"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 26(2016), No. 1, 25-38 Rel-LOCALLY CONNECTED SPACES

J. K. KOHLI, D. SINGH AND B. K. TYAGI

Abstract: A new generalization of local connectedness called ' R_{cl} -local connectedness' is introduced. Basic properties of R_{cl} -locally connected spaces are studied and their place in the hierarchy of variants of local connectedness which already exist in the literature is discussed. R_{cl} -local connectedness is preserved in the passage to r_{cl} -open sets and is invariant under disjoint topological sums. A necessary and sufficient condition for a product of R_{cl} -local connectedness under mappings is investigated. It is shown that R_{cl} -local connectedness under quotients and an r_{cl} -quotient of an R_{cl} -locally connected space is locally connected. The category of R_{cl} -locally connected spaces is properly contained in the category of sum connected spaces (Math. Nachrichten 82(1978), 121-129; Ann. Acad. Sci. Fenn. AI Math. 3 (1977), 185-205) and constitutes a mono-coreflective subcategory of TOP.

Keywords and phrases: R_{cl} -locally connected space, sum connected space, r_{cl} -open set, R_{cl} -space, mildly compact space, mono-coreflective subcategory.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 54D05;54A10, 54C05, 54C08, 54C10, 54C35.

1. INTRODUCTION:

Local connectedness is an important topological property. Several variants / generalizations of local connectedness occur in mathematical literature. For example see ([12] [24] [26] [29] [33]). The full subcategory of locally connected spaces is a mono-coreflective subcategory of TOP (\equiv the category of topological spaces and continuous maps) [10].

However, the larger category of almost locally connected spaces [29] is not a coreflective subcategory of TOP. In ([24] [26]) the categories of quasi (pseudo) locally connected spaces and Z-locally connected spaces are introduced and are shown to be mono-coreflective subcategories of TOP. In this paper we introduce the category of ' R_{cl} -locally connected spaces' which also turns out to be a mono-coreflective subcategory of TOP.

The category of R_{cl} -locally connected spaces is properly contained in the category of sum connected spaces [15] which in its turn strictly contains each of the categories of almost (quasi, pseudo) locally connected spaces as well as the category of Z-locally connected spaces. Organization of the paper is as follows: Section 2 is devoted to preliminaries and basic definitions. In Section 3 we introduce the notion of an ' R_{cl} -locally connected space' and reflect upon its place in the hierarchy of variants of local connectedness that already exist in the literature. Basic properties of R_{cl} -locally connected spaces are studied in Section 4, wherein it is shown that (i) An R_{cl} -locally connected, R_{cl} -space is locally connected; (ii) A T_0 R_{cl} -locally connected, R_{cl} -space is discrete; (iii) A mildly compact R_{cl} -locally connected space has at most finitely many components; (iv) R_{cl} -local connectedness is r_{cl} -open hereditary and is preserved under disjoint topological sums; (v) A product theorem for R_{cl} -locally connected spaces is formulated and proved. Section 5 is devoted to investigate the interplay / preservation under mappings wherein it is shown that (i) R_{cl} -local connectedness is preserved under quotients; and (ii) r_{cl} -quotient of an R_{cl} -locally connected space is locally connected. In Section 6 we consider function spaces of R_{cl} locally connected spaces. Section 7 is devoted to discuss the technique of change of topology and its correlation with R_{cl} -locally connected spaces.

2. Preliminaries, basic definitions and almost locally connected spaces.

Let X be a topological space. A subset A of X is said to be **regular open** if it is the interior of its closure, i.e., $A = \overline{A}^{\circ}$ The complement of a regular open set is referred to as a **regular closed** set. A union of regular open sets is called δ -open [42]. The complement of a δ -open set is referred to as a δ -closed set. A subset A of a space X is called **regular** G_{δ} -set [28] if A is an intersection of a sequence of closed sets whose interiors contain A, i.e., if $A = \bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} F_n^0$, where each F_n is a closed subset of X (here F_n^0 denotes the interior of F_n). The complement of a regular G_{δ} -set is called a **regular** F_{σ} -set. A subset A of a space X is called $\mathbf{d}_{\delta} - \mathbf{open}$ [18] if for each $x \in A$, there exists a regular F_{σ} -set H such that $x \in H \subseteq A$; equivalently, A is expressible as a union of regular F_{σ} -sets. A point $x \in X$ is called a θ -adherent **point** [42] of $A \subset X$ if every closed neighbourhood of x intersects A. Let $cl_{\theta}A$ denote the set of all θ -adherent points of A. The set A is called θ -closed [42] if $A = cl_{\theta}A$. The complement of a θ -closed set is referred to as a θ -open set. The correspondence $A \to A_{\theta}$ is not a Kuratowski closure closure operator since it is not idempotent. However, it is Cech closure operator in the sense of [7].

2.1 Definitions. A function $f : X \to Y$ from a topological space X into a topological space Y is said to be

(i) strongly continuous [27] if $f(\overline{A}) \subset f(A)$ for every subset A of X.

(ii) perfectly continuous ([23] [34]) if $f^{-1}(V)$ is clopen in X for every open set $V \subset Y$.

(iii) cl-supercontinuous [36] (= clopen continuous [35]) if for each $x \in X$ and each open set V containing f(x), there is a clopen set U containing x such that $f(U) \subset V$.

2.2 Definitions: A topological space X is said to be

(i) almost locally connected ([29] [33]) if for each $x \in X$ and each regular open set U containing x there exists a connected open set V containing x such that $V \subset U$.

(ii) quasi (pseudo) locally connected [24] if for each $x \in X$ and each θ -open set (regular F_{σ} -set) U containing x there is an open connected set V containing x such that $V \subset U$. (iii) **Z-locally connected** [26] if for each $x \in X$ and each cozero set U containing x there exists an open connected set V such that $x \in V \subset U$.

(iv) sum connected [15] if each $x \in X$ has a connected neighbourhood, or equivalently each component of X is open in X.

Sum connected spaces have also been referred to as weakly locally connected spaces in the literature (see [6] [30] [32]).

For the categorical terms used but not defined in the paper we refer the reader to Herrlich and Strecker ([10] [11]).

3. R_{cl} -locally connected spaces

Let X be a topological space. Any intersection of clopen subsets of X is called **cl-closed** [36]. The complement of a cl-closed set is referred to as **cl-open**. An open set U of X is said to be r_{cl} -**open** [41] if for each $x \in U$ there exists a cl-closed set C_x containing x such that $C_x \subset U$; equivalently U is expressible as a union of cl-closed sets. The complement of an r_{cl} -open set is called r_{cl} -**closed**. Not every open set in a space is r_{cl} -open. For example, no nonempty proper open subset of the real line \mathbb{R} is r_{cl} -open. On the other hand, if X is a zero dimensional space, then every open subset of X is r_{cl} -open.

3.1 Definition ([20] [41]): A topological space X is said to be an R_{cl} -space if every open set in X is r_{cl} -open.

Clearly every zero dimensional space as well as every ultra Hausdorff space is an R_{cl} -space. However, the space of strong ultrafilter topology [40, Example 113, p. 135] is a Hausdorff, extremally disconnected, R_{cl} space but not a zero dimensional space. A nondegenerate indiscrete space is an R_{cl} -space which is not ultra Hausdorff.

3.2 Definition: A topological space X is said to be R_{cl} -locally connected at $x \in X$ if for each r_{cl} -open set U containing x there exists an open connected set V such that $x \in V \subset U$. The space X is said to be R_{cl} -locally connected if it is R_{cl} -locally connected at each $x \in X$.

Clearly every locally connected space is R_{cl} -locally connected. However, an R_{cl} -locally connected space need not be locally connected. On the other hand, every R_{cl} -space, which is R_{cl} -locally connected is locally connected (see Proposition 4.1). The following diagram well illustrates the place of R_{cl} -local connectedness in the hierarchy of variants of local connectedness which already exist in the literature.

locally connected \rightarrow almost locally connected \rightarrow quasi locally connected

4. Basic properties of R_{cl} -locally connected spaces

4.1 Proposition. An R_{cl} -space which is R_{cl} -locally connected is locally connected.

Proof: In an R_{cl} -space every open set is r_{cl} -open.

4.2 Proposition. Every R_{cl} -locally connected space is sum connected.

Proof: This is immediate in view of [26, Proposition 3.5] and the fact that every clopen set is r_{cl} -open.

4.2 Proposition. A T_0 R_{cl} - space is totally disconnected.

Proof: Let X be a T_0 R_{cl} -space. Let A be any subset of X having two or more points. We shall show that A is not connected. To this end, let $x, y \in A, x \neq y$.Since X is a T_0 -space, there exists an open set U containing one of the points x and y but not both. To be precise, assume that $x \in U$.Since X is an R_{cl} -space, there exists a cl-closed set B such that $x \in B \subset U$. Let $B = \bigcap \{C_\alpha : \alpha \in \Lambda\}$, where each C_α is a clopen set. Then there exists an $\alpha_0 \in \Lambda$ such that $x \in C_{\alpha_0}$ and $y \notin C_{\alpha_0}$.Then $(A \bigcap C_{\alpha_0}) \bigcup (A \bigcap (X \setminus C_{\alpha_0}))$ is a partition of A and so A is disconnected. Thus the space X is totally disconnected.

4.4 Theorem: A space X is R_{cl} -locally connected if and only if each component of every r_{cl} -open subset of X is open in X.

Proof: Suppose that X is an R_{cl} -locally connected space and let U be an r_{cl} -open subset of X. Let C be a component of U and let $x \in C$. Since X is R_{cl} -locally connected, there exists an open connected set V such that $x \in V \subset U$. In view of maximality of C and connectedness of $V, V \subset C$. Thus C, being a neighbourhood of each of its points, is open in X.

Conversely, suppose that the components of r_{cl} -open sets are open in X. Let $x \in X$.Let W be an r_{cl} -open set in X containing x and let C be the component of x in W. By hypothesis C is an open connected set and so X is R_{cl} -locally connected at x.

4.5 Proposition: In an R_{cl} -locally connected space, components and quasicomponents coincide in every r_{cl} -open set.

Proof: Let X be an R_{cl} -locally connected space and let U be an r_{cl} -open set in X. Then in view of Theorem 4.4 any component of U is open in U and hence in X. Thus every quasicomponent of U, being a union of components, is open. Since every open quasicomponent is a component, the result is immediate.

4.6 Proposition: A T_0 sum connected, R_{cl} -space is discrete.

Proof: This is immediate in view of Proposition 4.3 and fact that components are open in a sum connected space. (see also [26, proposition 3.5])

4.7 Corollary [26, Proposition 3.10]: A T_0 zero dimensional sum connected space is discrete.

Proof: Every zero dimensional space is an R_{cl} -space.

4.8 Definition ([38] [39]): A space X is said to be mildly compact if every clopen cover of X has a finite subcover.

Sostak refers mildly compact spaces as clustered spaces in [38].

4.9 Proposition: Every mildly compact R_{cl} -locally connected space has at most finitely many components.

Proof: By Proposition 4.2 every R_{cl} -locally connected space is sum connected, so the result follows in view of [26, Proposition3.6].

4.10 Corollary: Every pseudocompact, R_{cl} -locally connected space has at most finitely many components.

4.11 Corollary ([15, Proposition 2.16]): Every pseudocompact sum connected space has at most finitely many components.

4.12 Theorem: Every r_{cl} -open subspace of an R_{cl} -locally connected space X is R_{cl} -locally connected space.

Proof: Let Y be an r_{cl} -open subspace of an R_{cl} -locally connected X. Let U be an r_{cl} -open subset of Y. In view of r_{cl} -openness of Y in X, it is easily verified that U is r_{cl} -open subset of X. Let $x \in U$. Since X is R_{cl} -locally connected, there exists a connected open set C in X such that $x \in C \subset U$. Clearly, C is an open connected subset of Y and so Y is R_{cl} -locally connected.

4.13 Theorem: Every r_{cl} -open cover of an R_{cl} -locally connected space has a refinement consisting of open connected sets.

Proof: Let X be an R_{cl} -locally connected space and let $\wp = \{V_{\alpha} : \alpha \in \Lambda\}$ be an r_{cl} -open cover of X. Since by Theorem 4.4 components of r_{cl} -open sets in an R_{cl} -locally connected space are open, components of

30

members of \wp constitute a refinement of \wp consisting of open connected sets.

4.14 Theorem: Every clopen cover of a sum connected space has a refinement consisting of clopen connected sets.

Proof: This is immediate in view of the fact that in a sum connected space components are open.

4.15 Theorem: The disjoint topological sum of any family of R_{cl} -locally connected spaces is R_{cl} -locally connected.

Proof: Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be any family of R_{cl} -locally connected spaces and let $X = \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ be their disjoint topological sum. Let Ube any r_{cl} -open set in X and let $x \in U$. Then there exists $\beta \in \Lambda$ such that $x \in U \bigcap X_{\beta}$. It is easily verified that $U \bigcap X_{\beta}$ is an r_{cl} -open set in X_{β} . Since X_{β} is R_{cl} -locally connected, there exists a connected open set C in X_{β} containing x such that $C \subset U \bigcap X_{\beta}$. Clearly C is a connected open set in X and so X is R_{cl} -locally connected.

4.16 Lemma: Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be a family of spaces and let $X = \prod X_{\alpha}$ be the product space. If $x = (x_{\alpha}) \in X$ and V is an r_{cl} -open set in the product space containing x, then there exists a basic r_{cl} -open set $\prod V_{\alpha}$ such that $x \in \prod V_{\alpha} \subset V$, where V_{α} is an r_{cl} -open set in X_{α} for each $\alpha \in \Lambda$ and $V_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in \Lambda$.

Proof: Since V is an open set in the product space X containing $x = (x_{\alpha})$, there exists a basic open set $B = \prod B_{\alpha}$ in X containing x, where $B_{\alpha} = X_{\alpha}$ for $\alpha \neq \alpha_1, ..., \alpha_n$ and each B_{α} is open in X_{α} and $B \subset V$.

Since V is an r_{cl} -open set in the product space containing x, for each $\alpha = \alpha_i$ (i = 1, ..., n), there exists an r_{cl} -open set V_{α_i} in X_{α_i} such that $x_{\alpha_i} \in V_{\alpha_i} \subset B_{\alpha_i} \subset p_{\alpha_i}(V)$. Then $\prod V_{\alpha} = \prod_{\alpha \neq \alpha_1,...,\alpha_n} X_{\alpha} \times V_{\alpha_1} \times ... \times V_{\alpha_n}$ is the required basic r_{cl} -open set in the product space containing x and contained in V.

4.17 Theorem: Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be any family of R_{cl} -locally connected spaces. Then their product $X = \prod X_{\alpha}$ is R_{cl} -locally connected if and only if all except finitely many coordinate spaces are connected,

Proof: Suppose that the product space $X = \prod X_{\alpha}$ is R_{cl} -locally connected. Since projection maps are continuous open maps and in view of the fact that continuous open images of R_{cl} -locally connected spaces are R_{cl} -locally connected (see Corollary 5.2), each X_{α} is an R_{cl} locally connected space. Again, since if W is an open connected set in X, then $p_{\alpha}(W) = X_{\alpha}$ for all but finitely many α , where $p_{\alpha} : \prod X_{\alpha} \to$ X_{α} denotes the projection map, and so all except finitely many X_{α} are connected. Conversely, let $\{X_{\alpha} : \alpha \in \Lambda\}$ be a family of R_{cl} -locally connected spaces such that each X_{α} is connected except for $\alpha \neq \alpha_1, ..., \alpha_n$ and let $X = \prod X_{\alpha}$ be the product space. Let $S = \{\alpha_1, ..., \alpha_n\}$. Let $x = (x_{\alpha}) \in X$ and let G be a r_{cl} -open set in the product space X containing x. By Lemma 4.16, there is a basic r_{cl} -open set $\prod G_{\alpha}$ such that $x \in \prod G_{\alpha} \subset G$, where G_{α} is an r_{cl} -open set and $G_{\alpha} = X_{\alpha}$ except for finitely many $\alpha \neq \beta_1, ..., \beta_m$.Let $T = \{\beta_1, ..., \beta_m\}$. Since each X_{α} is R_{cl} -locally connected, for each $\alpha \in T$ there exists an open connected set V_{α} such that $x_{\alpha} \in V_{\alpha} \subset G_{\alpha}$. Similarly, for each $\alpha \in S$, let U_{α} be an open connected set such that $x_{\alpha} \in U_{\alpha} \subset G_{\alpha}$. Let

$$W_{\alpha} = \begin{cases} X_{\alpha} \text{ if } \alpha \notin S \bigcup T, \\ U_{\alpha} \text{ if } \alpha \in S, \\ V_{\alpha} \text{ if } \alpha \in T \backslash S \end{cases}$$

Then $W = \prod W_{\alpha}$ is a connected open set in X containing x such that $W \subset G$. Thus the product space $X = \prod X_{\alpha}$ is R_{cl} -locally connected.

5. Preservation of R_{cl} -local connectedness under MAPPINGS

5.1 Theorem: Every quotient of an R_{cl} -locally connected space is R_{cl} -locally connected.

Proof: Let $f: X \to Y$ be a quotient map of an R_{cl} -locally connected space X onto Y. To prove that Y is an R_{cl} -locally connected space, let V be an r_{cl} -open set in Y. Then $f^{-1}(V)$ is a r_{cl} -open set in X. Let C be a component of V. In view of Theorem 4.4, it suffices to show that C is open in Y or equivalently $f^{-1}(C)$ is open in X. To this end, suppose that $x \in f^{-1}(C)$.Let C_x be the component of $f^{-1}(V)$ containing x. Then $f(C_x)$ is a connected set containing f(x), and so $f(C_x) \subset C$. Thus $x \in C_x \subset f^{-1}(C)$.Since X is R_{cl} -locally connected, and since $f^{-1}(V)$ is r_{cl} -open, by Theorem 4.4 C_x is open in X and so $f^{-1}(C)$ is open being a neighbourhood of each of its points.

5.2 Corollary: Continuous open (closed) images, adjunctions and inductive limits of R_{cl} -locally connected spaces are R_{cl} -locally connected.

Proof: Since continuous open (closed) maps are quotient maps, the corollary is immediate in view of Theorems 4.15 and 5.1.

5.3 Corollary: If a product space is R_{cl} -locally connected, then so is each of its factors.

We recall that a function $f : X \to Y$ is said to be R_{cl} -supercontinuous [41] if for $x \in X$ and each open set V in Y containing f(x) there exists an r_{cl} -open set U containing x such that $f(U) \subset V$.

5.4 Theorem: Let $f : X \to Y$ be a quotient map which is an R_{cl} -supercontinuous surjection. If X is an R_{cl} -locally connected space, then Y is locally connected.

Proof: Let $y \in Y$ and let V be an open set containing y. Since f is R_{cl} -supercontinuous, $f^{-1}(V)$ is an r_{cl} -open set in X. Again, since X is R_{cl} -locally connected, for each $x \in f^{-1}(y)$ there exists an open connected set N_x containing x such that $N_x \subset f^{-1}(V)$. Then each $f(N_x)$ is a connected set containing y. Let $N = \bigcup \{f(N_x) : x \in f^{-1}(y)\}$. Then $N \subset V$ and N is a connected set, being union of connected sets having the common point y. Since f is a quotient map, N is a connected open set containing y and so Y is locally connected.

5.5 Definition [41]: Let $p: X \to Y$ be a function from a topological space X onto a set Y. The collection of all subsets $A \subset Y$ such that $p^{-1}(A)$ is an r_{cl} -open set in X is a topology on Y, called the r_{cl} -quotient topology. The map p is called the r_{cl} -quotient map and the space Y with r_{cl} -quotient topology is called an r_{cl} -quotient space.

5.6 Remark: The function f in the above theorem is precisely the r_{cl} -quotient map and Y is equipped with r_{cl} -quotient topology (see [41]). Thus paraphrasing Theorem 5.4 we can say that an r_{cl} -quotient of an R_{cl} -locally connected space is locally connected.

Since co-product and extremal quotient objects in TOP are disjoint topological sums and quotients maps, respectively, a characterization of mono-coreflective subcategories of TOP [10, Theorem 6] together with Theorems 4.15 and 5.1 yield the following.

5.7 Theorem: The full subcategory of R_{cl} -locally connected spaces is a mono-coreflective subcategory of TOP containing the full subcategory of almost locally connected spaces.

6. Function spaces and R_{cl} -locally connected spaces.

It is a well known fact in the theory of function spaces that the function space C(X, Y) of all continuous functions from a topological space X into a uniform space Y is not closed in the topology of pointwise convergence; however, it is closed in the topology of uniform convergence. Moreover, it is of fundamental importance in analysis, topology and other branches of mathematics to know that whether a given function space is closed / compact / complete in the topology of uniform convergence / pointwise convergence. So it is of considerable significance for intrinsic interest as well as from applications view point to formulate conditions on the spaces X, Y and subsets of C(X, Y) to be closed / compact in the topology of pointwise convergence / uniform convergence. Results of this nature and Ascoli type theorems abound in the literature (see [2] [13]). In this direction, Naimpally [31] showed that if X is locally connected and Y is Hausdorff, then the set S(X, Y)of all strongly continuous functions from X into Y is closed in Y^X in the topology of pointwise convergence. Kohli and Singh [19] extended Naimpally's result to a larger framework, wherein it is shown that if X is sum connected (in particular X is connected or locally connected) and Y is Hausdorff, then the function space P(X, Y) of all perfectly continuous functions is closed in Y^X in the topology of pointwise convergence.

In view of Proposition 4.2 every R_{cl} -locally connected space is sum connected. So by [19, Theorem 3.7 and Proposition 3.8] we conclude with the following.

6.1 Corollary: If X is an R_{cl} -locally connected space and Y is Hausdorff, then S(X, Y) = P(X, Y) = L(X, Y) is closed in Y^X in the topology of pointwise convergence. Furthemorer, if Y is compact, then S = P = L is a compact Hausdorff subspace of Y^X in the topology of pointwise convergence.

6.2 Remark: More recently results of Kohli and Singh [19] have been considerably strengthened to a larger framework of spaces and functions. For examples see ([1] [17] [22] [25]). In the light of these developments Corollary 6.1 can be extended / strengthened accordingly to a larger framework of spaces and functions.

7. Change of Topology and R_{cl} -locally connected spaces.

The technique of change of topology of a space is frequently employed in mathematics and is of considerable significance. It is widely used in functional analysis, topology and several other branches of mathematics. For example, weak and weak* topologies of a Banach space and its dual, weak and strong operator topologies on B(H) the space of operators on a Hilbert space H, the hull kernel topology and the multitude of other topologies on Id(A) the space of closed two sided ideals of a Banach algebra A (see [3] [4] [5] [37]). Moreover, to taste the flavour of applications of the technique in the topology see ([8] [9] [14] [16] [21] [43]). In this section we retopologize the topology of an R_{cl} -locally connected space (X, τ) such that it transforms into a locally connected space.

7.1 Let (X, τ) be a topological space. Let B_{cl} denote the collection of all clopen subsets of the space (X, τ) . Since the intersection of two clopen sets is again a clopen set, the collection B_{cl} is a base for a topology τ_{cl} on X. The member of τ_{cl} are called cl-open sets. The topology τ_{cl} has been adequately used in literature (see [36] [39]). Staum calls 'cl-open' sets as 'quasi open' in [39].

7.2 Let (X, τ) be a topological space. Let $\tau_{r_{cl}}$ denote the set of all r_{cl} -open subsets of the space (X, τ) . Since arbitrary unions and finite intersections of r_{cl} -open sets is r_{cl} -open, the collection $\tau_{r_{cl}}$ is indeed a topology for X. Clearly $\tau_{r_{cl}} \subset \tau$. The topology $\tau_{r_{cl}}$ has been defined and used in ([20] [41]).

7.3 Lemma: Since every cl-open set is r_{cl} -open which in turn is open, we have $\tau_{cl} \subset \tau_{r_{cl}} \subset \tau$.

7.4 Lemma: The spaces $(X, \tau), (X, \tau_{r_{cl}})$ and (X, τ_{cl}) have the same class of clopen sets and so have the same class of clopen sets as well as the same class of connected sets.

7.5 Lemma: Every $\tau_{r_{cl}}$ -connected set is τ -connected.

Proof: Let C be a connected subspace of $(X, \tau_{r_{cl}})$. To show that C is a connected subspace of (X, τ) , assume the contrary. Let $C = A \bigcup B$ be a partition of C in (X, τ) , i.e., A and B are nonempty relatively clopen subsets of (X, τ) . In view of Lemma 7.4 it follows that A and B are nonempty relatively clopen subsets of $(X, \tau_{r_{cl}})$, which contradicts the fact that C is a connected subspace of $(X, \tau_{r_{cl}})$.

7.6 Theorem: If the space $(X, \tau_{r_{cl}})$ is locally connected, then the space (X, τ) is R_{cl} -locally connected.

Proof: Suppose that the space $(X, \tau_{r_{cl}})$ is locally connected. Let $x \in X$ and let U be an open set in $(X, \tau_{r_{cl}})$ containing x. Since the space $(X, \tau_{r_{cl}})$ is locally connected, there exists an open connected set V in $(X, \tau_{r_{cl}})$ such that $x \in V \subset U$. By Lemma 7.3, V is open in (X, τ) . Again in view of Lemma 7.5 it follows that V is connected in the space (X, τ) . Thus the space (X, τ) is R_{cl} -locally connected.

We conclude the section by raising the following question for the interested reader.

7.7 Question: Is the converse of Theorem 7.6 true?

References

- [1] J. Aggarwal, D. Singh and J.K. Kohli, Pseudo cl-supercontinuous functions and closedness / compactness of their function spaces (preprint).
- [2] A.V. Arhangel'skii, General Topology III, Springer Verlag, Berlin Heidelberg, 1995.
- [3] F. Beckhoff, Topologies on the space of ideals of a Banach algebra, Stud. Math. 115(1995), 189-205.
- [4] F. Beckhoff, Topologies of compact families on the ideal space of a Banach alegebra, Stud. Math. 118(1996), 63-75.
- [5] F. Beckhoff, Topologies on the ideal space of a Banach algebra and spectral synthesis, Proc. Amer. Math. Soc. 125(1997), 2859-2866.
- [6] N. Bourbaki, Elements of Mathematics, General Topology, Part I, Hermann / Addison Wesely, Paris / Reading, Massachusets, 1966.
- [7] Eduard Cech, Topological spaces, Czechoslovak Akademy of Sciences, Prague, 1966.
- [8] D. Gauld, M. Mrsevic, I. L. Reilly and M. K. Vamanamurthy, Continuity properties of functions, Coll. Math. Soc. Janos Bolyai 41(1983), 311-322.
- [9] A. M. Gleason, Universal locally connected refinements, Illinois J. Math. 7(1963), 521-531.
- [10] H. Herrlich and G. E. Strecker, Coreflective subcategories, Trans. Amer. Math. Soc. 157(1971), 205-226.
- [11] H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon Inc., Boston, 1973.
- [12] J. G. Hocking and G. S. Young, **Topology**, Addison-Wesley Publishing Company Inc. Reading, Massachusetts, 1961.
- [13] J. L. Kelly, General Topology, Van Nostrand, New York, 1955.
- [14] J. K. Kohli, A class of mappings containing all continuous and all semiconnected mappings, Proc. Amer. Math. Soc. 72 (1) (1978), 175-181.
- [15] J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math.Nachrichten 82(1978), 121-129.
- [16] J. K. Kohli, Change of topology, characterizations and product theorems for semilocally P-spaces, Houston J. Math. 17(3) (1991), 335-350.
- [17] J. K. Kohli and J. Aggarwal, Quasi cl-supercontinuous functions and their function spaces, Demonstratio Math. 45(3) (2012), 677-697.
- [18] J. K. Kohli and D. Singh, Between weak continuity and set connectedness, Studii Si Cercetari Stintifice Seria Mathematica, Nr. 15(2005), 55-65.
- [19] J. K. Kohli and D. Singh, Function spaces and strong variants of continuity, Applied Gen. Top. 9(1) (2008), 33-38.
- [20] J. K. Kohli and D. Singh, R_{cl} -spaces and closedness / completeness of certain function spaces in the topology of uniform convergence, Applied Gen. Top. 15(2) (2014), 155-166.
- [21] J. K. Kohli, D. Singh and J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 33(3) (2010), 703-723.

- [22] J. K. Kohli, D. Singh, J. Aggarwal and M. Rana, Pseudo perfectly continuous functions and closedness / compactness of their function spaces, Applied Gen. Top. 14(1) (2013), 115-134.
- [23] J. K. Kohli, D. Singh and C. P. Arya, Perfectly continuous functions, Stud. Cerc. St. Ser. Mat. Nr. 18 (2008), 99-110.
- [24] J. K. Kohli, D. Singh and B. K. Tyagi, Quasi locally connected spaces and pseudo locally connected spaces, Commentation Math. 50(2) (2010), 183-199.
- [25] J. K. Kohli, D. Singh and B. K. Tyagi, Quasi perfectly continuous functions and their function spaces, Sci. Stud. Res., Ser. Math. Inform., 21(2) (2011), 23-40.
- [26] J. K. Kohli, D. Singh and B. K. Tyagi, Between local connected spaces and sum connectedness, Commentat. Math. Univ. Carol. 53(1) (2013), 3-16.
- [27] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67 (1960), 269.
- [28] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc.148 (1970), 265-272.
- [29] V. J. Mancuso, Almost locally connected spaces, J. Austral. Math. Soc. 31(1981), 421-428.
- [30] J. R. Munkres, **Topology**, Second Edition, Pearson Prentice Hall, 2008.
- [31] S. A. Naimpally, On strongly continuous functions, Amer. Math. Monthly, 74(1967), 166-168.
- [32] T. Nieminen, On ultra pseudo compact and related spaces, Ann. Acad. Sci. Fenn. A I Math. 3(1977), 185-205.
- [33] T. Noiri, On almost locally connected spaces, J. Austral. Math. Soc. 34(1984), 258-264.
- [34] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl.Math.15(3) (1984), 241-250.
- [35] I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J.Pure. Appl.Math.14(6) (1983), 767-772.
- [36] D. Singh, cl-supercontinuous functions, Applied General Topology, 8(2) (2007), 293-300.
- [37] D. W. B. Somerset, Ideal spaces of Banach algebras, Proc. London Math. Soc. 78(3) (1999), 369-400.
- [38] A. Sostak, On a class of topological spaces containing all bicompact and connected spaces, General Topology and its Relations to Modern Analysis and Algebra IV: Proceedings of the 4th Prague Topological Symposium 1976, Part B, 445-451.
- [39] R. Staum, The Algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50(1) (1974), 169-185.
- [40] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Springer Verlag, New York, 1978.
- [41] B. K. Tyagi, J. K. Kohli and D. Singh, R_{cl}-supercontinuous functions, Demonstratio Math. 46(1) (2013), 229-244.
- [42] N. K. Velićko, H-closed topological spaces, Amer. Math. Soc. Transl.78(2) (1968), 103-118.

[43] G. S. Young, Introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), , 479-494.

J. K. Kohli

Department of Mathematics, Hindu College, University of Delhi, Delhi-110007, INDIA, e-mail: jk_kohli@yahoo.co.in

D. Singh

Department of Mathematics, Sri Aurobindo College, University of Delhi, New Delhi-110017, INDIA,

e-mail: dstopology@gmail.com

B. K. Tyagi

Department of Mathematics, A.R.S.D. College, University of Delhi, New Delhi-1100021, INDIA,

e-mail: brijkishore.tygi@gmail.com