) regular closed if f(A)is a regular closed in Y for every regular
closed set A in X .

(ii) δ -closed if f (A) is a δ -closed set in Y for every δ -closed
set A in X .

6.7 Theorem: (a) Let f : X → Y be a continuous regular closed
surjection from X to Y . If X is a π2-space, then so is Y .

(b) Let f : X → Y be a continuous δ-closed surjection from X onto
Y . If X is an Rδ-space, then so is Y .

The following result yields a factorization of the property of being a
weakly Hausdorff space and in turn improves a result of Soundararajan
[36].

6.8 Theorem: A space X is a weakly Hausdorff (≡δT1-space) if
and only if it is a T1-space and an Rδ-space.
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Proof: Clearly every weakly Hausdorff space is a T1-space and an
Rδ-space, since each point is the intersection of regular closed sets
i.e., a δ-closed set. Conversely, let X be a T1-space and an Rδ-space.
Let x, y ∈ X and x ̸= y. By T1-property there exists an open set U
containing x but not y. Since X is an Rδ-space, there exists a δ-closed
set A such that x ∈ A ⊂ U . Then y ∈ X\A which is a δ-open set
and so there exists a regular open set V such that y ∈ V ⊂ X\A.
Thus X\V is a regular closed set containing x but not y and so {x} is
the intersection of regular closed sets. Hence X is a weakly Hausdorff
space.

6.9 Corollary [36, Proposition 2.7]: Every π2, T1-space is a weakly
Hausdorff space.

Proof: Since every π2-space is an Rδ-space, it is immediate in view
of Theorem 6.8.

6.10 Corollary [36]: EveryT1 semiregular space is a weakly Haus-
dorff space.

Proof: Let X be a T1 semiregular space. It is easily verified that
every singleton in X is a δ-closed set and so it is an Rδ-space. By
Theorem 6.9 X is weakly Hausdorff.

6.11 Theorem: Every T0Rδ-space is a δT0-space.
Proof: Let X be a T0Rδ-space and let x, y ∈ X,x ̸= y. Since X

is T0-space, there exists an open set U containing one of the points
x and y but not both. To be precise, assume that x ∈ U. Since X
is an Rδ-space, there exists a δ-closed set Cx such that x ∈ Cx ⊂ U.
Let Cx =

∩
α∈Λ Fαx,where each Fαx is a regular closed set. So there

exists an α0 ∈ Λ such that y /∈ Fα0x.Then X\Fα0x is a regular open
set containing y but not x. Hence X is a δT0-space.

7. R1-spaces

7.1 Definition: A topological space X is said to be an Rθ-space
if for each x ∈ X and each open set U containing x there exists a
θ-closed set F in X such that x ∈ F ⊂ U.

7.2 Definition: Let X be a topological space. A point x ∈ X is
said to be a uθ-adherent point ([18] [19]) of a set A ⊂ X if every
θ-open set containing x intersects A. Let Auθ

denote the set of all
uθ-adherent points of A.

7.3 Lemma ([18] [19]): Auθ
is the smallest θ-closed set containing

A and the correspondence A→ Auθ
is a Kuratowski closure operator.
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7.4 Lemma ([17] [20]): A subset A of a topological space X is
θ-open if and only if for each x ∈ A, there exists an open set U such
that x ∈ U ⊂ U ⊂ A.

The following result is essentially due to Janković [15].
7.5 Theorem: A topological space X is an R1-space if and only if

it is an Rθ-space.
Proof: Suppose X is an R1-space. Let U be an open set in X and

let x ∈ U.Since every R1-space is an R0-space, {x} ⊂ U. By a result
of Janković [15], {x}is θ−closed and so X is an Rθ-space. Conversely,
suppose X is an Rθ-space. Let x, y ∈ X, x /∈ {y}.Then X\{y}is an
open set containing x but not y. Since X is an Rθ-space, there is a
θ−closed set A such that x ∈ A ⊂ X\{y}. Then X\A is a θ−open
set containing y but not x. By Lemma 7.4 there is an open set V
such that y ∈ V ⊂ V ⊂ X\A. So X\V and V are disjoint open sets
containing x and y, respectively and hence X is an R1-space.

7.6 Theorem: For a topological space X consider the following
statements:

(i) X is an Rθ-space
(ii) For each x ∈ X and for each open set U containing x , we have

{x}uθ
⊂ U .

(iii) There exists a subbase S for X such that x ∈S ∈S ⇒ {x}uθ
⊂

S.
(iv) If x ∈ {y}uθ

, then y ∈ {x}uθ
.

(v) If x ∈ {y}uθ
, then {x}uθ

= {y}uθ
.

Then (i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v).
Proof: The proof of Theorem 7.6 is similar the proof of Theorem

4.9 and makes use of Lemma 7.3 instead of Lemma 4.8.

7.7 Theorem: For a topological space X , the following statements
are equivalent:

(i) For any x , y ∈ X , {x}uθ
̸= {y}uθ

implies x and y are contained
in disjoint open sets.

(ii) For anyx , y ∈ X , y /∈ {x}uθ
implies x and y are contained in

disjoint open sets.
(iii) A is compact and {x}uθ

∩
A =∅ implies x and A are contained

in disjoint open sets.
(iv) If A and B are compact, and {a}uθ

∩
B =∅ for every a ∈ A,

then A and B are contained in disjoint open sets.
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It is well known that the property of being an R1-space is an ini-
tial property and preserved under disjoint topological sums. So it is
hereditary, productive, sup invariant, pre image invariant, inverse limit
invariant and projective.

7.8 Theorem: The category of R1-spaces and continuous maps is
a full, isomorphism closed subcategory of TOP which is simultaneously
a monoreflective and epireflective subcategory of TOP.

7.9 Definition: A function f : X → Y from a topological space
X into a topological space Y is said to be θ -closed if f (A) is a θ
-closed set in Y for every θ -closed set A in X .

7.10 Theorem: Let f : X → Y be a continuous, θ-closed function
from a space X onto Y . If X is an R1-space, then so is Y .

Proof: This is immediate in view of Theorem 7.5.

7.11 Theorem (Davis [8], Czászár [6]): A T0 R1-space X is Haus-
dorff.

Proof: Let x, y ∈ X with x ̸= y. By T0-property of X, there exists
an open set U containing one of the point x and y not both. To make
a choice assume that x ∈ U. By Theorem 7.5 there exists a θ-closed
set A such that x ∈ A ⊂ U. Then X\A is a θ-open set containing y.
By Lemma 7.4 there is an open set V such that y ∈ V ⊂ V ⊂ X\A.
So X\V and V are disjoint open sets containing x and y, respectively.
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functionen in topologishen Räumen, Indag. Math. 15 (1951),
359-368.

[41] N.K. Velic̆ko, H-closed topological spaces, Amer. Math.
Soc. Transl. 78(2) (1968), 103-118.

[42] L. Vietoris, Stetige Mengen, Monatsh., 31(1921), 173-204.
[43] A. Wilansky, Between T1 and T2, Amer. Math. Monthly, 74

(1967), 261-266.
[44] G.J. Wong, On S-closed spaces, Acta Math. Sinica, 24(1981),

55-63.
[45] J. M. Worell Jr. and H. H. Wicke, Characterizations of

developable topological spaces, Can. J. Math. 17(1965), 820-830.
[46] C.T. Yang, On paracompact spaces, Proc. Amer. Math.

Soc., 5(2) (1954), 185-194.
[47] J. N. Younglove, A locally connected complete Moore

space on which every real-valued ontinuous function is con-
stant, Proc. Amer. Math. Soc. 20 (1969), 527-530.

J. K. Kohli
Department of Mathematics, Hindu College, University of Delhi,

Delhi 110007.
D. Singh
Department of Mathematics, Sri Aurobindo College, University of

Delhi, New Delhi 110017.



 




