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ON UNIVALENCE OF SOME INTEGRAL OPERATORS
WHICH PRESERVE THE CLASS S

VIRGIL PESCAR AND LAURA STANCIU

Abstract In this paper, we obtain new sufficient conditions for two
integral operators to be univalent in the open unit disk U, using a new
result on univalence of analytical functions. These integral operators
were considered in a recent work [8].

1. Introduction and Preliminaries

Let A denote the class of all functions of the form

f (z) = z +
∞∑
n=2

anz
n,

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}
and satisfy the following normalization condition f(0) = f ′(0)−1 = 0,
C being the set of complex numbers.
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64 V. PESCAR AND L. STANCIU

Also, let S denote the subclass of A consisting of functions f which
are univalent in U.

In our present investigation, we study the univalence conditions for
the following integral operators:

(1) F1(f, g)(z) =

(
α

∫ z

0

(
f(t)eg(t)

)α−1
dt

) 1
α

, f, g ∈ A; α ∈ C

and
(2)

H1(f, g)(z) =

(
β

∫ z

0

tβ−1

(
f(t)

t
eg(t)

) 1
α

dt

) 1
β

, f, g ∈ A; α, β ∈ C−{0}

In the proof of our main results (Theorem 2.1 and Theorem 2.2), we
need the following univalence criterion, which is asserted by Theorem
1.1 bellow; it was proven by Pescar [6].

Theorem 1.1. [6] Let α be a complex number, Reα > 0 and c be a
complex number, |c| ≤ 1, c ̸= −1 and f ∈ A, f(z) = z + a2z

2 + .... If

|c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the function

Fα(z) =

(
α

∫ z

0

tα−1f ′(t)dt

) 1
α

= z + ...

is regular and univalent in U.

In order to derive our main results, we have to recall the following
theorem:

Theorem 1.2. [3] If f ∈ S then

(3)

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ < 1 + |z|
1− |z|

, z ∈ U.

Finally, in our present investigation, we shall also need the familiar
Schwarz Lemma (see, for details, [4]).

Theorem 1.3. (General Schwarz Lemma) (see [4]) Let the func-
tion f(z) be regular in the disk

UR = {z : z ∈ Cand |z| < R}, whereR > 0.

with
|f(z)| < M, z ∈ C,
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for a fixed number M > 0. If the function f(z) has one zero with
multiplicity order bigger than a positive integer m for z = 0, then

(4) |f(z)| 5 M

Rm
|z|m , z ∈ UR.

The equality in (4) holds true only if

f(z) = eiθ
M

Rm
zm,

where θ is a real constant.

2. Main Results

Theorem 2.1. Let f, g ∈ S, where g satisfies the inequality |g(z)| <
M, M is a real positive number and α, c are complex numbers with
|c| ≤ 1, c ̸= −1.

If

(5) |α− 1| ≤ (1− |c|) Reα
4 (M + 1)

, Reα ∈ (0, 1)

or

(6) |α− 1| ≤ 1− |c|
4 (M + 1)

, Reα ∈ [1,∞),

then the function F1(f, g)(z) defined by (1) is in the class S.

Proof. We begin by observing that the function F1(f, g)(z) in (1) can
be rewritten as follows:

F1(f, g)(z) =

(
α

∫ z

0

tα−1

(
f(t)

t
eg(t)

)α−1

dt

) 1
α

.

Let us define the function h(z) by

h(z) =

∫ z

0

(
f(t)

t
eg(t)

)α−1

dt.

The function h is regular in U and satisfies the following normalization
condition h(0) = h′(0)−1 = 0. Now, calculating the derivatives of h(z)
of the first and second orders, we readily obtain

(7) h′(z) =

(
f(z)

z
eg(z)

)α−1
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and
(8)

h′′(z) = (α− 1)

(
f(z)

z
eg(z)

)α−2(
zf ′(z)− f(z)

z2
eg(z) +

f(z)

z
g′(z)eg(z)

)
.

We easily find from (7) and (8) that

zh′′(z)

h′(z)
= (α− 1)

[(
zf ′(z)

f(z)
− 1

)
+ zg′(z)

]
,

which readily shows that

|c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
= |c| |z|2Reα +

1− |z|2Reα

Reα

∣∣∣∣(α− 1)

((
zf ′(z)

f(z)
− 1

)
+ zg′(z)

)∣∣∣∣
≤ |c| |z|2Reα +

1− |z|2Reα

Reα
|α− 1|

(∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1 +

∣∣∣∣zg′(z)g(z)

∣∣∣∣ |g(z)|) .
(9)

From the hypothesis of Theorem 2.1, we have |g(z)| < M, using The-
orem 1.3, we get |g(z)| ≤ M |z| and because f, g ∈ S by Theorem 1.2
and (9), we obtain

|c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reα +

1− |z|2Reα

Reα
|α− 1|

(
2

1− |z|
+

1 + |z|
1− |z|

M |z|
)

≤ |c| |z|2Reα +
1− |z|2Reα

Reα
2 |α− 1|

(
1 +M |z|
1− |z|

)
.(10)

Suppose that Reα ∈ (0, 1) . Define a function Φ : (0, 1)→ R by

Φ(x) = 1− a2x, 0 < a < 1.

Then Φ is an increasing function and consequently for |z| = a, z ∈ U,
we obtain

(11) 1− |z|2Reα < 1− |z|2 , z ∈ U.
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We thus find (10) and (11) that

|c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reα +

1− |z|2

Reα
2 |α− 1|

(
1 +M |z|
1− |z|

)
≤ |c| |z|2Reα +

1 + |z|
Reα

2 |α− 1| (1 +M |z|)

≤ |c|+ 4 |α− 1|
Reα

(M + 1) .

Using the hypothesis (5) for Reα ∈ (0, 1) , we readily get

(12) |c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1, z ∈ U.

Suppose that Reα ∈ [1,∞). We define a function Φ : [1,∞)→ R by

Φ(x) =
1− a2x

x
, 0 < a < 1.

We observe that the function Ψ is decreasing and consequently for
|z| = a, z ∈ U, we have

(13)
1− |z|2Reα

Reα
≤ 1− |z|2 , z ∈ U.

It follows from (10) and (13) that

|c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reα +

(
1− |z|2

)
2 |α− 1|

(
1 +M |z|
1− |z|

)
≤ |c|+ 4 |α− 1| (M + 1) .

Using the hypothesis (6), when Reα ∈ [1,∞), we easily get

(14) |c| |z|2Reα +
1− |z|2Reα

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1, z ∈ U.

From (12) and (14), applying Theorem 1.1, we conclude that the in-
tegral operator F1(f, g)(z) defined by (1) is in the class S. �

Theorem 2.2. Let f, g ∈ S, where g satisfies the inequality |g(z)| <
M, M is a real positive number and α, c are complex numbers with
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|c| ≤ 1, c ̸= −1.
If

(15)
1

|α|
≤ (1− |c|) Reβ

4 (M + 1)
, Reβ ∈ (0, 1)

or

(16)
1

|α|
≤ 1− |c|

4 (M + 1)
, Reβ ∈ [1,∞),

then the function H1(f, g)(z) defined by (2) is in the class S.

Proof. Let us consider the function

(17) h(z) =

∫ z

0

(
f(t)

t
eg(t)

) 1
α

dt.

The function h is regular in U. From (17), we have

h′(z) =

(
f(z)

z
eg(z)

) 1
α

and
zh′′(z)

h′(z)
=

1

α

((
zf ′(z)

f(z)
− 1

)
+ zg′(z)

)
,

which readily shows that

|c| |z|2Reβ +
1− |z|2Reβ

Reβ

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reβ +

1− |z|2Reβ

|α|Reβ

(∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1 +

∣∣∣∣zg′(z)g(z)

∣∣∣∣ |g(z)|) .(18)

From the hypothesis of Theorem 2.2, we have |g(z)| < M, using The-
orem 1.3, we get |g(z)| ≤ M |z| and because f, g ∈ S by Theorem 1.2
and (18), we have

|c| |z|2Reβ +
1− |z|2Reβ

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reβ +

1− |z|2Reβ

|α|Reβ
2

(
1 +M |z|
1− |z|

)
.(19)

Suppose that Reβ ∈ (0, 1) . Define a function Φ : (0, 1)→ R by

Φ(x) = 1− a2x, 0 < a < 1.
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Then Φ is an increasing function and consequently for |z| = a, z ∈ U,
we obtain

(20) 1− |z|2Reβ < 1− |z|2 , z ∈ U.

We thus find (10) and (20) that

|c| |z|2Reβ +
1− |z|2Reβ

Reα

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reβ +

2
(
1− |z|2

)
|α|Reβ

(
1 +M |z|
1− |z|

)
≤ |c|+ 4 (M + 1)

|α|Reβ
.

Using the hypothesis (15), for Reβ ∈ (0, 1) , we readily get

(21) |c| |z|2Reβ +
1− |z|2Reβ

Reβ

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1, z ∈ U.

Suppose that Reβ ∈ [1,∞). We define a function Φ : [1,∞)→ R by

Φ(x) =
1− a2x

x
, 0 < a < 1.

We observe that the function Φ is decreasing and consequently for
|z| = a, z ∈ U, we have

(22)
1− |z|2Reβ

Reβ
≤ 1− |z|2 , z ∈ U.

It follows from (10) and (22) that

|c| |z|2Reβ +
1− |z|2Reβ

Reβ

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c| |z|2Reβ + 2

(
1− |z|2

)( 1 +M |z|
|α| (1− |z|)

)
≤ |c|+ 4 (M + 1)

|α|
.

Using the hypothesis (16), when Reβ ∈ [1,∞), we easily get

(23) |c| |z|2Reβ +
1− |z|2Reβ

Reβ

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1, z ∈ U.

From (21) and (23), applying Theorem 1.1, we conclude that the in-
tegral operator H1(f, g)(z) defined by (2) is in the class S. �
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