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1. Introduction

Semi-open sets, preopen sets, α-open sets and β-open sets play an
important role in the researching of generalizations of continuity of
functions and multifunctions in topological spaces and bitopological
spaces. By using these sets, many authors introduced and studied
various types of modifications of continuity in bitopological spaces.

The notions of (i, j)-semi-open sets [20], (i, j)-preopen sets [11],
(i, j)-α-open sets [12], (i, j)-semi-preopen sets [14]; (i, j)-semi-
continuity, (i, j)-precontinuity, (i, j)-α-continuity and (i, j)-semipre-
continuity are introduced and investigated in bitopological spaces.

————————————–
Keywords and phrases: m-structure, m-space, bitopological space,
multifunction, (τ,m)-continuous, ultra continuous.
(2010) Mathematics Subject Classification: 54C08, 54C60,
54E55.

5



6 T.NOIRI AND V.POPA

On the other hand, the notions of quasi-open sets or τ1τ2-open sets
[9], [21], [37], [38], quasi-semi-open sets [15], quasi preopen sets [30],
quasi-α-open sets [39], quasi-semipreopen sets [39]; quasi-continuity,
quasi-semi-continuity, quasi precontinuity, quasi α-continuity and
quasi semiprecontinuity are introduced and studied in bitopological
spaces.

As variations of quasi-open sets and quasi-continuity, the notions
of (1,2)-semi-open sets, (1,2)-preopen sets, (1,2)-α-open sets; (1,2)-
semi-continuity, (1,2)-precontinuity, and (1,2)-α-continuity are intro-
duced in [16]. The notions of (1,2)-semi-preopen sets and (1,2)-semi-
precontinuity are introduced and studied in [17].

Similarly, the notions of (1,2)∗-semiopen sets, (1,2)∗-preopen sets,
(1,2)∗-α-open sets, (1,2)∗-semi-preopen sets; (1,2)∗-semi-continuity,
(1,2)∗-precontinuity, (1,2)∗-α-continuity, and (1,2)∗-semi-precontinuity
are introduced in [36].

The present authors introduced and investigated the notions of mini-
mal structures,m-spaces [31] and [33],m-continuity [33],M -continuity
[31] and (τ,m)-continuity [34] for functions. In this paper, we intro-
duce the notion of upper/lower (τ,m)-continuous multifunctions as
multifunctions from a topological space (X, τ) into an m-space (Y,m).
The notion of (τ,m)-continuous multifunctions is a generalization of
the notions of (τ,m)-continuous functions [34] and ultra continuous
multifunctions due to Navalagi et al. [26]. In the last section, we
transfer the study of a multifunction F from a topological space (X, τ)
into a bitopological space (Y, σ1.σ2) to the study of a (τ,m)-continuous
multifunction F : (X, τ) → (Y,m(σ1.σ2)). Then such multifunctions
enable us to obtain the unified theory of many generalizations of ultra-
continuous multifunctions.

2. Preliminaries

Let (X, τ) be a topological space and A a subset ofX. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively.
Let (X, τ1, τ2) be a bitopological space and A be a subset of X. The
closure and the interior of A with respect to τi are denoted by iCl(A)
and iInt(A), respectively, for i = 1, 2.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X
is said to be

(1) semi-open [18] if A ⊂ Cl(Int(A)),
(2) preopen [23] if A ⊂ Int(Cl(A)),
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(3) α-open [27] if A ⊂ Int(Cl(Int(A))),
(4) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).

The family of all semi-open (resp. preopen, α-open, β-open) sets in
(X, τ) is denoted by SO(X) (resp. PO(X), α(X), β(X) or SPO(X)).

Definition 2.2. The complement of a semi-open (resp. preopen, α-
open, β-open) set is said to be semi-closed [5] (resp. preclosed [23],
α-closed [24], β-closed [1] or semi-preclosed [3]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed,
α-closed, β-closed) sets of X containing A is called the semi-closure [5]
(resp. preclosure [10], α-closure [24], β-closure [2] or semi-preclosure
[3]) of A and is denoted by sCl(A) (resp. pCl(A), αCl(A), βCl(A) or
spCl(A)).

Definition 2.4. The union of all semi-open (resp. preopen, α-open,
β-open) sets of X contained in A is called the semi-interior (resp.
preinterior, α-interior, β-interior or semi-preinterior) of A and is de-
noted by sInt(A) (resp. pInt(A), αInt(A), βInt(A) or spInt(A)).

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and
Y ) denote topological spaces and F : X → Y (resp. f : X → Y )
presents a multivalued (resp. singlevalued) function. For a multifunc-
tion F : X → Y , we shall denote the upper and lower inverse of a
subset B of Y by F+(B) and F−(B), respectively, that is,

F+(B) = {x ∈ X : F (x) ⊂ B} and
F−(B) = {x ∈ X : F (x) ∩B ̸= ∅}.

3. Minimal structures

Definition 3.1. A subfamilymX of the power set P(X) of a nonempty
set X is called a minimal structure (brieflym-structure) on X [31], [32]
if ∅ ∈ mX and X ∈ mX .

By (X,mX), we denote a nonempty subset X with a minimal struc-
ture mX on X and call it an m-space. Each member of mX is said to
be mX-open (briefly m-open) and the complement of an mX-open set
is said to be mX-closed (briefly m-closed).

Remark 3.1. Let (X, τ) be a topological space. Then the families τ ,
SO(X), PO(X), α(X), β(X), SPO(X) are all m-structures on X.
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Definition 3.2. Let X be a nonempty set and mX an m-structure on
X. For a subset A of X, the mX-closure of A and the mX-interior of
A are defined in [22] as follows:

(1) mCl(A) =
∩
{F : A ⊂ F,X \ F ∈ mX},

(2) mInt(A) =
∪
{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A a subset of X.
If mX = τ (resp. SO(X), PO(X), α(X), β(X), SPO(X)), then we
have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), βCl(A),
spCl(A)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), βInt(A),
spInt(A)).

Lemma 3.1. (Maki et al. [22]) Let X be a nonempty set and mX an
m-structure on X. For subsets A and B of X, the following properties
hold:

(1) mCl(X \ A) = X \mInt(A) and mInt(X \ A) = X \mCl(A),
(2) If (X \ A) ∈ mX , then mCl(A) = A and if A ∈ mX , then

mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2. (Popa and Noiri [32]) Let (X,mX) be an m-space and
A a subset of X. Then x ∈ mCl(A) if and only if U ∩A ̸= ∅ for every
U ∈ mX containing x.

Definition 3.3. An m-structure mX on a nonempty set X is said to
have property B [22] if the union of any family of subsets belonging to
mX belongs to mX .

Remark 3.3. Let (X, τ) be a topological space. Then the families τ ,
SO(X), PO(X), α(X), β(X), and SPO(X) have property B.
Lemma 3.3. (Popa and Noiri [35]) Let X be a nonempty set and mX

an m-structure on X satisfying property B. For a subset A of X, the
following properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. A function f : (X, τ) → (Y,mY ) is said to be (τ,m)-
continuous [34] at x ∈ X if for each V ∈ mY containing f(x), there
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exists U ∈ τ containing x such that f(U) ⊂ V . The function f :
(X, τ) → (Y,mY ) is said to be (τ,m)-continuous if it has the property
at each point x ∈ X.

Theorem 3.1. (Popa and Noiri [34]) For a function f : (X, τ) →
(Y,mY ), the following properties are equivalent:

(1) f is (τ,m)-continuous;
(2) f−1(V ) is open in X for every V ∈ mY ;
(3) f(Cl(A)) ⊂ mCl(f(A)) for every subset A of X;
(4) Cl(f−1(B)) ⊂ f−1(mCl(B)) for every subset B of Y;
(5) f−1(mInt(B)) ⊂ Int(f−1(B)) for every subset B of Y;
(6) f−1(K) is closed for every m-closed set K of Y.

4. (τ,m)-continuity for multifunctions

Definition 4.1. A multifunction F : (X, τ) → (Y,mY ) is said to be
(1) upper (τ,m)-continuous at x ∈ X if for each V ∈ mY containing

F (x), there exists U ∈ τ containing x such that F (U) ⊂ V ,
(2) lower (τ,m)-continuous at x ∈ X if for each V ∈ mY such that

F (x)∩V ̸= ∅, there exists U ∈ τ containing x such that F (u)∩V ̸= ∅
for every u ∈ U ,

(3) upper/lower (τ,m)-continuous if F has this property at each
x ∈ X.

Theorem 4.1. For a multifunction F : (X, τ) → (Y,mY ), where mY

has property B, the following properties are equivalent:
(1) F is upper (τ,m)-continuous at x ∈ X;
(2) x ∈ Int(F+(V )) for each m-open set V of Y containing F(x);
(3) x ∈ F−(mCl(B)) for every subset B of Y such that x ∈

Cl(F−(B));
(4) x ∈ Int(F+(B)) for every subset B of Y such that x ∈

F+(mInt(B)).

Proof. (1) ⇒ (2): Let V be any m-open set V of Y containing
F (x). There exists an open set U containing x such that F (U) ⊂ V .
Then x ∈ U ⊂ F+(V ). Since U is open, we have x ∈ Int(F+(V )).

(2) ⇒ (3): Suppose that B is any subset of Y such that x ∈
Cl(F−(B)). Since mY has property B, by Lemma 3.3 mCl(B) is mY -
closed. Suppose that x /∈ F−(mCl(B)). Then x ∈ X−F−(mCl(B)) =
F+(Y −mCl(B)). This implies that F (x) ⊂ Y −mCl(B). Since Y −
mCl(B) is anmY -open set, by (2) we have x ∈ Int(F+(Y −mCl(B))) =
Int(X − F−(mCl(B))) = X − Cl(F−(mCl(B))) ⊂ X − Cl(F−(B)).
Hence x /∈ Cl(F−(B)).
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(3) ⇒ (4): Let B be any subset of Y such that x ∈ F+(mInt(B)).
Suppose that x /∈ Int(F+(B)). Then x ∈ X − Int(F+(B)) = Cl(X −
F+(B)) = Cl(F−(Y − B)). By (3) we have x ∈ F−(mCl(Y − B)) =
F−(Y −mInt(B)) = X − F+(mInt(B)). Hence x /∈ F+(mInt(B)).

(4) ⇒ (1): Let V be any m-open set of Y containing F (x). Since
mY has property B, V = mInt(V ) and x ∈ F+(V ) = F+(mInt(V )).
Then, by (4), x ∈ Int(F+(V )). Therefore, there exists U ∈ τ contain-
ing x such that U ⊂ F+(V ). Hence F (U) ⊂ V . This shows that F is
upper (τ,m)-continuous at x ∈ X.

Theorem 4.2. For a multifunction F : (X, τ) → (Y,mY ), where mY

has property B, the following properties are equivalent:
(1) F is lower (τ,m)-continuous at x ∈ X;
(2) x ∈ Int(F−(V )) for each m-open set V of Y such that F (x)∩V ̸=

∅;
(3) x ∈ F+(mCl(B)) for every subset B of Y such that x ∈

Cl(F+(B));
(4) x ∈ Int(F−(B)) for every subset B of Y such that x ∈

F−(mInt(B));
(5) x ∈ F+(mCl(F (A))) for every subset A of X such that x ∈

Cl(A).

Proof. We prove only implications (3) ⇒ (5) ⇒ (4), being the
proofs of the other are similar as in Theorem 4.1.

(3) ⇒ (5): Let A be any subset of X such that x ∈ Cl(A). Since
Cl(A) ⊂ Cl(F+(F (A)), by (5) we have x ∈ F+(mCl(F (A))).

(5) ⇒ (4): Let B be any subset of Y such that x ∈ F−(mInt(B)).
Suppose that x /∈ Int(F−(B)). Then x ∈ X − Int(F−(B)) = Cl(X −
F−(B)) = Cl(F+(Y − B)). Then by (5), x ∈ F+(mCl(F (F+(Y −
B))) ⊂ F+(mCl(Y − B)) = F+(Y −mInt(B)) = X − F−(mInt(B)).
Hence x /∈ F−(mInt(B)).

Corollary 4.1. For a function f : (X, τ) → (Y,mY ), where mY has
property B, the following properties are equivalent:

(1) f is (τ,m)-continuous at x ∈ X;
(2) x ∈ Int(f−1(V )) for each m-open set V of Y containing f(x);
(3) x ∈ f−1(mCl(B)) for every subset B of Y such that x ∈

Cl(f−1(B));
(4) x ∈ Int(f−1(B)) for every subset B of Y such that x ∈

f−1(mInt(B));
(5) x ∈ f−1(mCl(f(A))) for every subset A of X such that x ∈

Cl(A).
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Theorem 4.3. For a multifunction F : (X, τ) → (Y,mY ), where mY

has property B, the following properties are equivalent:
(1) F is upper (τ,m)-continuous;
(2) F+(V ) is open in X for every V ∈ mY ;
(3) F−(K) for closed in X every mY -closed set K;
(4) Cl(F−(B)) ⊂ F−(mCl(B)) for every subset B of Y;
(5) F+(mInt(B)) ⊂ Int(F+(B)) for every subset B of Y.

Proof. This follows from Theorem 3.1 of [28].

Theorem 4.4. For a multifunction F : (X, τ) → (Y,mY ), where mY

has property B, the following properties are equivalent:
(1) F is lower (τ,m)-continuous;
(2) F−(V ) is open in X for every V ∈ mY ;
(3) F+(K) is closed in X for every mY -closed set K;
(4) Cl(F+(B)) ⊂ F+(mCl(B)) for every subset B of Y;
(5) F (Cl(A)) ⊂ mCl(F (A)) for every subset A of X;
(6) F−(mInt(B)) ⊂ Int(F−(B)) for every subset B of Y.

Proof. This follows from Theorem 3.2 of [28].

Remark 4.1. By Theorem 4.4, we obtain Theorem 3.1 for the single
valued functions.

For a multifunction F : (X, τ) → (Y,mY ), we define D+
τm(F ) and

D−
τm(F ) as follows:

D+
τm(F ) = {x ∈ X : F is not upper (τ,m)-continuous at x ∈ X },

D−
τm(F ) = {x ∈ X : F is not lower (τ,m)-continuous at x ∈ X }.

Theorem 4.5. For a multifunction F : (X, τ) → (Y,mY ), where mY

has property B, the following equalities hold:
D+

τm(F ) =
∪

G∈mY
{F+(G)− Int(F+(G))}

=
∪

B∈P (Y ){F+(mInt(B))− Int(F+(B))}
=

∪
B∈P (Y ){Cl(F−(B))− F−(mCl(B))}

=
∪

H∈F {Cl(F−(H))− F−(H)}, where
P (Y ) is the family of all subsets of Y ,
F is the family of all m-closed sets of (Y,mY ).

Proof. We shall show only the first equality and the last equality
since the proofs of other are similar to the first.

Let x ∈ D+
τm(F ). Then, by Theorem 4.1, there exists V ∈ mY

containing F (x) such that x /∈ Int(F+(V )). Therefore, we have

x ∈ F+(V )− Int(F+(V )) ⊂
∪

G∈mY
{F+(G)− Int(F+(G))}.
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Conversely, let x ∈
∪

G∈mY
{F+(G)− Int(F+(G))}. Then there exists

V ∈ mY such that x ∈ F+(V ) − Int(F+(V )). By Theorem 4.1, x ∈
D+

τm(F ).
We prove the last equality.∪

H∈F {Cl(F−(H))− F−(H)} ⊂∪
B∈P (Y ){Cl(F−(B))− F−(mCl(B))} = D+

τm(F ).

Conversely, since mY has property B, by Lemmas 3.1 and 3.3 we have

D+
τm(F ) =

∪
B∈P (Y ){Cl(F−(B))− F−(mCl(B))} ⊂

∪
H∈F

{Cl(F−(H))− F−(H)}.

Theorem 4.6. For a multifunction F : (X, τ) → (Y,mY ), where mY

has property B, the following equalities hold:
D−

τm(F ) =
∪

G∈mY
{F−(G)− Int(F−(G))}

=
∪

B∈P (Y ){F−(mInt(B))− Int(F−(B))}
=

∪
B∈P (Y ){Cl(F+(B))− F+(mCl(B))}

=
∪

A∈P (X){Cl(A)− F+(mCl(F (A)))}
=

∪
H∈F {Cl(F+(H))− F+(H)}, where

P (X) is the family of all subsets of X,
P (Y ) is the family of all subsets of Y ,
F is the family of all m-closed sets of (Y,mY ).

Proof. The proof is similar to that of Theorem 4.5.

Let (X, τ) be a topological space and (Y,mY ) an m-space. For a
function f : (X, τ) → (Y,mY ), we define Dτm(f) as follows:

Dτm(f) = {x ∈ X : f is not (τ,m)-continuous at x }.

Corollary 4.2. For a function f : (X, τ) → (Y,mY ), where mY has
property B, the following equalities hold:

Dτm(f) =
∪

G∈mY
{f−1(G)− Int(f−1(G))}

=
∪

B∈P (Y ){f−1(mInt(B))− Int(f−1(B))}
=

∪
B∈P (Y ){Cl(f−1(B))− f−1(mCl(B))}

=
∪

A∈P (X){Cl(A)− f−1(mCl(f(A)))}
=

∪
H∈F {Cl(f−1(H))− f−1(H)}, where

P (X) is the family of all subsets of X,
P (Y ) is the family of all subsets of Y ,
F is the family of all m-closed sets of (Y,mY ).

Theorem 4.7. For a multifunction F : (X, τ) → (Y,mY ), D
+
τm(F )

(resp. D−
τm(F )) is identical with the union of the frontiers of the upper
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(resp. lower) inverse images of m-open sets of Y containing (resp.
meeting) F(x).

Proof. We shall prove the first case since the proof of the second
is similar.
Let x ∈ D+

τm(F ). Then, there exists an m-open set V of Y containing
F (x) such that U ∩ (X −F+(V )) ̸= ∅ for every open set U containing
x. By Lemma 3.2, we have x ∈ mCl(X−F+(V )). On the other hand,
since x ∈ F+(V ) ⊂ Cl(F+(V )) and hence x ∈ Fr(F+(V )).

Conversely, suppose that F is upper (τ,m)-continuous at x ∈ X.
Then, for any m-open set V of Y containing F (x), there exists U ∈ τ
containing x such that F (U) ⊂ V ; hence x ∈ U ⊂ F+(V ). Therefore,
we have x ∈ U ⊂ Int(F+(V )). This is contrary to the fact that
x ∈ Fr(F+(V )).

Corollary 4.3. For a function f : (X, τ) → (Y,mY ), Dτm(f) is iden-
tical with the union of the frontiers of the inverse images of m-open
sets of Y containing f(x).

Definition 4.2. Let S be a subset of an m-space (Y,mY ). A point
y ∈ Y is called an mθ-adherent point of S if mCl(V )∩S ̸= ∅ for every
mY -open set V containing y.

The set of all mθ-adherent points of S is called the mθ-closure of
S and is denoted by mClθ(S). If S = mClθ(S), then S is said to be
mθ-closed. The complement of an mθ-closed set is said to be mθ-open.

Remark 4.2. Let S be a subset of a topological space (X, τ) and
mX = τ (resp. SO(X),PO(X)), then mClθ(S) = Clθ(S) [41] (resp.
sClθ(S) [6], pClθ(S) [29]).

Lemma 4.1. (Popa and Noiri [35]) Let S be a subset of an m-space
(Y,mY ). If mY satisfies property B, then mClθ(S) is mY -closed for
every subset S of Y.

Definition 4.3. An m-space (Y,mY ) is said to be m-regular [35] if for
each mY -closed set F and each y /∈ F , there exist disjoint mY -open
sets U and V such that y ∈ U and F ⊂ V .

Remark 4.3. Let (X, τ) be a topological space and mX = τ (resp.
SO(X), PO(X)). Then m-regularity coincides with regularity (resp.
semi-regularity [7], pre-regularity [29]).

Lemma 4.2. (Popa and Noiri [35]) Let (Y,mY ) be an m-regular space.
Then every m-open set is mθ-open.
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Theorem 4.8. Let (Y,mY ) be an m-regular space, where mY has prop-
erty B. Then, for a multifunction F : (X, τ) → (Y,mY ), the following
properties are equivalent:

(1) F is upper (τ,m)-continuous;
(2) F−(mClθ(B)) is closed in X for every subset B of Y;
(3) F−(K) is closed in X for every mθ-closed set K of Y;
(4) F+(V ) is open in X for every mθ-open set V of Y.

Proof. (1) ⇒ (2): Let B be any subset of Y . Then by Lemma
4.1, mClθ(B) is m-closed in Y and by Theorem 4.3, F−(mClθ(B)) is
closed in X.

(2) ⇒ (3): Let K be a mθ-closed set of Y . Then K = mClθ(K) and
by (2) F−(K) is closed in X.

(3) ⇒ (4): Let V be an mθ-open set of Y . Then Y −V is mθ-closed
and hence F−(Y − V ) = X − F+(V ) is closed in X. Hence F+(V ) is
open in X.

(4) ⇒ (1): Let V be any m-open set of Y . Since (Y,mY ) is m-
regular, by Lemma 4.2 V is mθ-open. By (4), F+(V ) is open in X and
by Theorem 4.3 F is upper (τ,m)-continuous.

Theorem 4.9. Let (Y,mY ) be an m-regular space, where mY has prop-
erty B. Then, for a multifunction F : (X, τ) → (Y,mY ), the following
properties are equivalent:

(1) F is lower (τ,m)-continuous;
(2) F+(mClθ(B)) is closed in X for every subset B of Y;
(3) F+(K) is closed in X for every mθ-closed set K of Y;
(4) F−(V ) is open in X for every mθ-open set V of Y.

Proof. The proof is similar to that of Theorem 4.8.

Let (Y,mY ) be an m-space. By mCl(F ) : (X, τ) → (Y,mY ), we
denote a multifunction defined by mCl(F )(x) = mCl(F (x)) for each
x ∈ X.

Lemma 4.3. Let F : (X, τ) → (Y,mY ) be a multifunction. Then
(mCl(F ))−(V ) = F−(V ) for every m-open set V of Y.

Proof. Let V be any m-open set of Y and x ∈ (mCl(F ))−(V ).
Then mCl(F (x)) ∩ V ̸= ∅ and there exists y ∈ Y and y ∈ mCl(F (x)).
Since V is m-open, by Lemma 3.2 V ∩F (x) ̸= ∅ and hence x ∈ F−(V ).
This shows that (mCl(F ))−(V ) ⊂ F−(V ).

Conversely, let x ∈ F−(V ). Then we have ∅ ̸= F (x) ∩ V ⊂
mCl(F (x)) ∩ V and hence x ∈ (mCl(F ))−(V ). This shows that
F−(V ) ⊂ mCl(F (x))−(V ).
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Theorem 4.10. A multifunction F : (X, τ) → (Y,mY ) is lower
(τ,m)-continuous if and only if mCl(F ) : (X, τ) → (Y,mY ) is lower
(τ,m)-continuous.

Proof. Let F be lower (τ,m)-continuous and V ∈ mY . Then, by
Theorem 4.4 F−(V ) is open in X. By Lemma 4.3, (mCl(F ))−(V ) =
F−(V ) is open and by Theorem 4.4 mCl(F ) is lower (τ,m)-continuous.
Similarly, if mCl(F ) is lower (τ,m)-continuous, F is lower (τ,m)-
continuous.

Definition 4.4. An m-space (Y,mY ) is said to be m-compact [28] if
every cover of Y by m-open sets of Y has a finite subcover. A subset
B of (Y,mY ) is said to be m-compact if every cover of B by m-open
sets of Y has a finite subcover.

Theorem 4.11. If F : (X, τ) → (Y,mY ) is an upper (τ,m)-
continuous surjective multifunction such that F(x) is m-compact for
each x ∈ X and (X, τ) is compact, then (Y,mY ) is m-compact.

Proof. The proof follows from Corollary 3.1 of [28].

5. Minimal structures in bitopological spaces

In this section, we recall four types of generaliztions of open sets
in bitopological spaces. Every family belonging to these types is an
m-space having property B.

A. (i, j)mX-open sets.

Definition 5.1. A subset A of a bitopological space (X, τ1, τ2) is said
to be

(1) (i, j)-semi-open [20] if A ⊂ jCl(iInt(A)), where i ̸= j, i, j = 1,
2,

(2) (i, j)-preopen [11] if A ⊂ iInt(jCl(A)), where i ̸= j, i, j = 1, 2,
(3) (i, j)-α-open [12] if A ⊂ iInt(jCl(iInt(A))), where i ̸= j, i, j =

1, 2,
(4) (i, j)-semi-preopen (briefly (i, j)-sp-open) [14] if there exists an

(i, j)-preopen set U such that U ⊂ A ⊂ jCl(U), where i ̸= j, i, j = 1, 2.

The family of all (i, j)-semi-open (resp. (i, j)-preopen, (i, j)-α-
open, (i, j)-sp-open) sets of (X, τ1, τ2) is denoted by (i, j)SO(X) (resp.
(i, j)PO(X), (i, j)α(X), (i, j)SPO(X)).

Remark 5.1. Let (X, τ1, τ2) be a bitoppological space and A a subset
of X. Then (i, j)SO(X), (i, j)PO(X), (i, j)α(X), and (i, j)SPO(X)
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are all minimal structures on X. If (i, j)mX = (i, j)SO(X) (resp.
(i, j)PO(X), (i, j)α(X), (i, j)SPO(X)), then

(1) (i, j)mCl(A) = (i, j)-sCl(A) (resp. (i, j)-pCl(A), (i, j)-αCl(A),
(i, j)-spCl(A)),

(2) (i, j)mInt(A) = (i, j)-sInt(A) (resp. (i, j)-pInt(A), (i, j)-
αInt(A), (i, j)-spInt(A)).

Remark 5.2. Let (X, τ1, τ2) be a bitopological space.
(1) Let (i, j)mX = (i, j)SO(X) (resp. (i, j)α(X)). Then by Lemma

3.1 we obtain the results established in Theorem 13 of [20] (resp. The-
orem 3.6 of [25]).

(2) Let (i, j)mX = (i, j)SO(X) (resp. (i, j)PO(X), (i, j)α(X),
(i, j)SPO(X)). Then by Lemma 3.2 we obtain the result established
in Theorem 15 of [19] (resp. Theorem 3.5 of [14], Theorem 3.5 of [25],
Theorem 3.5 of [14]).

Remark 5.3. Let (X, τ1, τ2) be a bitopological space.
(1) (i, j)SO(X) (resp. (i, j)PO(X), (i, j)α(X), (i, j)SPO(X)) is an

minimal structure on X satisfying B by Theorem 2 of [20] (resp. The-
orem 4.2 of [13] or Theorem 3.2 of [14], Theorem 3.2 of [25], Theorem
3.2 of [14]).

(2) Let (i, j)mX = (i, j)SO(X) (resp. (i, j)PO(X), (i, j)α(X),
(i, j)SPO(X)). Then by Lemma 3.3 we obtain the result established
in Theorem 1.13 of [19] (resp. Theorem 3.5 of [14], Theorem 3.6 of
[25], Theorem 3.6 of [14]).

B. Quasi m-open sets.

Definition 5.2. A subset A of a bitopological space (X, τ1, τ2) is said
to be

(1) quasi open [9], [21] or τ1τ2-open [37], [38] if A = B ∪ C, where
B ∈ τ1 and C ∈ τ2,

(2) quasi semi-open [15] if A = B ∪ C, where B ∈ SO(X, τ1) and
C ∈ SO(X, τ2),

(3) quasi preopen [30] if A = B ∪ C, where B ∈ PO(X, τ1) and
C ∈ PO(X, τ2),

(4) quasi semipreopen [40] if A = B∪C, where B ∈ SPO(X, τ1) and
C ∈ SPO(X, τ2),

(5) quasi α-open [39] if A = B ∪ C, where B ∈ α(X, τ1) and C ∈
α(X, τ2).

The family of all quasi open (resp. quasi semi-open, quasi
preopen, quasi semipreopen, quasi α-open) sets of a bitopological
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space (X, τ1, τ2) is denoted by QO(X), τ1τ2(X) or (1,2)O(X) (resp.
QSO(X), QPO(X), QSPO(X), Qα(X)).

Definition 5.3. Let (X, τ1, τ2) be a bitopological space and m1
X (resp.

m2
X) an m-structure on the topological space (X, τ1) (resp. (X, τ2)).

The family

qmX = {A ⊂ X : A = B ∪ C, where B ∈ m1
X and C ∈ m2

X }
is a minimal structure on X and hence is called a quasi m-structure
on X. Each member of qmX is said to be quasi mX-open (or briefly
quasi m-open). The complement of a quasi mX-open set is said to be
quasi mX-closed (or briefly quasi m-closed).

Remark 5.4. Let (X, τ1, τ2) be a bitopological space.
(1) If m1

X and m2
X have property B, then qmX is an m-structure

with property B.
(2) If m1

X = τ1 and m2
X = τ2 (resp. SO(X, τ1) and SO(X, τ2),

PO(X, τ1) and PO(X, τ2), SPO(X, τ1) and SPO(X, τ2), α(X, τ1) and
α(X, τ2)), then qmX = QO(X), τ1τ2(X) or (1,2)O(X) (resp. QSO(X),
QPO(X), QSPO(X), QαO(X)).

(3) Since SO(X, τi) (resp. PO(X, τi), SPO(X, τi) and α(X, τi)) has
property B for i = 1, 2, QSO(X) (resp. QPO(X), QSPO(X) and
QαO(X)) has property B.

Definition 5.4. Let (X, τ1, τ2) be a bitopological space. For a subset
A of X, the quasi mX-closure of A and the quasi mX-interior of A are
defined as follows:

(1) qmCl(A) = ∩{F : A ⊂ F,X − F ∈ qmX},
(2) qmInt(A) = ∪{U : U ⊂ A,U ∈ qmX}.

Remark 5.5. Let (X, τ1, τ2) be a bitopological space and A a sub-
set of X. If qmX = QO(X) (resp. QSO(X), QPO(X), QSPO(X),
QαO(X)), then we have

(1) qmCl(A) = qCl(A) [38] (resp. qsCl(A) [15], qpCl(A) [30],
qspCl(A) [40], qαCl(A) [39]),

(2) qmInt(A) = qInt(A) (resp. qsInt(A), qpInt(A), qspInt(A),
qαInt(A)).
The notations qCl(A) and qInt(A) are also denoted by τ1τ2Cl(X) (or
(1,2)Cl(A)) and τ1τ2Int(X) (or (1,2)Int(A)), respectively.

C. (1, 2)∗-mX-open sets

Definition 5.5. A subset A of a bitopological space (X, τ1, τ2) is said
to be
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(1) (1, 2)∗-semi-open [36] if A ⊂ τ1τ2Cl(τ1τ2Int(A)),
(2) (1, 2)∗-preopen [36] if A ⊂ τ1τ2Int(τ1τ2Cl(A)),
(3) (1, 2)∗-α-open [36] if A ⊂ τ1τ2Int(τ1τ2Cl(τ1τ2Int(A))),
(4) (1, 2)∗-semi-preopen [36] if A ⊂ τ1τ2Cl(τ1τ2Int(τ1τ2Cl(A))).

The complement of a (1, 2)∗-semi-open (resp. (1, 2)∗-preopen,
(1, 2)∗-α-open, (1, 2)∗-semi-preopen) set is said to be (1, 2)∗-semi-
closed (resp. (1, 2)∗-preclosed, (1, 2)∗-α-closed, (1, 2)∗-semi-preclosed).

The family of all (1, 2)∗-semi-open (resp. (1, 2)∗-preopen, (1, 2)∗-
α-open, (1, 2)∗-semi-preopen) sets is denoted by (1, 2)∗SO(X) (resp.
(1, 2)∗PO(X), (1, 2)∗α(X), (1, 2)∗SPO(X)).

Remark 5.6. Let (X, τ1, τ2) be a bitopological space and A a subset
of X.

(1) The families (1, 2)∗SO(X), (1, 2)∗PO(X), (1, 2)∗α(X), and
(1, 2)∗SPO(X) are all m-structures with property B.

(2) By (1, 2)∗mX , we denote each member of the above five
familes and call it an m-structure determinded by τ1 and τ2. Let
(1, 2)∗mX = τ12O(X) (resp. (1, 2)∗SO(X), (1, 2)∗PO(X), (1, 2)∗α(X),
(1, 2)∗SPO(X)), then we have

(i) (1, 2)∗mCl(A) = τ1τ2Cl(A) (resp. (1, 2)∗sCl(A), (1, 2)∗pCl(A),
(1, 2)∗αCl(A), (1, 2)∗spCl(A)),

(ii) (1, 2)∗mInt(A) = τ1τ2Int(A) (resp. (1, 2)
∗sInt(A), (1, 2)∗pInt(A),

(1, 2)∗αInt(A), (1, 2)∗spInt(A)).
(3) Since each one of (1, 2)∗mX has property B, by Lemma 3.3 we

have
(i) A is (1, 2)∗mX-closed if and only if (1, 2)∗mCl(A) = A,
(ii) A is (1, 2)∗mX-open if and only if (1, 2)∗mInt(A) = A

for (1, 2)∗mX = τ12O(X) (resp. (1, 2)∗SO(X), (1, 2)∗PO(X),
(1, 2)∗α(X), (1, 2)∗SPO(X)).

(4) By Lemma 3.2, we obtain the result established in Proposition
2.2(ii) of [38].

(5) By Lemma 3.1, we obtain the relations between (1, 2)∗mCl(A)
and (1, 2)∗mInt(A).

D. (1, 2)mX-open sets.

Definition 5.6. A subset A of a bitopological space (X, τ1, τ2) is said
to be

(1) (1,2)-semi-open [16] if A ⊂ τ1τ2Cl(τ1Int(A)),
(2) (1,2)-preopen [16] if A ⊂ τ1Int(τ1τ2Cl(A)),
(3) (1,2)-α-open [16] if A ⊂ τ1Int(τ1τ2Cl(τ1Int(A))),
(4) (1,2)-semi-preopen [17] if A ⊂ τ1τ2Cl(τ1Int(τ1τ2Cl(A))).
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The complement of (1,2)-semi-open (resp. (1,2)-preopen, (1,2)-α-
open, (1,2)-semi-preopen) set ofX is said to be (1,2)-semi-closed (resp.
(1,2)-preclosed, (1,2)-α-closed, (1,2)-semi-preclosed). The intersection
of all (1,2)-semi-closed (resp. (1,2)-preclosed, (1,2)-α-closed, (1,2)-
semi-preclosed) sets containing A is called the (1,2)-semi-closure (resp.
(1,2)-preclosure, (1,2)-α-closure, (1,2)-semi-preclosure) of A and is de-
noted by (1,2)sCl(A) (resp. (1,2)pCl(A), (1,2)αCl(A), (1,2)spCl(A)).
The union of (1,2)-semi-open (resp. (1,2)-preopen, (1,2)-α-open, (1,2)-
semi-preopen) sets ofX contained in A is called the (1,2)-semi-interior
(resp. (1,2)-preinterior, (1,2)-α-interior, (1,2)-semi-preinterior) of
A and is denoted by (1,2)sInt(A) (resp. (1,2)pInt(A), (1,2)αInt(A),
(1,2)spInt(A)).

The collection of all (1,2)-semi-open (resp. (1,2)-preopen, (1,2)-α-
open, (1,2)-semi-preopen) sets of X is denoted by (1,2)SO(X) (resp.
(1,2)PO(X), (1,2)αO(X), (1,2)SPO(X)).

Remark 5.7. Let (X, τ1, τ2) be a bitopological space and A a subset
of X.

(1) The families τ1τ2O(X), (1,2)SO(X), (1,2)PO(X), (1,2)αO(X)
and (1,2)SPO(X) are all m-structures on X having property B.

(2) By (1, 2)mX , we denote each one of the above families and call
it an m-structure determined by the topologies τ1 and τ2 on X. If
(1,2)mX = τ1τ2O(X) (resp. (1,2)SO(X), (1,2)PO(X), (1,2)αO(X),
(1,2)SPO(X)), then we have

(i) (1,2)mCl(A) = τ1τ2Cl(A) (resp. (1,2)sCl(A), (1,2)pCl(A),
(1,2)αCl(A), (1,2)spCl(A)),

(ii) (1,2)mInt(A) = τ1τ2Int(A) (resp. (1,2)sInt(A), (1,2)pInt(A),
(1,2)αInt(A), (1,2)spInt(A)).

(3) Since the families τ1τ2O(X), (1,2)SO(X), (1,2)PO(X),
(1,2)αO(X) and (1,2)SPO(X) have property B, a subet A of X is τ1τ2-
closed (resp. (1,2)-semi-closed, (1,2)-preclosed, (1,2)-α-closed, (1,2)-
semi-preclosed) if and only if A = τ1τ2Cl(A) (resp. A = (1,2)sCl(A),
A = (1,2)pCl(A), A = (1,2)αCl(A), A = (1,2)spCl(A)) and also A is
τ1τ2-open (resp. (1,2)-semi-open, (1,2)-preopen, (1,2)-α-open, (1,2)-
semi-preopen) if and only if A = τ1τ2Int(A) (resp. A = (1,2)sInt(A),
A = (1,2)pInt(A), A = (1,2)αInt(A), A = (1,2)spInt(A)).

(4) By Lemma 3.2, we obtain the results established in Lemma 8(iii)
of [4].

(5) By Lemma 3.1, we obtain the relations between (1,2)mCl(A)
and (1,2)mInt(A).
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Remark 5.8. It follows from A, B, C and D that if (X, τ1, τ2) is a
bitopological space then some minimal structures on X determined by
τ1 and τ2 are introduced. In the sequel, by m(τ1, τ2) (simply m12) we
denote a minimal structure on X determined by τ1 and τ2, that is,
(i, j)mX , qm, (1, 2)∗mX or (1, 2)mX .

6. (τ,m)-continuity for multifunctions

Definition 6.1. A multifunction F : (X, τ) → (Y, σ1, σ2) is said to be
(1) upper ultra continuous at a point x ∈ X [26] if for each (1,2)α-

open set V containing F (x), there exists an open set U containing x
such that F (U) ⊂ V ,

(2) lower ultra continuous at a point x ∈ X [26] if for each (1,2)α-
open set V such that F (x) ∩ V ̸= ∅, there exists an open set U con-
taining x such that F (u) ∩ V ̸= ∅ for every u ∈ U ,

(3) upper/lower ultra continuous if F has this property at each
x ∈ X.

Hence, it turns out that F : (X, τ) → (Y, σ1, σ2) is ultra upper/lower
continuous at a point x ∈ X if and only if F : (X, τ) → (Y, (1, 2)α(Y ))
is upper/lower (τ,m)-continuous at a point x ∈ X .

Definition 6.2. Let (X, τ) be a topological space, (Y, σ1, σ2) a bitopo-
logical space and m12 = m(σ1, σ2) an minimal structure on Y deter-
mined by σ1 and σ2. A multifunction F : (X, τ) → (Y, σ1, σ2) is said
to be upper/lower (τ,m12)-continuous at a point x ∈ X (resp. on X)
if F : (X, τ) → (Y,m12) is upper/lower (τ,m)-continuous at x ∈ X
(resp. on X).

Hence a multifunction F : (X, τ) → (Y, σ1, σ2) is said to be
(1) upper (τ,m12)-continuous at x ∈ X if for each m12-open set V

containing F (x), there exists an open set U containing x such that
F (U) ⊂ V ,

(2) lower (τ,m12)-continuous at x ∈ X if for each m12-open set V
such that F (x) ∩ V ̸= ∅, there exists an open set U containing x such
that F (u) ∩ V ̸= ∅ for every u ∈ U ,

(3) upper/lower (τ,m12)-continuous if F has this property at each
x ∈ X.

Remark 6.1. (1) If m(σ1, σ2) = (1, 2)α(Y ), then we obtain the defi-
nitions of Definition 6.1

By Theorems 4.1-4.4, for the family m(σ1, σ2) =
(i, j)mY , qm, (1, 2)∗mY and (1, 2)mY , we obtain the following
characterizations.
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Theorem 6.1. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m12 = m(σ1, σ2) on Y, the following properties are
equivalent:

(1) F is upper (τ,m12)-continuous at x ∈ X;
(2) x ∈ Int(F+(V )) for each m12-open set V of Y containing F(x);
(3) x ∈ F−(m12Cl(B)) for every subset B of Y such that x ∈

Cl(F−(B));
(4) x ∈ Int(F+(B)) for every subset B of Y such that x ∈

F+(m12Int(B)).

Theorem 6.2. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m12 = m(σ1, σ2) on Y, the following properties are
equivalent:

(1) F is lower (τ,m12)-continuous at x ∈ X;
(2) x ∈ Int(F−(V )) for each m12-open set V of Y meeting F(x);
(3) x ∈ F+(m12Cl(B)) for every subset B of Y such that x ∈

Cl(F+(B));
(4) x ∈ Int(F−(B)) for every subset B of Y such that x ∈

F−(m12Int(B));
(5) x ∈ F−(m12Cl(F (A))) for every subset A of Y such that

x ∈ Cl(A).

Theorem 6.3. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m12 = m(σ1, σ2) on Y, the following properties are
equivalent:

(1) F is upper (τ,m12)-continuous;
(2) F+(V ) is open in X for every V ∈ m12;
(3) F−(K) for closed in X every m12-closed set K;
(4) Cl(F−(B)) ⊂ F−(m12Cl(B)) for every subset B of Y;
(5) F+(m12Int(B)) ⊂ Int(F+(B)) for every subset B of Y.

Theorem 6.4. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m12 = m(σ1, σ2) on Y, the following properties are
equivalent:

(1) F is lower (τ,m12)-continuous;
(2) F−(V ) is open in X for every V ∈ m12;
(3) F+(K) is closed in X for every m12-closed set K;
(4) Cl(F+(B)) ⊂ F+(m12Cl(B)) for every subset B of Y;
(5) F (Cl(A)) ⊂ m12Cl(F (A)) for every subset A of X;
(6) F−(m12Int(B)) ⊂ Int(F−(B)) for every subset B of Y.

If m(σ1, σ2) = (1, 2)α(Y ), then we obtain the following four corol-
laries.
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Corollary 6.1. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m(σ1, σ2) = (1, 2)α(Y ) on Y, the following proper-
ties are equivalent:

(1) F is upper (τ, (1, 2)α(Y ))-continuous at x ∈ X;
(2) x ∈ Int(F+(V )) for each V ∈ (1, 2)α(Y ) containing F(x);
(3) x ∈ F−((1, 2)α(Y)Cl(B)) for every subset B of Y such that

x ∈ Cl(F−(B));
(4) x ∈ Int(F+(B)) for every subset B of Y such that x ∈

F+((1, 2)α(Y)Int(B)).

Corollary 6.2. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m(σ1, σ2) = (1, 2)α(Y ) on Y, the following proper-
ties are equivalent:

(1) F is lower (τ, (1, 2)α(Y ))-continuous at x ∈ X;
(2) x ∈ Int(F−(V )) for each (1, 2)α(Y )-open set V of Y meeting

F(x);
(3) x ∈ F+((1, 2)α(Y)Cl(B)) for every subset B of Y such that

x ∈ Cl(F+(B));
(4) x ∈ Int(F−(B)) for every subset B of Y such that x ∈

F−((1, 2)α(Y)Int(B));
(5) x ∈ F−((1, 2)α(Y)Cl(F (A))) for every subset A of Y such that

x ∈ Cl(A).

Corollary 6.3. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m(σ1, σ2) = (1, 2)α(Y ) on Y, the following proper-
ties are equivalent:

(1) F is upper (τ, (1, 2)α(Y ))-continuous;
(2) F+(V ) is open in X for every V ∈ (1, 2)α(Y );
(3) F−(K) for closed in X every (1, 2)α(Y )-closed set K;
(4) Cl(F−(B)) ⊂ F−((1, 2)α(Y)Cl(B)) for every subset B of Y;
(5) F+((1, 2)α(Y)Int(B)) ⊂ Int(F+(B)) for every subset B of Y.

Corollary 6.4. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m(σ1, σ2) = (1, 2)α(Y ) on Y, the following proper-
ties are equivalent:

(1) F is lower (τ, (1, 2)α(Y ))-continuous;
(2) F−(V ) is open in X for every V ∈ (1, 2)α(Y );
(3) F+(K) is closed in X for every (1, 2)α(Y )-closed set K;
(4) Cl(F+(B)) ⊂ F+((1, 2)α(Y)Cl(B)) for every subset B of Y;
(5) F (Cl(A)) ⊂ (1, 2)α(Y)Cl(F (A)) for every subset A of X;
(6) F−((1, 2)α(Y)Int(B)) ⊂ Int(F−(B)) for every subset B of Y.
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Definition 6.3. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
(i, j) K-continuous [8] if for each (i, j)-semi-open set V of Y containing
f(x), there exists a τi-open set U of X containing x such that f(U) ⊂
V .

Hence a function f : (X, τ1, τ2) → (Y, σ1, σ2) is (i, j)K-continuous
if and only if a function f : (X, τi) → (Y, (i, j)SO(Y )) is (τ,m)-
continuous.

Definition 6.4. Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2)
a minimal structure on Y determined by σ1 and σ2. A function f :
(X, τ) → (Y, σ1, σ2) is said to be (τ,m)-continuous if a function f :
(X, τ) → (Y,m(σ1, σ2)) is (τ,m)-continuous.

Remark 6.2. (1) If m(σ1, σ2) = (i, j)SO(Y ), then we obtain Defini-
tion 6.3.

(2) By Theorem 6.4, we obtain the following theorem for single val-
ued functions.

Theorem 6.5. For a function f : (X, τ) → (Y, σ1, σ2) and a minimal
structure m12 = m(σ1, σ2) on Y, the following properties are equiva-
lent:

(1) f is (τ,m12)-continuous;
(2) f−1(V ) is open in X for every V ∈ m12;
(3) f−1(K) is closed in X for every m12-closed set K;
(4) Cl(f−1(B)) ⊂ f−1(m12Cl(B)) for every subset B of Y;
(5) f(Cl(A)) ⊂ m12Cl(f(A)) for every subset A of X;
(6) f−1(m12Int(B)) ⊂ Int(f−1(B)) for every subset B of Y.

Remark 6.3. If m(σ1, σ2) = (i, j)SO(Y ), then by Theorem 6.5 we
obtain the result established in Theorem 1 of [8].

For a multifunction F : (X, τ) → (Y, σ1, σ2) and a minimal structure
m(σ1, σ2) on Y determined by σ1 and σ2, we define D+

τm12
(F ) and

D−
τm12

(F ) as follows:

D+
τm12

(F ) = {x ∈ X : F is not upper (τ,m(σ1, σ2)-continuous at
x ∈ X },

D−
τm12

(F ) = {x ∈ X : F is not lower (τ,m(σ1, σ2))-continuous at
x ∈ X }.

The following theorems follow immediately from Theorems 4.5 and
4.6.

Theorem 6.6. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m12 = m(σ1, σ2) on Y determined by σ1 and σ2, the
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following properties hold:
D+

τm12
(F ) =

∪
G∈m(σ1,σ2)

{F+(G)− Int(F+(G))}
=

∪
B∈P (Y ){F+(m12Int(B))− Int(F+(B))}

=
∪

B∈P (Y ){Cl(F−(B))− F−(m12Cl(B))}
=

∪
H∈F {Cl(F−(H))− F−(H)}, where

P (Y ) is the family of all subsets of Y ,
F is the family of all m(σ1, σ2)-closed sets of Y .

Theorem 6.7. For a multifunction F : (X, τ) → (Y, σ1, σ2) and a
minimal structure m12 = m(σ1, σ2) on Y determined by σ1 and σ2, the
following properties hold:

D−
τm12

(F ) =
∪

G∈m(σ1,σ2)
{F−(G)− Int(F−(G))}

=
∪

B∈P (Y ){F−(m12Int(B))− Int(F−(B))}
=

∪
B∈P (Y ){Cl(F+(B))− F+(m12Cl(B))}

=
∪

A∈P (X){Cl(A)− F+(m12Cl(F (A)))}
=

∪
H∈F {Cl(F+(H))− F+(H)}, where

P (X) is the family of all subsets of X,
P (Y ) is the family of all subsets of Y ,
F is the family of all m(σ1, σ2)-closed sets of Y .

For a function f : (X, τ) → (Y, σ1, σ2) and a minimal structure
m12 = m(σ1, σ2) on Y determined by σ1 and σ2, by Corollary 4.2 we
obtain the following corollary.

Corollary 6.5. For a function f : (X, τ) → (Y, σ1, σ2) and a mini-
mal structure m(σ1, σ2) on Y determined by σ1 and σ2, the following
properties hold:

Dτm12(f) =
∪

G∈m(σ1,σ2)
{f−1(G)− Int(f−1(G))}

=
∪

B∈P (Y ){f−1(m12Int(B))− Int(f−1(B))}
=

∪
B∈P (Y ){Cl(f−1(B))− f−1(m12Cl(B))}

=
∪

A∈P (X){Cl(A)− f−1(m12Cl(F (A)))}
=

∪
H∈F {Cl(f−1(H))− f−1(H)}, where

P (X) is the family of all subsets of X,
P (Y ) is the family of all subsets of Y ,
F is the family of all m(σ1, σ2)-closed sets of Y.

Let m(σ1, σ2) = (i, j)SO(Y ), then by Corollary 6.5 we obtain the
following corollary.

Corollary 6.6. For a function f : (X, τ) → (Y, σ1, σ2) and a minimal
structure m(σ1, σ2) = (i, j)SO(Y ), the following properties hold:

Dτm12(f) =
∪

G∈(i,j)SO(Y ){f−1(G)− Int(f−1(G))}
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=
∪

B∈P (Y ){f−1((i, j)sInt(B))− Int(f−1(B))}
=

∪
B∈P (Y ){Cl(f−1(B))− f−1((i, j)sCl(B))}

=
∪

A∈P (X){Cl(A)− f−1((i, j)sCl(F (A)))}
=

∪
H∈F {Cl(f−1(H))− f−1(H)}, where

P (X) is the family of all subsets of X,
P (Y ) is the family of all subsets of Y ,
F is the family of all (i, j)-semi-closed sets of Y.

Theorem 6.8. Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2)
a minimal structure of Y determined by σ1 and σ2. The set of all
points at which a multifunction F : (X, τ) → (Y, σ1, σ2) is not up-
per/lower (τ,m(σ1, σ2))-continuous is identical with the union of the
frontiers of the upper/lower inverse images of m(σ1, σ2)-open sets of
Y containing/meeting F(x).

Proof. The proof follows from Theorem 4.7.

If m(σ1, σ2) = (1, 2)α(Y ), then we obtain the following corollary.

Theorem 6.9. Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2) =
(1, 2)α(Y ). The set of all points at which a multifunction F : (X, τ) →
(Y, σ1, σ2) is not upper/lower ultra-continuous is identical with the
union of the frontiers of the upper/lower inverse images of (1, 2)α(Y )-
open sets of Y containing/meeting F(x).

For a single valued function f : (X, τ) → (Y, σ1, σ2), we obtain the
following theorem.

Theorem 6.10. Let (Y, σ1, σ2) be a bitopological space and
m(σ1, σ2) = (1, 2)α(Y ). The set of all points at which a function
f : (X, τ) → (Y, σ1, σ2) is not ultra-continuous is identical with the
union of the frontiers of the inverse images of (1, 2)α(Y )-open sets of
Y containing f(x).

Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2) a minimal
structure of Y determined by σ1 and σ2.

Definition 6.5. Let S be a subset of Y . A point y ∈ Y is called an
mθ(σ1, σ2)-adherent point of S if y is mθ-adherent in (Y,m(σ1, σ2)).
The set of all mθ(σ1, σ2)-adherent points of S is called the mθ(σ1, σ2)-
closure of S and is denoted by m(σ1, σ2)Clθ(S).

If S = m(σ1, σ2)Clθ(S), then S is said to be mθ(σ1, σ2)-closed. The
complement of an mθ(σ1, σ2)-closed set is said to be mθ(σ1, σ2)-open.



26 T.NOIRI AND V.POPA

Definition 6.6. A bitopological space (Y, σ1, σ2) is said to be
m(σ1, σ2)-regular if the space (Y,m(σ1, σ2)) is m-regular.

Remark 6.4. If m(σ1, σ2) = (i, j)PO(Y ), then by Definitiion 6.5 we
obtain the definition of (i, j)-pre-regular spaces due to [4].

By Definitions 6.5 and 6.6 and Theorems 4.8 and 4.9, we obtain the
following theorems.

Theorem 6.11. Let (Y, σ1, σ2) be an m(σ1, σ2)-regular bitopological
space and m(σ1, σ2) a minimal structure of Y determined by σ1 and
σ2. Then, for a multifunction F : (X, τ) → (Y, σ1, σ2), the following
properties are equivalent:

(1) F is upper (τ,m(σ1, σ2))-continuous;
(2) F−(mθ(σ1, σ2)Cl(B)) is closed in X for every subset B of Y;
(3) F−(K) is closed in X for every mθ(σ1, σ2)-closed set K of Y;
(4) F+(V ) is open in X for every mθ(σ1, σ2)-open set V of Y.

Theorem 6.12. Let (Y, σ1, σ2) be an m(σ1, σ2)-regular bitopological
space and m(σ1, σ2) a minimal structure of Y determined by σ1 and
σ2. Then, for a multifunction F : (X, τ) → (Y, σ1, σ2), the following
properties are equivalent:

(1) F is lower (τ,m(σ1, σ2))-continuous;
(2) F+(mθ(σ1, σ2)Cl(B)) is closed in X for every subset B of Y;
(3) F+(K) is closed in X for every mθ(σ1, σ2)-closed set K of Y;
(4) F−(V ) is open in X for every mθ(σ1, σ2)-open set V of Y.

Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2) a mini-
mal structure of Y determined by σ1 and σ2. Then, for a multi-
function F : (X, τ) → (Y, σ1, σ2), we denote by m(σ1, σ2)Cl(F ) :
(X, τ) → (Y, σ1, σ2) a multifunction defined by (m(σ1, σ2)Cl(F ))(x) =
m(σ1, σ2)Cl(F (x)) for each x ∈ X. Then, by Theorem 4.10 we obtain
the following theorem.

Theorem 6.13. Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2)
a minimal structure of Y determined by σ1 and σ2. A multifunc-
tion F : (X, τ) → (Y, σ1, σ2) is lower (τ,m(σ1, σ2))-continuous if and
only if m(σ1, σ2)Cl(F ) : (X, τ) → (Y, σ1, σ2) is lower (τ,m(σ1, σ2))-
continuous.

Definition 6.7. Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2)
a minimal structure of Y determined by σ1 and σ2. The space
(Y, σ1, σ2) is said to be m(σ1, σ2)-compact if (Y,m(σ1, σ2)) is m-
compact.
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By Theorem 4.11, we obtain the following theorem.

Theorem 6.14. Let (Y, σ1, σ2) be a bitopological space and m(σ1, σ2)
a minimal structure of Y determined by σ1 and σ2. If F : (X, τ) →
(Y, σ1, σ2) is an upper (τ,m(σ1, σ2))-continuous surjective multifunc-
tion such that F(x) is m(σ1, σ2)-compact for each x ∈ X and (X, τ) is
compact, then (Y, σ1, σ2) is m(σ1, σ2)-compact.
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