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SOME GEOMETRICAL PROPERTIES OF PFAFF
SYSTEMS ON MANIFOLDS

VALER NIMINEŢ

Abstract. We continue our investigation [7] of Pfaff systems
on manifolds by studying some geometrical properties and some
consequences of these structures. We point out new geometrical
invariants of a distributions on manifolds.

1. Introduction

As we previously shown in [7], if X is C∞ manifold of dimension
n + m a distribution on X is a mapping x → Hx ⊂ TxX, x ∈ X
with the properties: Hx is a linear subspace of dimension n in TxX
and for every x0 ∈ X, there exists an open neighborhood U and the
vector fields X1, ..., Xn on U which are linearly independent on U and
Hx =span[X1(x), ..., Xn(x)], ∀x ∈ U . Also, we shown in [7] that a Pfaff
system is a mapping ϵ : x → ϵx ⊂ T ∗

xX, x ∈ X, with the properties ϵx
is a linear subspace of dimension m and for any x0 ∈ X, there exists
an open neighborhood U and the 1-forms ω1, ..., ωm on U which are
linear independent and
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ϵx0 = span[ω1(x0), ..., ω
m(x0)].

Let 1-forms (ωa) with :

(1.1) ωa(x) = ωa
α(x)dx

α, rank(ωa
α) = m,

with a sum over α = 1, 2, ...d = dimX and a = 1, 2, ...m according
to the Einstein convention on summation.

Assume that the first m lines in the matrix (ωaα) are linear inde-
pendent and denote by (ϕb

c) the inverse of the matrix (ωa
b ) from the

expression (ωaα) = (ωa
b , παi).

Then, (ϕa
c)(ω

c
b , π

c
i ) = (δab , N

a
i ).

The lines of this last matrix define the 1-forms

(1.2) ω̃a = dxa +Na
i (x)dx

i,

that satisfy ω̃a = ϕa
cω

c.
Thus (ω̃a) span the same Pfaff system as (ωa).
In [7] we shown that the 1- forms (ωa) may be replaced with the

1-forms δya = dya +Na
i (x, y)dx

i when the coordinates (xα) on X are
separated in (xi, xa) and (xa) are denoted as (ya) and we compute
d(δya) and put the result into the form

(1.3) d(δya) + ωa
b ∧ δyb = Ωa

that provides a first structure equation and introduces the 2- forms of
torsion Ωa.

Exterior differentiating again we get the first Bianchi identity

(1.4) dΩa + ωa
b ∧ Ωb = θac ∧ δyc,

where the equality

(1.5) θac = dωa
c + ωa

b ∧ ωb
c

represents a second structure equation.
A new exterior differentiation leads to the second Bianchi identity:

(1.6) dθab + ωa
c ∧ θcb = θac ∧ ωc

b .

2. Main result

We know that the structure equations (1.3) and (1.5) introduce the
2-forms of torsion Ωa and the 2-forms of curvature θab . We notice that
for certain particular distributions that are used in Lagrange geometry
[4] as well as in the general setting from [6] the 2-forms Ωa

(2.1) Ωa
ij = δiN

a
j − δjN

a
i ,
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are called the curvature of the distribution H.
The 2-forms of curvature θab do not belong to the ideal δya if and

only if
∂2Na

i

∂yb∂yc
= 0, that is if and only if

(2.2) Na
i (x, y) = Γa

ci(x)y
c +Ka

i (x).

It follows
(2.3)

ωa
b = Γa

bi(x)dx
i,

θab = 1
2
(
∂Γa

bj

∂xi − ∂Γa
bi

∂xj + Γa
ciΓ

c
bj − Γa

cjΓ
c
bi)dx

i ∧ dxj := 1
2
Ra

b ijdx
i ∧ dxj

Ωa = 1
2
(Ra

b ijy
b +

∂Ka
i

∂xi +Kc
jΓ

a
ci −Kc

iΓ
a
cj)dx

i ∧ dxj.

where (θab ) deserve the name of curvature 2-forms.
ForKa

i = 0, the coefficients of ωa reduce to Ra
bijy

b one of the torsions
of the Cartan connection in a Finsler space.

If we keep the splitting of coordinates on X in the form (xi, ya), a
change (xi, ya) → (x̃i, ỹa) of these coordinates has the form

(2.4)
x̃i = x̃i(xi, ya)

ỹa = ỹa(xi, yb),

with

(2.5)
∂(x̃i, ỹa)

∂(xi, ya)
̸= 0.

We obtain:

(2.6)
dx̃i = δx̃i

δxj dx
j + ∂x̃i

∂ya
δya = Ai

jdx
j + Ai

aδy
a,

dỹa = δỹa

δxj dx
j + ∂ỹa

∂yb
δyb = Aa

jdx
j + Aa

bδy
b,

where Ai
j =

δx̃i

∂xj , A
i
a =

∂x̃i

∂ya

The mapping given by (2.4) may be viewed as a local diffeomorphism
ϕ : X → X. This induces an isomorphism ϕ∗ : TX → TX which has
to satisfy

(2.7) ϕ∗(H) = H,

for any distribution H on X.
Let H be spanned by δi =

∂
∂xi −Na

i (x, y)
∂

∂ya

and let δ̃i =
∂
∂x̃i − Ña

i (x̃, ỹ)
∂

∂ỹa
be the local vector fields which span

H when it is regarded with respect to the coordinates (x̃, ỹ).
We know that the condition (2.7) is equivalent to the equalities

ϕ∗(δi) = λj
i δ̃j, i = 1, 2, ...n for a matrix (λj

i ) with δ̃(λj
i ) ̸= 0.
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We compute ϕ∗(δi) = Aj
i

∂
∂x̃j + Aa

i
∂

∂ỹa
= Aj

i δ̃j + (Aa
i + Aj

i Ñ
a
j )

∂
∂ỹa

.

It comes out that (2.7) holds if and only if the following two condi-
tions are satisfied:

(2.8) δ̃(Aj
i ) ̸= 0,

(2.9) Aa
i + Aj

i Ñ
a
j = 0.

Assume for a moment that (2.8) holds. Then the functions Ña
j are

completely determined from (2.9) in the form Ña
j = (A−1)ijA

a
i .

Using again (2.9) we get

δỹa = (Aa
b + Ña

i A
i
b)δy

b := Ba
b δy

b

and we must have

δ̃(Ba
b ) ̸= 0.

Denoting the inverse of the matrix Ai
j = ( δ̃x

i

δxj ) by ( δx
i

δ̃xj ), the condition

(2.9) takes the form

(2.10) Ña
j =

δxi

δx̃j
N b

i

∂ỹa

∂yb
− δxi

δx̃j

∂ỹa

∂xi
.

The equation (2.10) simplifies if ( ∂̃x
j

∂ya
) = (0), that is in (2.4) we have

x̃i = x̃i(xj). In this case Ai
j =

∂x̃i

∂xj and (2.10) reduces to

(2.11) Ña
j =

∂xi

∂x̃j
N b

i

∂ỹa

∂yb
− ∂xi

∂x̃j

∂ỹa

∂xi
.

which is the law of transformation of the coefficients of a nonlinear
connection in a vector bundle,[4].

Now we search for the behavior of ωa
ij under the local diffeomorphism

ϕ. We have seen that δỹa −Ba
b δy

b = 0.
We exterior differentiate this equality and use in the result the fol-

lowings:

(2.12)
d(δya) = 1

2
Ωa

ijdx
i ∧ dxj − ωa

bidx
i ∧ δyb, ωa

bi =
∂Na

i

∂yb

d(δỹa) = 1
2
Ω̃ijdx̃

i ∧ dx̃j − ω̃a
bidx̃

i ∧ δỹb,

as well as (2.6).
The coefficients of the exterior products dxi∧dxj, δyb∧dxk, δyc∧δyb

have to be zero.
Therefore, we have
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(2.12’) ω̃a
khA

k
iA

h
j = Ba

bω
b
ij,

ω̃a
ciB

c
bA

i
k +

1

2
ω̃a
ij(A

i
bA

j
k − Ai

kA
j
b) = Ba

cω
c
bk −

δBa
b

δxk

1

2
ω̃a
ij(A

i
cA

j
d − Aj

dA
i
c)− ω̃a

bi(A
i
cB

b
d − Ai

dB
b
c) = ω̃a

ciA
i
d − ω̃a

diA
i
c.

For the horizontal vector field U = U iδi and V = V jδj, we have
[U, V ] = U iδi(V

j)δj − V jδj(U
i)δi − U iV jΩa

ij
∂

∂ya
and it follows that

[U, V ] is horizontal if and only if Ωa
ij = 0.

If the distribution H is a subbundle of TX we may consider the
quotient vector bundle TX/H as well as the vector bundle Λ2H.

Then δi ∧ δj is a basis of local sections in Λ2H.
In [5] one says that the curvature of the distribution H is the vector

bundle morphism F : Λ2H → TX/H given by F (U ∧ V ) = −[U, V ]
mod H for every sections U, V in H (horizontal vector fields).

The mapping F is indeed a tensorial one since [fU, gV ] mod H =
fg[U, V ] mod H. We have:

F (U, V ) = −[U, V ]modH = U iV j[δi, δj].

Hence F is completely determined by Ωa
ij and it vanishes if and only

if Ωa
ij = 0.

In order to study the behavior of θ by the local diffeomorphism ϕ we
shall use a matrix notation. We write δy = (δya) as a column matrix
and rewrite (1.1) - (1.3) as follows:

d(δy) + ω ∧ δy = ω,

dΩ + ω ∧ ω = θ ∧ δy,

θ = dω + ω ∧ ω,

(2.13) dθ + ω ∧ θ = θ ∧ ω.

By ϕ we get δỹ = Bδy.
We exterior differentiate this equality as well as d(δỹ)+ ω̃∧ δỹ = Ω̃.
After some calculation we get

(2.14) (BΩ− dB − Ω̃B) ∧ δy = BΩ− Ω̃.
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Let J be a matrix of 1-forms such that J ∧ δy to represent the
component of Ω̃ from the ideal {δy}.

We add J ∧ δy to the both side of (2.14). It results

(2.15) (BΩ− dB − Ω̃B + J) ∧ δy = BΩ− (Ω̃− J ∧ δy).

In (2.15), the left side is in ideal {δy} and the right side is not in
this ideal. The equality holds only if the both sides vanish. Thus we
obtain

(2.16) ω̃B = Bω − dB + J, Ω̃ = BΩ + J ∧ δy.

We know:

θ̃ = dω̃ + ω̃ ∧ ω̃

Then

θ̃B = dω̃B + ω̃ ∧ ω̃B = d(ω̃B) + ω̃ ∧ dB + ω ∧ ω̃B =

= d(ω̃B) + ω̃ ∧ (dB + ω̃B) = d(ω̃B) + ω̃ ∧ (Bω + J) =

= dB ∧ ω +Bdω + dJ + ω̃ ∧ J + ω̃BB−1 ∧Bω̃ =

= B(dω + ω ∧ ω) + dJ + J ∧ ω + ω̃ ∧ J = Bθ + dJ + J ∧ ω + ω̃ ∧ J,

where we have also used

d(ω̃B) = dω̃B + ω̃ ∧ dB

So, the connection between θ̃ and θ is:

θ̃B = Bθ + dJ + J ∧ ω + ω̃ ∧ J.
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