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LOCAL FUNCTION Γ∗ IN IDEAL TOPOLOGICAL
SPACES

AHMAD AL-OMARI AND TAKASHI NOIRI

Abstract. Let (X, τ, I) be an ideal topological space. For a
subset A of X, a local function Γ∗(A)(I, τ) is defined as follows:
Γ∗(A)(I, τ) = {x ∈ X : A ∩ U /∈ I for every regular open set U
containing x}. This coincides with the δ-local functions due to Hatir
et al. [2]. By using Γ∗(A)(I, τ), an operator ΨΓ∗ : P(X) → τ δ is de-
fined as the dual of the δ-local function and its relations with δ-codense
ideals are investigated.

1. Introduction and Preliminaries

Let (X, τ) be a topological space with no separation properties as-
sumed. For a subset A of a topological space (X, τ), we denote by
Cl(A) and Int(A) the closure and the interior of A in (X, τ), re-
spectively. An ideal I on a topological space (X, τ) is a non-empty
collection of subsets of X which satisfies the following properties:

(1) A ∈ I and B ⊆ A implies B ∈ I.
(2) A ∈ I and B ∈ I implies A ∪B ∈ I.

————————————–
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An ideal topological space is a topological space (X, τ) with an ideal
I on X and is denoted by (X, τ, I). For a subset A ⊆ X, A∗(I, τ) =
{x ∈ X : A ∩ U /∈ I for every open set U containing x} is called the
local function of A with respect to I and τ (see [3]). We simply write
A∗ instead of A∗(I, τ) in case there is no chance for confusion. For
every ideal topological space (X, τ, I), there exists a topology τ ∗(I),
finer than τ , generated by the base β(I, τ) = {U − J : U ∈ τ and
J ∈ I}. It is known in Example 3.6 of [3] that β(I, τ) is not always a
topology. When there is no ambiguity, τ ∗(I) is denoted by τ ∗. Recall
that A is said to be ∗-dense in itself (resp. τ ∗-closed, ∗-perfect) if
A ⊆ A∗ (resp. A∗ ⊆ A, A = A∗). For a subset A ⊆ X, Cl∗(A)
and Int∗(A) will denote the closure and the interior of A in (X, τ ∗),
respectively.

A subset A of a space (X, τ) is said to be regular open (resp. regular
closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). By RO(X) we
denote the family of all regular open sets of (X, τ). A subset A is
said to be δ-open [13] if for each x ∈ A, there exists a regular open
set G such that x ∈ G ⊂ A. The complement of a δ-open set is
said to be δ-closed. A point x ∈ X is called a δ-cluster point of A if
Int(Cl(U)) ∩ A ̸= ∅ for each open set U containing x. The set of all
δ-cluster points of A is called the δ-closure of A and is denoted by
Clδ(A). The δ-interior of A is the union of all regular open sets of X
contained in A and it is denoted by Intδ(A). A is said to be δ-open if
Intδ(A) = A. The collection of all δ-open sets of (X, τ) is denoted by
δO(X) and forms a topology τ δ.

In this paper, we define and investigate an operator ΨΓ∗ : P(X) →
τ δ as follows: ΨΓ∗(A) = X − Γ∗(X − A) for every subset A of X.
Many relationships between the operator ΨΓ∗ and a δ-codense ideal
are obtained.

2. δ-local functions in ideal topological spaces

Definition 2.1. Let (X, τ, I) be an ideal topological space. For a
subset A of X, we define the following set: Γ∗(A)(I, τ) = {x ∈ X :
A ∩ U /∈ I for every U ∈ RO(x)}, where RO(x) = {U ∈ RO(X, τ) :
x ∈ U}.

Remark 2.2. In [2], Aδ∗(I, τ) is defined as follows: Aδ∗(I, τ) = {x ∈
X : A ∩ U /∈ I for every U ∈ τ δ(x)}, where τ δ(x) = {V : x ∈ V ∈ τ δ}
and it is called the δ-local function of A with respect to I and τ . We
show that Γ∗(A)(I, τ) = Aδ∗(I, τ) for every subset A of X.
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Proof. Since RO(X) ⊆ τ δ, it is obvious that Aδ∗(I, τ) ⊆ Γ∗(A)(I, τ).
Conversely, suppose that x /∈ Aδ∗(I, τ). Then, there exist V ∈ τ δ(x)

such that A∩V ∈ I. Since there exists U ∈ RO(X) such that U ⊆ V ,
A ∩ U ⊆ A ∩ V . Therefore, A ∩ U ∈ I and hence x /∈ Γ∗(A)(I, τ).
Hence Γ∗(A)(I, τ) ⊆ Aδ∗(I, τ).

In this paper, we use the notion Γ∗(A)(I, τ) (briefly Γ∗(A)).

Lemma 2.3. [2] Let (X, τ) be a topological space, I and J be two
ideals on X, and let A and B be subsets of X. Then the following
properties hold:

(1) If A ⊆ B, then Γ∗(A) ⊆ Γ∗(B).
(2) If I ⊆ J , then Γ∗(A)(I) ⊇ Γ∗(A)(J ).
(3) Γ∗(A) = Clδ(Γ

∗(A)) ⊆ Clδ(A) and Γ∗(A) is δ-closed.
(4) If A ⊆ Γ∗(A), then Γ∗(A) = Clδ(A) = Clδ(Γ

∗(A)).
(5) If A ∈ I, then Γ∗(A) = ∅.

Theorem 2.4. [2] Let (X, τ, I) be an ideal topological space and A,
B any subsets of X. Then the following properties hold:

(1) Γ∗(∅) = ∅.
(2) Γ∗(Γ∗(A)) ⊆ Γ∗(A).
(3) Γ∗(A) ∪ Γ∗(B) = Γ∗(A ∪B).

By Theorem 3 of [2], we obtain that ClΓ∗(A) = A∪Γ∗(A) is a Kura-
towski closure operator. We will denote by τΓ∗ the topology generated
by ClΓ∗ , that is, τΓ∗ = {U ⊆ X : ClΓ∗(X − U) = X − U}.
Corollary 2.5. [2] Let (X, τ, I) be an ideal topological space and A,B
be subsets of X with B ∈ I. Then Γ∗(A ∪B) = Γ∗(A) = Γ∗(A−B).

Theorem 2.6. [2] Let (X, τ, I) be an ideal topological space. Then
β(τ, I) = {V − I : V ∈ RO(X, τ), I ∈ I} is a basis for τΓ∗.

3. ΨΓ∗-operator in ideal topological spaces

Definition 3.1. Let (X, τ, I) be an ideal topological space. An op-
erator ΨΓ∗ : P(X) → τ δ is defined as follows: for every A ∈ X,
ΨΓ∗(A) = {x ∈ X : there exists U ∈ RO(x) such that U − A ∈ I}.

It is easily shown that ΨΓ∗(A) = X − Γ∗(X − A).

Several basic facts concerning the behavior of the operator ΨΓ∗ are
included in the following theorem.

Theorem 3.2. Let (X, τ, I) be an ideal topological space. Then the
following properties hold:
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(1) If A ⊆ X, then ΨΓ∗(A) is δ-open.
(2) If A ⊆ B, then ΨΓ∗(A) ⊆ ΨΓ∗(B).
(3) If A,B ⊆ X, then ΨΓ∗(A ∩B) = ΨΓ∗(A) ∩ΨΓ∗(B).
(4) If U ∈ τΓ∗, then U ⊆ ΨΓ∗(U).
(5) If A ⊆ X, then ΨΓ∗(A) ⊆ ΨΓ∗(ΨΓ∗(A)).
(6) Let A ⊆ X, then ΨΓ∗(A) = ΨΓ∗(ΨΓ∗(A)) if and only if

Γ∗(X − A) = Γ∗(Γ∗(X − A)).
(7) If A ∈ I, then ΨΓ∗(A) = X − Γ∗(X).
(8) If A ⊆ X, then A ∩ΨΓ∗(A) = IntΓ∗(A).
(9) If A ⊆ X, I ∈ I, then ΨΓ∗(A− I) = ΨΓ∗(A).
(10) If A ⊆ X, I ∈ I, then ΨΓ∗(A ∪ I) = ΨΓ∗(A).
(11) If (A−B) ∪ (B − A) ∈ I, then ΨΓ∗(A) = ΨΓ∗(B).

Proof. (1) This follows from Theorem 2.3 (3).
(2) This follows from Theorem 2.3 (1).
(3) It follows from (2) that ΨΓ∗(A ∩ B) ⊆ ΨΓ∗(A) and ΨΓ∗(A ∩ B) ⊆
ΨΓ∗(B). Hence ΨΓ∗(A∩B) ⊆ ΨΓ∗(A)∩ΨΓ∗(B). Now let x ∈ ΨΓ∗(A)∩
ΨΓ∗(B). There exist U, V ∈ RO(x) such that U−A ∈ I and V−B ∈ I.
Let G = U ∩ V ∈ RO(x) and we have G− A ∈ I and G− B ∈ I by
heredity. Thus G−(A∩B) = (G−A)∪(G)−B) ∈ I by additivity, and
hence x ∈ ΨΓ∗(A∩B). We have shown ΨΓ∗(A)∩ΨΓ∗(B) ⊆ ΨΓ∗(A∩B)
and the proof is complete.
(4) If U ∈ τΓ∗ , then X − U is τΓ∗-closed which implies Γ∗(X − U) ⊆
X − U and hence U ⊆ X − Γ∗(X − U) = ΨΓ∗(U).
(5) This follows from (1) and (4).
(6) This follows from the facts:

(1) ΨΓ∗(A) = X − Γ∗(X − A).
(2) ΨΓ∗(ΨΓ∗(A)) = X−Γ∗[X−(X−Γ∗(X−A))] = X−Γ∗(Γ∗(X−

A)).

(7) By Corollary 2.5 we obtain that Γ∗(X − A) = Γ∗(X) if A ∈ I.
(8) If x ∈ A ∩ ΨΓ∗(A), then x ∈ A and there exists Ux ∈ RO(x)
such that Ux − A ∈ I. Then by Theorem 2.6, Ux − (Ux − A) is a
τΓ∗-open neighborhood of x and x ∈ IntΓ∗(A). On the other hand, if
x ∈ IntΓ∗(A), there exists a basic τΓ∗-open neighborhood Vx − I of x,
where Vx ∈ RO(X, τ) and I ∈ I, such that x ∈ Vx − I ⊆ A which
implies Vx − A ⊆ I and hence Vx − A ∈ I. Hence x ∈ A ∩ΨΓ∗(A).
(9) This follows from Corollary 2.5 and ΨΓ∗(A − I) = X − Γ∗[X −
(A− I)] = X − Γ∗[(X − A) ∪ I] = X − Γ∗(X − A) = ΨΓ∗(A).
(10) This follows from Corollary 2.5 and ΨΓ∗(A ∪ I) = X − Γ∗[X −
(A ∪ I)] = X − Γ∗[(X − A)− I] = X − Γ∗(X − A) = ΨΓ∗(A).
(11) Assume (A−B) ∪ (B −A) ∈ I. Let A−B = I and B −A = J .
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Observe that I, J ∈ I by heredity. Also observe that B = (A− I)∪J .
Thus ΨΓ∗(A) = ΨΓ∗(A − I) = Ψ[(A − I) ∪ J ] = ΨΓ∗(B) by (9) and
(10).

Corollary 3.3. Let (X, τ, I) be an ideal topological space. Then
U ⊆ ΨΓ∗(U) for every δ-open set U ⊆ X.

Proof. We know that ΨΓ∗(U) = X − Γ∗(X − U). Now Γ∗(X − U) ⊆
Clδ(X − U) = X − U , since X − U is δ-closed. Therefore, U =
X − (X − U) ⊆ X − Γ∗(X − U) = ΨΓ∗(U).

Now we give an example of a set A which is not δ-open but satisfies
A ⊆ ΨΓ∗(A).

Example 3.4. Let X = {a, b, c, d}, τ = {∅, X, {a, c}, {d}, {a, c, d}},
and I = {∅, , {b}, {c}, {b, c}}. Let A = {a}. Then ΨΓ∗({a}) = X −
Γ∗(X − {a}) = X − Γ∗({b, c, d}) = X − {b, d} = {a, c}. Therefore,
A ⊆ ΨΓ∗(A), but A is not open and not δ-open.

Theorem 3.5. Let (X, τ, I) be an ideal topological space and A ⊆ X.
Then the following properties hold:

(1) ΨΓ∗(A) = ∪{U ∈ RO(X) : U − A ∈ I}.
(2) ΨΓ∗(A) ⊇ ∪{U ∈ RO(X) : (U − A) ∪ (A− U) ∈ I}.

Proof. (1) This follows immediately from the definition of the ΨΓ∗-
operator.
(2) Since I is heredity, it is obvious that ∪{U ∈ RO(X) : (U − A) ∪
(A − U) ∈ I} ⊆ ∪{U ∈ RO(X) : U − A ∈ I} = ΨΓ∗(A) for every
A ⊆ X.

Theorem 3.6. Let (X, τ, I) be an ideal topological space. If σ =
{A ⊆ X : A ⊆ ΨΓ∗(A)}. Then σ is a topology for X and σ = τΓ∗.

Proof. Let σ = {A ⊆ X : A ⊆ ΨΓ∗(A)}. First, we show that σ
is a topology. Observe that ∅ ⊆ ΨΓ∗(∅) and X ⊆ ΨΓ∗(X) = X,
and thus ∅ and X ∈ σ. Now if A,B ∈ σ, then by Theorem 3.2(3)
A∩B ⊆ ΨΓ∗(A)∩ΨΓ∗(B) = ΨΓ∗(A∩B) which implies that A∩B ∈ σ.
If {Aα : α ∈ ∆} ⊆ σ, then Aα ⊆ ΨΓ∗(Aα) ⊆ ΨΓ∗(∪Aα) for every
α ∈ ∆ and hence ∪Aα ⊆ ΨΓ∗(∪Aα). This shows that σ is a topology.
Now if U ∈ τΓ∗ then by Theorem 3.2(4) U ⊆ ΨΓ∗(U) and we have
shown τΓ∗ ⊆ σ. Now let A ∈ σ, then we have A ⊆ ΨΓ∗(A), that is,
A ⊆ X−Γ∗(X−A) and Γ∗(X−A) ⊆ X−A. This shows that X−A
is τΓ∗-closed and hence A ∈ τΓ∗ . Thus σ ⊆ τΓ∗ and hence σ = τΓ∗ .
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4. ΨΓ∗-operator and δ-compatible topology

Definition 4.1. Let (X, τ, I) be an ideal topological space. We say
the τ is δ-compatible with the ideal I, denoted τ ∼∗

∗ I, if the following
holds for every A ⊆ X, if for every x ∈ A there exists U ∈ RO(x)
such that U ∩ A ∈ I, then A ∈ I.

Theorem 4.2. Let (X, τ, I) be an ideal topological space. Then τ ∼∗
∗

I if and only if ΨΓ∗(A)− A ∈ I for every A ⊆ X.

Proof. Necessity. Assume τ ∼∗
∗ I and let A ⊆ X. Observe that

x ∈ ΨΓ∗(A) − A ∈ I if and only if x /∈ A and x /∈ Γ∗(X − A) if and
only if x /∈ A and there exists Ux ∈ RO(x) such that Ux − A ∈ I
if and only if there exists Ux ∈ RO(x) such that x ∈ Ux − A ∈ I.
Now, for each x ∈ ΨΓ∗(A) − A there exists Ux ∈ RO(x) such that
Ux ∩ (ΨΓ∗(A) − A) ∈ I by heredity and hence ΨΓ∗(A) − A ∈ I by
assumption that τ ∼∗

∗ I.
Sufficiency. Let A ⊆ X and assume that for each x ∈ A there exists

Ux ∈ RO(x) such that Ux ∩A ∈ I. Observe that ΨΓ∗(X −A)− (X −
A) = {x : there exists Ux ∈ RO(x) such that x ∈ Ux ∩ A ∈ I}. Thus
we have A ⊆ ΨΓ∗(X−A)− (X−A) ∈ I and hence A ∈ I by heredity
of I.

Proposition 4.3. Let (X, τ, I) be an ideal topological space with τ ∼∗
∗

I, A ⊆ X. If N is a nonempty regular open subset of Γ∗(A)∩ΨΓ∗(A),
then N − A ∈ I and N ∩ A /∈ I.

Proof. If N ⊆ Γ∗(A) ∩ ΨΓ∗(A), then N − A ⊆ ΨΓ∗(A) − A ∈ I by
Theorem 4.2 and hence N − A ∈ I by heredity. Since N ∈ RO(X)−
{∅} and N ⊆ Γ∗(A), we have N ∩A /∈ I by the definition of Γ∗(A).

As a consequence of the above theorem, we have the following.

Corollary 4.4. Let (X, τ, I) be an ideal topological space with τ ∼∗
∗ I.

Then ΨΓ∗(ΨΓ∗(A)) = ΨΓ∗(A) for every A ⊆ X.

Proof. ΨΓ∗(A) ⊆ ΨΓ∗(ΨΓ∗(A)) follows from Theorem 3.2 (5). Since
τ ∼∗

∗ I, it follows from Theorem 4.2 that ΨΓ∗(A) ⊆ A ∪ I for some
I ∈ I and hence ΨΓ∗(ΨΓ∗(A)) = ΨΓ∗(A) by Theorem 3.2 (10).

Theorem 4.5. Let (X, τ, I) be an ideal topological space with τ ∼∗
∗ I.

Then ΨΓ∗(A) = ∪{ΨΓ∗(U) : U ∈ RO,ΨΓ∗(U)− A ∈ I}.

Proof. Let ∅(A) = ∪{ΨΓ∗(U) : U ∈ RO,ΨΓ∗(U) − A ∈ I}. Let
x ∈ ∅(A). Then there exists U ∈ RO(X) such that ΨΓ∗(U)−A ∈ I and
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x ∈ ΨΓ∗(U). Therefore, there exists V ∈ RO(x) such that V −U ∈ I.
By Corollary 3.3, U ⊂ ΨΓ∗(U) and U − A ⊆ ΨΓ∗(U) − A and hence
U − A ∈ I. Therefore, V − A ⊆ (V − U) ∪ (U − A) ∈ I and hence
V − A ∈ I. Since V ∈ RO(x) and V − A ∈ I, x ∈ ΨΓ∗(U). Hence,
∅(A) ⊆ ΨΓ∗(A). Now let x ∈ ΨΓ∗(A). Then there exists U ∈ RO(x)
such that U−A ∈ I. By Corollary 3.3, U ⊆ ΨΓ∗(U) and ΨΓ∗(U)−A ⊆
[ΨΓ∗(U)− U ] ∪ [U −A]. By Theorem 4.2, ΨΓ∗(U)− U ∈ I and hence
ΨΓ∗(U)− A ∈ I. Hence x ∈ ∅(A) and ∅(A) ⊇ ΨΓ∗(A). Consequently,
we obtain ∅(A) = ΨΓ∗(A).

In [7], Newcomb defines A = B [mod I] if (A−B)∪(B−A) ∈ I and
observes that = [mod I] is an equivalence relation. By Theorem 3.2
(11), we have that if A = B [mod I], then ΨΓ∗(A) = ΨΓ∗(B).

Definition 4.6. Let (X, τ, I) be an ideal topological space. A subset
A of X is called a Baire set with respect to τ and I, denoted A ∈
Br(X, τ, I), if there exists a regular open set U such that A = U [mod
I].

Lemma 4.7. Let (X, τ, I) be an ideal topological space with τ ∼∗
∗ I.

If U , V ∈ RO(X) and ΨΓ∗(U) = ΨΓ∗(V ), then U = V [mod I].
Proof. Since U ∈ RO(X), we have U ⊆ ΨΓ∗(U) and hence U − V ⊆
ΨΓ∗(U)−V = ΨΓ∗(V )−V ∈ I by Theorem 4.2. Therefore, U−V ∈ I.
Similarly V −U ∈ I. Now (U−V )∪(V −U) ∈ I by additivity. Hence
U = V [mod I].
Theorem 4.8. Let (X, τ, I) be an ideal topological space with τ ∼∗

∗ I.
If A, B ∈ Br(X, τ, I), and ΨΓ∗(A) = ΨΓ∗(B), then A = B [mod I].
Proof. Let U, V ∈ RO(X) such that A = U [mod I] and B = V [mod
I]. Now ΨΓ∗(A) = ΨΓ∗(U) and ΨΓ∗(B) = ΨΓ∗(V ) by Theorem 3.2(11).
Since ΨΓ∗(A) = ΨΓ∗(B) implies that ΨΓ∗(U) = ΨΓ∗(V ), U = V [mod
I] by Lemma 4.7. Hence A = B [mod I] by transitivity.

5. δ-codense ideals

Definition 5.1. Let (X, τ, I) be an ideal topological space, then an
ideal I is said to be δ-codense if RO(X, τ) ∩ I = ∅.
Lemma 5.2. Let (X, τ, I) be an ideal topological space. For a sub-
set A ⊆ X, if A ⊆ Γ∗(A), then Clδ(A) = Γ∗(A) = ClΓ∗(A) =
ClΓ∗(Γ∗(A)).

Proof. This follows from Lemma 2.3(4) and Theorem 2.4(2).
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A subset S of a topological space (X, τ) is said to be δ-semiopen [11]
if S ⊆ Cl(Intδ(S)), equivalently if there exists a δ-open set U such
that U ⊆ S ⊆ Cl(U). We recall that Cl(U) = Clδ(U) for every open
set U of (X, τ).

Theorem 5.3. Let (X, τ, I) be an ideal topological space. The fol-
lowing properties are equivalent:

(1) I is δ-codense.
(2) G ⊆ Γ∗(G) for every G ∈ δO(X).
(3) S ⊆ Γ∗(S) for every δ-semiopen set S.
(4) Clδ(G) = Γ∗(G) for every G ∈ δO(X).
(5) Clδ(S) = Γ∗(S) for every δ-semiopen set S.
(6) Intδ(A) ⊆ Intδ(Γ

∗(A)) for every subset A of X.

Proof. (1) ⇒ (2): Let G ∈ δO(X) and x ∈ G. There exists G0 ∈
RO(X) such that x ∈ G0 ⊆ G. For any V ∈ RO(x), x ∈ G0 ∩ V ∈
RO(X). Since I is δ-codense, G0 ∩ V /∈ I and G ∩ V /∈ I and hence
x ∈ Γ∗(G). Therefore, G ⊆ Γ∗(G).
(2) ⇒ (3): Let S be a δ-semiopen set, then there exits V ∈ δO(X)
such that V ⊆ S ⊆ Clδ(V ). By Lemma 2.3(4), S ⊆ Clδ(V ) = Γ∗(V )
and hence S ⊆ Γ∗(V ) ⊆ Γ∗(S).
(3) ⇒ (4): Let G ∈ δO(X). Since every δ-open set is δ-semiopen, by
(3) G ⊆ Γ∗(G) and hence by Lemma 2.3(4) we have Clδ(G) = Γ∗(G).
(4) ⇒ (5): Let S be any δ-semiopen set. Then there exists G ∈ δO(X)
such that G ⊆ S ⊆ Γ∗(G). Therefore, by Lemma 2.3, Clδ(S) =
Clδ(G) = Γ∗(G) ⊆ Γ∗(S) ⊆ Clδ(S) and hence Clδ(S) = Γ∗(S).
(5) ⇒ (6): let A be any subset of X and x ∈ Intδ(A). There exists
U ∈ δO(X) such that x ∈ U ⊆ A. By (5), U ⊆ Clδ(U) = Γ∗(U) ⊆
Γ∗(A) and x ∈ Intδ(Γ

∗(A)). Therefore, Intδ(A) ⊆ Intδ(Γ
∗(A))

(6) ⇒ (1): Let ∅ ̸= V ∈ RO(X). Then there exists x ∈ V and
V = Intδ(V ) ⊆ Intδ(Γ

∗(V )) ⊆ Γ∗(V ) and hence V /∈ I. Therefore,
RO(X) ∩ I = ∅.

Proposition 5.4. Let (X, τ, I) be an ideal topological space.

(1) If B ∈ Br(X, τ, I) − I, then there exists A ∈ RO(X) − {∅}
such that B = A [mod I].

(2) Let I be δ-codense. Then B ∈ Br(X, τ, I) − I if and only if
there exists A ∈ RO(X)− {∅} such that B = A [mod I].

Proof. (1) Assume B ∈ Br(X, τ, I) − I, then B ∈ Br(X, τ, I). Then
there exists A ∈ RO(X) such that B = A [mod I]; (B−A)∪(A−B) ∈
I. Hence B − A ∈ I. Suppose that A = ∅. Then B ∈ I which is a
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contradiction.
(2) Assume there exists A ∈ RO(X)− {∅} such that B = A [mod I].
Then A = (B − J) ∪ I, where J = B − A ∈ I, I = A − B ∈ I. If
B ∈ I, then A ∈ I by heredity and additivity, which contradicts that
RO(X) ∩ I = ∅.

Proposition 5.5. Let (X, τ, I) be an ideal topological space and I be
δ-codense. If B ∈ Br(X, τ, I)− I, then ΨΓ∗(B) ∩ Intδ(Γ

∗(B)) ̸= ∅.
Proof. Assume B ∈ Br(X, τ, I)−I, then by Proposition 5.4(1), there
exists A ∈ RO(X) − {∅} such that B = A [mod I]. This implies
that ∅ ̸= A ⊆ Γ∗(A) = Γ∗((B − J) ∪ I) = Γ∗(B), where J = B −
A, I = A − B ∈ I by Theorem 5.3 and Corollary 2.5. Also ∅ ̸= A ⊆
ΨΓ∗(A) = ΨΓ∗(B) by Corollary 3.3 and Theorem 3.2 (11), so that
A ⊆ ΨΓ∗(B) ∩ Intδ(Γ

∗(B)).

Given an ideal topological space (X, τ, I), let U(X, τ, I) denote
{A ⊆ X : there exists B ∈ Br(X, τ, I)− I such that B ⊆ A}.
Proposition 5.6. Let (X, τ, I) be an ideal topological space and I be
δ-codense. The following properties are equivalent:

(1) A ∈ U(X, τ, I);
(2) ΨΓ∗(A) ∩ Intδ(Γ

∗(A)) ̸= ∅;
(3) ΨΓ∗(A) ∩ Γ∗(A) ̸= ∅;
(4) ΨΓ∗(A) ̸= ∅;
(5) IntΓ∗(A) ̸= ∅;
(6) There exists N ∈ RO(X) − {∅} such that N − A ∈ I and

N ∩ A /∈ I.
Proof. (1) ⇒ (2): Let A ∈ U(X, τ, I), then there exists B ∈
Br(X, τ, I) − I such that B ⊆ A. Then Intδ(Γ

∗(B)) ⊆ Intδ(Γ
∗(A))

and ΨΓ∗(B) ⊆ ΨΓ∗(A) and hence Intδ(Γ
∗(B)) ∩ ΨΓ∗(B) ⊆

Intδ(Γ
∗(A)) ∩ ΨΓ∗(A). By Proposition 5.5, we have ΨΓ∗(A) ∩

Intδ(Γ
∗(A)) ̸= ∅.

(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): The proof is obvious.
(4) ⇒ (5): If ΨΓ∗(A) ̸= ∅, then there exists U ∈ RO(X) − {∅} such
that U − A ∈ I. Since U /∈ I and U = (U − A) ∪ (U ∩ A), we
have U ∩ A /∈ I. By Theorem 3.2, ∅ ̸= (U ∩ A) ⊆ ΨΓ∗(U) ∩ A =
ΨΓ∗((U−A)∪(U∩A))∩A = ΨΓ∗(U∩A)∩A ⊆ ΨΓ∗(A)∩A = IntΓ∗(A).
Hence IntΓ∗(A) ̸= ∅.
(5) ⇒ (6): If IntΓ∗(A) ̸= ∅, then by Theorem 2.6 there exists
N ∈ RO(X) − {∅} and I ∈ I such that ∅ ̸= N − I ⊆ A. We
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have N − A ∈ I, N = (N − A) ∪ (N ∩ A) and N /∈ I. This implies
that N ∩ A /∈ I.
(6) ⇒ (1): Let B = N∩A /∈ I with N ∈ RO(X)−{∅} and N−A ∈ I.
Then B ∈ Br(X, τ, I)−I since B /∈ I and (B−N)∪(N−B) = N−A ∈
I.
Theorem 5.7. Let (X, τ, I) be an ideal topological space and I be
δ-codense. Then ΨΓ∗(A) ⊆ Γ∗(A) for every subset A of X.

Proof. Suppose x ∈ ΨΓ∗(A) and x /∈ Γ∗(A). Then there exists Ux ∈
RO(x) such that Ux ∩ A ∈ I. Since x ∈ ΨΓ∗(A), by Theorem 3.5
x ∈ ∪{U ∈ RO(X) : U − A ∈ I} and there exists V ∈ RO(X)
such that x ∈ V and V − A ∈ I. Now we have Ux ∩ V ∈ RO(x),
(Ux ∩ V ) ∩ A ∈ I and (Ux ∩ V )− A ∈ I by heredity. Hence by finite
additivity we have ((Ux ∩ V ) ∩ A) ∪ ((Ux ∩ V ) − A) = (Ux ∩ V ) ∈ I.
Since (Ux∩V ) ∈ RO(x), this is contrary to RO(X)∩I = ∅. Therefore,
x ∈ Γ∗(A). This implies that ΨΓ∗(A) ⊆ Γ∗(A).

Corollary 5.8. Let (X, τ, I) be an ideal topological space and I be
δ-codense. Then ΨΓ∗(A) ⊆ Clδ(Γ

∗(A)) for every subset A of X.

Theorem 5.9. Let (X, τ, I) be an ideal topological space and I be
δ-codense. Then ΨΓ∗(A) ∩ΨΓ∗(X − A) = ∅ for every subset A of X.

Proof. Assume that z ∈ ΨΓ∗(A) ∩ ΨΓ∗(X − A) for some z ∈ X, then
there exist regular open sets U, V containing z such that U−A ∈ I and
V ∩A ∈ I, respectively. Hence (U ∩ V )−A ∈ I and (U ∩ V )∩A ∈ I
so U ∩ V ∈ I and U ∩ V ∈ RO(X). Since I is δ-codense, we have
U∩V = ∅. This is a contradiction. Hence ΨΓ∗(A)∩ΨΓ∗(X−A) = ∅.
Corollary 5.10. Let (X, τ, I) be an ideal topological space and I be
δ-codense. Then Γ∗(A) ∪ Γ∗(X − A) = X for every subset A of X.

Theorem 5.11. Let (X, τ, I) be an ideal topological space. Then the
following properties are equivalent:

(1) I is δ-codense;
(2) ΨΓ∗(∅) = ∅;
(3) If A ⊆ X is regular closed, then ΨΓ∗(A)− A = ∅;
(4) If I ∈ I, then ΨΓ∗(I) = ∅.

Proof. (1) ⇒ (2): Since RO(X) ∩ I = ∅, by Theorem 3.5 we have
ΨΓ∗(∅) = ∪{U ∈ RO(X) : U ∈ I} = ∅.
(2) ⇒ (3): Suppose x ∈ ΨΓ∗(A)− A, then there exists a Ux ∈ RO(x)
such that x ∈ Ux −A ∈ I and Ux −A ∈ RO(X). But Ux −A ∈ {U ∈
RO(X) : U ∈ I} = ΨΓ∗(∅) which implies that ΨΓ∗(∅) ̸= ∅. Hence



LOCAL FUNCTION Γ∗ IN IDEAL TOPOLOGICAL SPACES 15

ΨΓ∗(A)− A = ∅.
(3) ⇒ (4): Let I ∈ I and since ∅ is regular closed, then ΨΓ∗(I) =
ΨΓ∗(I ∪ ∅) = ΨΓ∗(∅) = ∅.
(4) ⇒ (1): Suppose A ∈ RO(X)∩I, then A ∈ I and by (4) ΨΓ∗(A) =
∅. Since A ∈ RO(X), by Corollary 3.3 we have A ⊆ ΨΓ∗(A) = ∅.
Hence RO(X) ∩ I = ∅.

Definition 5.12. A subset A in an ideal topological space (X, τ, I) is
said to be IR-dense if Γ∗(A) = X.

The collection of all IR-dense sets in (X, τ, I) is denoted by
IRD(X, τ). The collection of all dense sets in (X, τ) is denoted by
D(X, τ). Now we show that the collection of dense sets in a topo-
logical space (X, τΓ∗) and the collection of IR-dense sets in an ideal
topological space (X, τ, I) are equal if I is δ-codense.

Theorem 5.13. Let (X, τ, I) be an ideal topological space. If I is
δ-codense , then IRD(X, τ) = D(X, τΓ∗).

Proof. Let D ∈ IRD(X, τ). Then ClΓ∗(D) = D ∪ Γ∗(D) = X, i.e.
D ∈ D(X, τΓ∗). Therefore, IRD(X, τ) ⊆ D(X, τΓ∗).

Conversely, let D ∈ D(X, τΓ∗). Then ClΓ∗(D) = D ∪ Γ∗(D) =
X. We prove that Γ∗(D) = X. Let x ∈ X such that x /∈ Γ∗(D).
Therefore there exists ∅ ̸= U ∈ RO(X) such that U ∩ D ∈ I. Since
U /∈ I, U ∩ (X − D) /∈ I and hence U ∩ (X − D) ̸= ∅. Let x0 ∈
U ∩ (X −D). Then x0 /∈ D and also x0 /∈ Γ∗(D). Because x0 ∈ Γ∗(D)
implies that U ∩ D /∈ I which is contrary to U ∩ D ∈ I. Thus
x0 /∈ D ∪ Γ∗(D) = ClΓ∗(D) = X. This is a contradiction. Therefore,
we obtain D ∈ IRD(X, τ). Therefore, D(X, τΓ∗) ⊆ IRD(X, τ). Hence
IRD(X, τ) = D(X, τΓ∗).

Theorem 5.14. Let (X, τ, I) be an ideal topological space. Then for
x ∈ X, X − {x} is IR-dense if and only if ΨΓ∗({x}) = ∅.

Proof. The proof follows from the definition of IR-dense sets, since
ΨΓ∗({x}) = X − Γ∗(X − {x}) = ∅ if and only if X = Γ∗(X − {x}).

Proposition 5.15. Let (X, τ, I) be an ideal topological space and I be
δ-codense. Then ΨΓ∗(A) ̸= ∅ if and only if A contains the nonempty
τΓ∗-interior.

Proof. Let ΨΓ∗(A) ̸= ∅. By Theorem 3.5(1), ΨΓ∗(A) = ∪{U ∈
RO(X) : U−A ∈ I} and there exists a nonempty set U ∈ RO(X) such
that U − A ∈ I. Let U − A = P , where P ∈ I. Now U − P ⊆ A. By
Theorem 2.6, U − P ∈ τΓ∗ and A contains the nonempty τΓ∗-interior.
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Conversely, suppose that A contains the nonempty τΓ∗-interior.
Hence there exists U ∈ RO(X) and P ∈ I such that U − P ⊆ A.
So U − A ⊆ P . Let H = U − A ⊆ P , then H ∈ I. Hence
∪{U ∈ RO(X) : U − A ∈ I} = ΨΓ∗(A) ̸= ∅.
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[3] D. Janković and T. R. Hamlet, New topologies from old via ideals, Amer.
Math. Monthly, 97 (1990), 295-310.

[4] K. Kuratowski, Topology I, Academic Press (New York, 1966).
[5] N. Levine, Semi-open sets and semi-continuity in topological spaces,

Amer. Math. Monthly, 70 (1963), 36-41.
[6] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T 1

2
,

Mem. Fac. Sci. Kochi. Univ. Ser. A Math., 17 (1996), 33–42.
[7] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.

D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
[8] O. Nj̊astad, Remarks on topologies defined by local properties, Anh.

Norske Vid.-Akad. Oslo (N. S.), 8 (1966), 1-6.
[9] T. Noiri, On α-continuous functions, Časopis Pěst. Mat., 109 (1984), 118-
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