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GENERALIZATIONS OF TRIANGULATED GRAPHS

MIHAI TALMACIU

Abstract. Using weak decomposition, we characterize in a unified
manner the classes of doubly chordal, of hereditary dually chordal
and of strongly chordal graphs. We also give a recognition algorithm
that is applicable for doubly chordal graphs, for hereditary dually
chordal and for strongly chordal graphs. In addition, we determine
the combinatorial optimization numbers in efficient time for all the
above classes of graphs.

1. Introduction

The class of triangulated graphs (also known as chordal graphs)
has remarkable properties, among those we mention perfection, this
class is algorithmically useful, possessing recognition algorithms and
provide ways to solve some combinatorial optimization problems (such
as determining the stability number and minimum number of covering
cliques) with linear complexity algorithms.

Various generalizations of triangulated graphs were introduced.
Among these, we mention the class of Weakly Triangulated Graphs,
introduced by R. Hayward [10], see also [3], [2], which are the graphs
containing no cycles of length less than or equal to five and the com-
plements of these cycles (i. e.

{
Ck, Ck

}
̸⊂ G for every k ≥ 5).

————————————–
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Another generalization is the class of Slightly Triangulated Graphs,
introduced by F. Maire [10], which are known as the graphs containing
no cycles of length less than or equal to five and having the propriety
that for any induced subgraph there is a vertex whose neighborhood
in the subgraph does not contain P4.

The strongly chordal graphs, another generalization for the trian-
gulated graphs, are defined in terms of a stronger ordering condition
(M. Farber [8], see [6], [12]). A graph G is strongly chordal if and only
if every induced subgraph of G has a simple vertex. A vertex v of the
graph G is simple in G if the set {N [u] : u ∈ N [v]} is linearly ordered
by inclusion. The problem of locating minimum weight dominating
sets and minimum weight independent dominating sets in strongly
chordal graphs with real vertex weights can be solved in polynomial
time, whereas each of these problems is NP-hard for chordal graphs.

Graphs with maximum neighborhood orderings were characterized
and turned out to be algorithmically useful. These graphs are dual to
chordal graphs [4]. The graph G is dually chordal [4] if and only if G
has a maximum neighborhood ordering.

Recall that a vertex u ∈ N [v] is a maximum neighbor of v if and
only if for all w ∈ N [v] the inclusion N [w] ⊆ N [v] holds (the case
u = v is not excluded). The ordering (v1, · · · , vn) is a maximum
neighborhood ordering if for all i ∈ {1, · · · , n} there is a maximum
neighbor ui ∈ Ni[vi]: for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.

It is specified in [19] that for doubly chordal graphs clique problem
can be solved in polynomial time, while the independent set problem
and the recognition problem can be solved in linear time.

Many problems that are efficiently solvable for strongly chordal
graphs remain polynomial-time solvable for dually chordal graphs.

The hereditary dually chordal graphs [4] are the graphs for which
each induced subgraph is a dually chordal graph.

The following complexity results are known. In [20] it is specified
that the for dually chordal graphs the clique problem and the inde-
pendent set problem are NP-complete, while the recognition problem
can be solved in linear time. In [21] it is specified that for strongly
chordal graphs the clique problem can be solved in polynomial time,
the independent set problem in linear time, the recognition problem
in polynomial time.
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2. Preliminaries

Let G = (V ,E ) be a connected, finite and undirected graph, with-
out loops and multiple edges, having V = V (G) as the vertex set and
E = E (G) as the set of edges. G (or co −G) is the complement of G .
If U ⊆ V , by G(U ) (or [U ]G, or [U ]) we denote the subgraph of G in-
duced by U . By G − X we mean the subgraph G(V − X ), whenever
X ⊆ V , but we simply write G − v , when X = {v}. If e = xy is an
edge of a graph G , then x and y are adjacent, while x and e are inci-
dent, as are y and e. If xy ∈ E, we also use the notation x ∼ y, while
we denote xℵy whenever x , y are not adjacent in G . If A,B ⊂ V are
disjoint and ab ∈ E for every a ∈ A and b ∈ B , we say that A and B
are totally adjacent and we denote by A ∼ B , while by AℵB we mean
that no edge of G joins some vertex of A to a vertex from B and in
this case we say A and B are totally non-adjacent.

The neighborhood of the vertex v ∈ V is the set
NG(v) = {u ∈ V : uv ∈ E}, while NG [v ] = NG(v)

∪
{v}; we de-

note these sets by N (v) and N [v ], respectively, when G appears
clearly from the context. The degree of v in G is dG(v) = |NG(v)|.
The neighborhood of the vertex v in the complement of G will be
denoted by N (v).

The neighborhood of S ⊂ V is the set N (S ) =
∪

v∈S N(v) − S and
N [S ] = S

∪
N (S ). A graph is complete if every pair of distinct vertices

is adjacent.
By Pn,Cn,Kn we mean a chordless path on n ≥ 3 vertices, a chord-

less cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1 vertices,
respectively.

Let F denote a family of graphs. A graph G is called F-free if none
of its subgraphs is in F .

The Zykov sum of the graphs G1 ,G2 is the graph G = G1 +G2
having V (G) = V (G1 )

∪
V (G2 ) and

E (G) = E (G1 )
∪

E (G2 )
∪

{uv : u ∈ V (G1 ), v ∈ V (G2 )}.

Let G be connected and u and v be two nonadjacent vertices of G .
A uv-separator is a set S ⊆ V (G) such that u and v are in differ-
ent connected components of G − S . The separator is minimal if no
proper subset of S has the same property.

Let G = (V ,E ) be a connected graph. A non-empty set of vertices
T is called star-cutset ([2]) if G − T is not connected and there exists
a vertex v in T that is adjacent to any other vertex in T . The cutset
is minimal if no proper subset of T has the same property.
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We call a graph Berge if neither the graph nor its complement con-
tains Cn, as an induced subgraph, for n odd and n ≥ 5.

The chromatic number of a graph G , denoted by χ(G)) is the least
number of colors needed to color its vertices so that adjacent vertices
have different colors. The stability number α(G) of a graph G is the
cardinality of the largest stable set. Recall that a stable set of G is a
subset of the vertices such that no two of them are connected by an
edge. The clique number of a graph G is a number of the vertices in
a maximum clique of G , denoted by ω(G).

A graph G is perfect if, for each induced subgraph S of G , the
chromatic number of S is equal to the clique number of S . A graph
is minimal imperfect if it is not perfect and yet every proper induced
subgraph is perfect.

A class H of graphs is called hereditary if every induced subgraph
of a graph in H is in H .

3. A new characterization of {doubly, hereditary dually
and strongly} chordal graphs

The notion of weak decomposition (a partition of the set of vertices
in three classes A, B, C such that A induces a connected graph and C
is totally adjacent to B and totally non-adjacent to A) and the study
of its properties allow us to obtain several important results.

Many problems efficiently solvable for strongly chordal and doubly
chordal graphs remain efficiently solvable for dually chordal graphs
too [5].

A. Brandstädt, V. Chepoi, F. Dragan [5] give an algorithm for solv-
ing the connected r-domination problem and Steiner tree problem in
linear time on doubly chordal graphs and in quadratic time on dually
chordal graphs.

We say that a vertex v is simplicial in G if NG [v ] is complete.
The graph G is dually chordal [4] if and only if G has a maximum

neighborhood ordering.
A vertex v of a graph G is doubly simplicial [13] if v is simplicial

and has a maximum neighbor. A linear ordering (v1, · · · , vn) of the
vertices of G is doubly perfect if for all i ∈ {1, · · · , n} vi is a doubly
simplicial vertex of Gi.

A graph G is doubly chordal [13] if it admits a doubly perfect or-
dering. A graph G is hereditary doubly chordal graph if any induced
subgraph of G is doubly chordal.
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Theorem 1. [7, 9] Let G be a graph. Then G is chordal if and
only if every minimal vertex separator of G is complete.

Theorem 2. [14] A graph G is triangulated if and only if for any
weak decomposition (A;N ;R) with G(A) weak component the follow-
ing hold:

1) N is a clique
2) [R] and G − R are triangulated.
Corollary 1. [7] For a graph G the following conditions are equiv-

alent:
(i) G is a strongly chordal graph;
(ii) G is a hereditary dually chordal graph.
Theorem 3. ([17]) A graph G is hereditary dually chordal if and

only if for any weak decomposition (A,N ,R) with G(A) a weak com-
ponent:

(1) N is a clique
(2) G(R) and G(V − R) are hereditary dually chordal.

Theorem 4. ([18]) Let G = (V ,E ) be a connected and non-
complete graph with G(A) a weak component. G is hereditary doubly
chordal if and only if the following hold:

(1) N is a clique;
(2) G(R) and G(V − R) are hereditary doubly chordal graphs.

Corollary 2. [16]. If G is a connected graph and (A,N ,R) is
a weak decomposition with A a weak component then the following
hold:

α(G) = max
{
α[A] + α[R], α(A

∪
N)

}
;

ω(G) = max{ω([N ]) + ω([R]), ω([A
∪

N ])}.
Definition 1. ([8]) A strong elimination ordering of a graph

G = (V ,E ) is an ordering v1, v2, · · · , vn of V with the property that
for each i , j , k and l , if i < j,k < l, vk, vl ∈ N [vi] and vk ∈ N [vj],
then vl ∈ N [vj].

Definition 2. ([8]) A graph is strongly chordal if it admits a
strong elimination ordering.

Remark 1. ([8]) Every induced subgraph of a strongly chordal graph
is strongly chordal.

If C is a cycle of even length in the graph G, then a strong chord of
C is an edge of G joining two vertices, u and v of C such that dC(u, v)
is odd and greater than 1.
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Theorem 5. ([8]) A graph G is strongly chordal if and only if it
is chordal and every even cycle of length at least 6 in G has a strong
chord.

In the following we will unify several known results.
Let M be one of the following classes of graphs: hereditary dually

chordal graphs, hereditary doubly chordal graphs, strongly chordal
graphs.

Theorem 6. G ∈ M if and only if

(1) N is a clique
(2) G(V − R) and G(R) are of the same type as G, i. e. belong

to M .

Proof.

(1) Theorem 3. ([17]) refers to the case of hereditary dually
chordal graphs.

(2) Theorem 4. ([18]) refers to the case of hereditary doubly
chordal graphs.

(3) We consider the case of strongly chordal graphs.

Theorem 7. A graph G is strongly chordal if and only if for any
weak decomposition (A,N ,R) with G(A) a weak component:

(1) N is a clique
(2) G(R) and G(V − R) are strongly chordal.

Proof. I. We suppose that G is strongly chordal. If G is strongly
chordal then, according to Remark 1, it follows that G(R) and G(V −
R) are strongly chordal. So, (2) holds. Since G is strongly chordal,
according to Theorem 5, it follows that G is chordal. From Theorem
2 it follows that N is a clique. So, the necessity part is proved.

II. Suppose N is a clique and G(R) and G(V − R) are strongly
chordal.. We show that G is strongly chordal. Since G(R) and G(V −
R) are strongly chordal, it follows from Theorem 5 that G(R) and
G(V − R) are chordal graphs. Then, applying Theorem 2, it follows
that G is chordal. If G is not strongly chordal, then, according to
Theorem 5, there is an even cycle C, of length at least 6, which has
no strong chord.

Because N is a clique and R ∼ N it follows that either C ⊆ G(R) or
C ⊆ G(N

∪
A). So, either G(R) or G(V − R) is not strongly chordal,

a contradiction.

The above results lead to the following recognition algorithm.
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Input: A connected graph with at least two nonadjacent vertices,
G = (V ,E ).

Output: An answer to the question: is G a doubly, hereditary dually,
strongly chordal graph, respectively

begin
L := {G};//L a list of graphs
While (L ̸=∅)
Extract an element F from L;
Find a weak decomposition (A,N ,R) for F ;
If (N not clique in F) then
Return: G is not (doubly, hereditary dually, strongly) chordal

graph, respectively
else introduce in L the connected components of G(R),G(V − R)

incomplete
Return: G is (doubly, hereditary dually, strongly) chordal graph,

respectively
end
The fact that N is a clique is proved in the following: If there is

a vertex v in N with the degree in G(N) less than |N | − 1 (thus we
determine the grades of the vertices in the subgraph G(N)), then N
is not a clique. So the algorithm is O(n(n + m)) time (just because
the weak decomposition is O(n+m)).

The following holds.
Corollary 3. Let G = (V ,E ) be a connected and non-complete

graph with G(A) a weak component in G. If G is (doubly, hereditary
dually, strongly) chordal graph, respectively then the following hold:

(1) α(G) = α(G(A)) + α(G(R));

(2) ω(G) = max
{
|N |+ ω(G(R)), ω(G(A

∪
N))

}
.

Proof. From Corollary 2, because N is a clique in G we obtain (2).
Let T ⊂ A

∪
N such that T is a stable set and |T | = α([A

∪
N ]G).

Because N is a clique in G, it follows that |T
∩

N | ≤ 1. If T
∩

N = ∅,
then T

∪
{r} is a stable set in [A

∪
R]G; else, if T

∩
N = {v} , then

(T − {v})
∪
{r} is a stable set in [A

∪
R]G, for every r ∈ R. So, (1)

holds.
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Corollary 3 implies an algorithm for the construction of a stable set
of maximum cardinal and a clique of maximum cardinal in a (doubly,
hereditary dually, strongly) chordal graph, respectively.

Input: G = (V,E) a connected and noncomplete graph satisfying
conditions in Corollary 3

Output : A stable set S with |S| = α(G)
begin
S = ∅
L = {G}//L is a list of graphs
while (L ̸= ∅)
begin
extract an element F from L
if (F is complete) then

S = S
∪

{v} ,∀v ∈ V (F )

else
Determine a weak decomposition (A,N,R) for F
Put [A]F and the connected components of [R]F in L
end
end.
Input: G = (V,E) a connected and noncomplete graph satisfying

conditions in Corollary 3
Output: A clique Q with|Q| = ω(G)
Begin

Q = ∅
k = 0
L = {G}//L is a list of graphs
while (L ̸= ∅)
begin
extract an element F from L
if (F is complete) then

Q = Q
∪

V (F )

k = k + 1

Qk = Q
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Q = ∅
else
Determine a weak decomposition (A,N, R) for L
Put [A

∪
N ]F and [N

∪
R]F in L

end
Let m be so that |Qm| = max{|Q1| , · · · , |Qk|}and Q = Qm

Then ω(G) = |Q|
end
The complexity of α and ω is O(n(n+m)). The fact that V (F ) is a

clique reads as follows: If there is a vertex v in V (F ) with the degree in
F less than |V (F )|−1 (thus we determine the grades of the vertices in
F ), then V (F ) is not a clique. This way, the algorithm is O(n(n+m))
(as long as the weak decomposition has the complexity O(n+m)).

4. Conclusions

Using weak decomposition, we give a characterization for each of the
following classes: hereditary dually chordal graphs, hereditary doubly
chordal graphs and strogly chordal graphs, in a unified manner. We
also give recognition algorithms for doubly chordal, of hereditary du-
ally chordal and strongly chordal graphs in O(n(n+m)) time. Finally,
we determine the combinatorial optimization numbers in O(n(n+m))
time.
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